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Abstra
t

We 
onsider the problem of allo
ating indivisible goods to agents who have preferen
es over

the goods. In su
h a setting, a 
entral task is to maximize so
ial welfare. In this paper, we

assume the preferen
es to be additive, and measure so
ial welfare by means of of the Nash

produ
t. We fo
us on the 
omputational 
omplexity involved in maximizing Nash produ
t

so
ial welfare when s
ores inherent in 
lassi
al voting pro
edures su
h as Approval or Borda

voting are used to asso
iate utilities with the agents' preferen
es. In parti
ular, we show that

the maximum Nash produ
t so
ial welfare 
an be 
omputed e�
iently when Approval s
ores

are used, while for Borda and Lexi
ographi
 s
ores the problem be
omes NP-
omplete.

1 Introdu
tion

The allo
ation of goods (items, resour
es) to agents who have preferen
es over these goods (multiagent

resour
e allo
ation) is a fundamental problem of e
onomi
s, and, in parti
ular, so
ial 
hoi
e theory.

This problem has been ta
kled in various s
enarios (see, e.g., Chevaleyre et al. (2006) for a survey),

where, e.g., we distinguish between divisible and indivisible goods, and 
entralized and de
entralized

approa
hes. Here, we 
onsider the 
ase of indivisible and nonshareable goods to be distributed among

agents who report their preferen
es to a 
entral authority. Typi
ally, individual utilities of (bundles

of) items are asso
iated with the preferen
es over the items. In this work, this is done via numeri
al

s
ores used in voting rules. Now, a major task is to �nd an allo
ation whi
h maximizes the so
ial

welfare a
hieved. Di�erent notions of so
ial welfare have been introdu
ed, the most important being

utilitarian, egalitarian, and Nash Produ
t so
ial welfare (
f. Brandt et al. (2013)).

Loosely speaking, utilitarian so
ial welfare of an allo
ation is given by the sum of the agents' utilities

resulting from the allo
ation. A more �ne-grained approa
h is egalitarian so
ial welfare, where the

lowest of the agents' individual utilities in a given allo
ation is 
onsidered. In a 
ertain sense, the Nash

produ
t so
ial welfare links these two approa
hes: by measuring the produ
t of the agents' utilities

in an allo
ation, maximizing the Nash produ
t so
ial welfare targets at a �balan
ed� allo
ation (see

also Nguyen et al. (2014)). In parti
ular, the Nash produ
t in
reases when inequality among two agents

is redu
ed (given the respe
tive 
hange is mean-preserving; see also Ramezani & Endriss (2010)). For

further desirable properties that are satis�ed by the Nash produ
t, su
h as independen
e of individual

s
ale of utilities, we refer to Moulin (2003).

A 
entral question in maximizing so
ial welfare is the 
omputational 
omplexity involved. We assume

that the agents have additive preferen
es, i.e., for ea
h agent, the utility of a set of goods is the sum

of the utilities of the single goods it 
ontains.

Clearly, maximizing utilitarian so
ial welfare is an easy task � simply allo
ate ea
h item to an agent who

it yields the highest utility for (see also Brandt et al. (2013)). In 
ontrast, it is known that maximizing

egalitarian so
ial welfare and Nash Produ
t so
ial welfare are NP-
omplete for additive utilities and

general s
oring fun
tions (Roos & Rothe (2010)). Very re
ently, Baumeister et al. (2013) have shown

that maximizing egalitarian so
ial welfare remains NP-
omplete for a number of prototypi
al s
oring

fun
tions: Quasi-Indi�eren
e, Borda, and Lexi
ographi
 s
oring. On the positive side, it is known

that the maximum egalitarian so
ial welfare 
an be 
omputed in polynomial time for Approval s
ores

(Golovin (2005)). To the best of our knowledge, the 
omputational 
omplexity of maximizing Nash

produ
t so
ial welfare under s
oring fun
tions su
h as Approval, Borda, or Lexi
ographi
 s
oring



has not been 
onsidered yet. In this paper, we investigate the 
omputational 
omplexity involved in

maximizing Nash produ
t so
ial welfare under these 
lassi
al s
oring fun
tions.

Related work and our 
ontribution. In the 
ontext of maximizing so
ial welfare in multiagent

resour
e allo
ation, 
omplexity results have been a
hieved with respe
t to di�erent types of utility

representation: the bundle form, k-additive form, or straight-line programs. For the bundle form

representation, NP-
ompleteness results for utilitarian (Chevaleyre et al. (2008)), egalitarian (Roos

& Rothe (2010)), and Nash produ
t so
ial welfare (Roos & Rothe (2010) and Ramezani & Endriss

(2010)) are known. For straight-line programs, Dunne et al. (2005) show that maximizing utilitar-

ian so
ial welfare is NP-
omplete, while Nguyen et al. (2014) show that maximizing so
ial welfare is

NP-
omplete both for the egalitarian and Nash produ
t approa
h. Both maximizing egalitarian so
ial

welfare and maximizing Nash Produ
t so
ial welfare turn out to be NP-
omplete for 1-additive, i.e.,
additive utilities already (Lipton et al. (2004) and Roos & Rothe (2010)). In these works, redu
tions

from Partition are given, whi
h do not imply the NP-
ompleteness for any of the s
oring fun
tions


onsidered in our work. Given additive utilities, very re
ently Baumeister et al. (2013), besides many

other results, have proven that maximizing egalitarian so
ial welfare is NP-
omplete for Borda, Lexi-


ographi
, and Quasi-Indi�eren
e s
oring.

In this paper, we show that maximizing Nash Produ
t so
ial welfare is NP-
omplete for Borda and

Lexi
ographi
 s
ores, whereas it is polynomially solvable for Approval s
ores. The 
omputational


omplexity involved when Quasi-Indi�eren
e s
ores are used is still open.

2 Formal Framework

2.1 Preliminaries

Let R = {r1, r2, . . . , rm} be a set of m indivisible resour
es (items) and let A = {a1, . . . , an} be a set

of n agents. An allo
ation is a mapping that assigns to ea
h agent a subset of resour
es su
h that ea
h

resour
e is handed to exa
tly one agent. Formally, an allo
ation P is a mapping P : A → 2R with

⋃

a∈A P (a) = R and P (ai) ∩ P (aj) = ∅ whenever i 6= j.

Now, in our model, we start with ordinal inputs, i.e., the agents rank resour
es, and map these ranks

to numeri
al s
ores then. Note that we do not 
laim that these numeri
al s
ores are equivalent or at

least 
lose to the agents' a
tual utilities. However, starting with numeri
al inputs instead would have

several drawba
ks (see also Baumeister et al. (2013)); e.g., often it is easier for agents to rank items

instead of asso
iating numeri
al values with ea
h single item, espe
ially in 
ontexts where money is

not a key fa
tor. Next, as also pointed out in Baumeister et al. (2013), the use of numeri
al inputs

has the severe disadvantage that it insinuates 
omparability of interpersonal preferen
es. Finally, note

that our approa
h is very 
ommon in voting theory, as in fa
t it resembles the way that positional

s
oring rules pro
eed

1

.

In parti
ular, we assume that agents have preferen
es over the single resour
es. The preferen
es are

expressed by means of stri
t orders ≻ai
over R, whi
h are summarized by the n-tuple π = (≻a1 ,≻a2

, . . . ,≻an
) 
alled pro�le. We denote by rankai

(r) the rank of resour
e r in the ranking of agent ai.
We adopt s
ores used in voting pro
edures to evaluate these preferen
es by means of utility fun
tions

ua : R → Q, a ∈ A. We assume that the utility fun
tions are additive, i.e., for any subset R′ ⊆ R we

have ua(R
′) =

∑

r∈R′ ua(R
′). For the sake of readability, we may write ua(P ) instead of ua(P (a)).

Given a pro�le π, we 
onsider the following types of s
ores (where r ∈ R):

• k-approval s
ores: For ea
h agent a ∈ A,

ua(r) =

{

1 if ranka(r) ≤ k

0 otherwise

1

Obviously, with the 
lear di�eren
e that we are �nally interested in allo
ations instead of winners of ele
tions.



• Borda s
ores: For ea
h agent a ∈ A, ua(r) = m+ 1− ranka(r).

• Lexi
ographi
 s
ores: For ea
h agent a ∈ A, ua(r) = 2m−ranka(r)
.

Given k-approval s
ores, for ea
h a ∈ A, ua partitions the set R into a set Sa := {r ∈ R : ua(r) = 1}
(the set of resour
es agent a approves of) and a set Sc

a := {r ∈ R : ua(r) = 0} (the set of resour
es agent
a disapproves of). Conversely, spe
ifying the set Sa (of size k) for ea
h agent a uniquely determines the


orresponding k-approval s
ores. More generally (and slightly abusing notation), given a set S(a) ⊆ R
for ea
h a ∈ A, Approval s
ores are given by ua(r) = 1 for r ∈ S(a) and ua(r) = 0 for r ∈ R \ S(a).

Given an allo
ation P , the Nash produ
t so
ial welfare for P is given by swN (P ) =
∏

1≤i≤n uai
(P ).

2.2 Problem De�nitions

In this paper, we 
onsider the problem of maximizing the Nash produ
t so
ial welfare with respe
t to

the above s
ores, i.e., utility fun
tions. The 
orresponding de
ision problems are de�ned as follows.

De�nition 2.1 (Nash Produ
t So
ial Welfare Maximization-approval)

GIVEN: Quadruple (R,A, S, k): R is a set of resour
es, A a set of agents, a 
olle
tion

S = {Sa1 , Sa2 , . . . , San
} of subsets Sai

⊆ R, and k ∈ N.

QUESTION: Is there an allo
ation P su
h that swN (P ) ≥ k, where uai
(r) = 1 if r ∈ Sai

and uai
(r) = 0 otherwise?

Analogously, we de�ne Nash Produ
t So
ial Welfare Maximization-Borda.

De�nition 2.2 (Nash Produ
t So
ial Welfare Maximization-Borda)

GIVEN: Quadruple (R,A, π, k): R is a set of resour
es, A a set of agents, π is a pro�le,

and k ∈ N.

QUESTION: Is there an allo
ation P su
h that swN (P ) ≥ k for Borda s
ores?

It is straightforward to de�ne Nash Produ
t So
ial Welfare Maximization-lexi
ographi
 for lex-

i
ographi
 s
ores. In what follows, we use the short
ut NPSW for Nash Produ
t So
ial Welfare

Maximization.

3 Complexity of NPSW

3.1 The easy 
ase: NPSW-Approval

First, we show that NPSW is in P for approval s
ores. This is done by a transformation to the

polynomially solvable Min Cost Flow problem (
f. Ahuja et al. (1993)). We begin with some basi


de�nitions and two known properties of a min 
ost �ow (i.e., an optimal solution of the Min Cost

Flow problem).

De�nition 3.1 In an instan
e M = (G, c, ℓ, p, b) of Min Cost Flow, we are given a dire
ted graph

G = (V,E). With ea
h edge e ∈ E, two rational numbers are asso
iated: a 
ost c(e) and an upper

bound p(e) on the 
apa
ity of e. For ea
h v ∈ V , we are given the rational-valued vertex demand b(v).
The Min Cost Flow problem 
an be stated as follows:

min
∑

(u,v)∈E

c(u, v)f(u, v)



s.t.
∑

v:(u,v)∈E f(u, v)−
∑

v:(v,u)∈E f(u, v) = b(u) for all u ∈ V

0 ≤ f(u, v) ≤ p(u, v) for all(u, v) ∈ E
(1)

A fun
tion f : E → Q is 
alled �ow, if f satis�es the 
onditions stated in (1). The 
ost of a �ow f is

de�ned by c(f) =
∑

(u,v)∈E c(u, v)f(u, v).

In an instan
eM = (G, c, ℓ, p, b) of Min Cost Flow, the 
apa
ity 
onstraints on the edges are written

by means of [0, p(e)]. The 
ost of a dire
ted 
y
le de�ned as the sum of the 
osts of the edges in the


y
le.

In M, we asso
iate a residual network Gf with a �ow f . Gf is 
onstru
ted from G as follows. Ea
h

edge (i, j) ∈ E is repla
ed by the edges (i, j) and (j, i). In Gf , the ar
 (i, j) has 
ost c(i, j) and residual


apa
ity [0, p(i, j) − f(i, j)]; the ar
 (j, i) has 
ost c(j, i) = −c(i, j) and residual 
apa
ity [0, f(i, j)].
Finally, Gf 
onsists of edges with positive residual 
apa
ity only.

Theorem 3.1 (Negative 
y
le optimality 
ondition; 
f. Ahuja et al. (1993)) A �ow f is an optimal

solution of Min Cost Flow, if and only if Gf does not 
ontain a negative 
ost dire
ted 
y
le.

Theorem 3.2 (Integrality property; 
f. Ahuja et al. (1993)) If all ar
 
apa
ities and all node demands

are integer, then there is an integer min 
ost �ow.

Theorem 3.3 NPSW-Approval is in P.

Proof. Let I = (R,A, π, k) be an instan
e of NPSW-Approval. We assume that ea
h item is approved

of by at least one agent (otherwise, items with are not approved by any agent are removed in a

prepro
essing step). We argue that I 
an be de
ided by solving an instan
e M of Min Cost Flow.

M is de�ned as follows. In the graph G = (V,E), 
ertain verti
es are identi�ed with items/agents

of the same label. In parti
ular, V = {s, t} ∪ A ∪ R ∪ {ti,j |i ∈ A, j ∈ R}. The vertex demands are

b(s) = m, b(t) = −m and b(v) = 0 for ea
h v ∈ V \ {s, t}. In order to 
onstru
t the edge set E,

• for ea
h r ∈ R we introdu
e edge (s, r) with 
apa
ity [0, 1] and zero 
ost.

• for ea
h ai ∈ A and for ea
h r ∈ R with uai
(r) = 1 we introdu
e the edge (r, ai) with 
apa
ity

[0, 1] and zero 
ost.

• for ea
h ai ∈ A and 1 ≤ j ≤ m, we introdu
e

� the edge (ai, ti,j) with 
apa
ity [0, 1] and 
ost c(ai, ti,j) = nj

� the edge (ti,j , t) with 
apa
ity [0, 1] and zero 
ost.

By the integrality property, there is an integer min 
ost �ow f in M. I.e., for ea
h e ∈ E, f either

does not send �ow along e or f sends exa
tly 1 unit of �ow along e. Clearly, due to the 
hoi
e of the

vertex demands and the edge 
apa
ities [0, 1] of the edges (s, r), for ea
h r ∈ R there is exa
tly one

unit of �ow sent through vertex r. Due to the 
apa
ities of the edges (r, a) this means that for ea
h

r ∈ R, there is exa
tly one a ∈ A su
h that f sends (one unit of) �ow along (r, a). Thus, the mapping

Pf : A → R de�ned by r ∈ Pf (a) i� f(r, a) = 1 is an allo
ation in I. On the other hand, it is not hard

to see that an allo
ation P indu
es an integer �ow fP
in M by

• sending one unit of �ow along (s, r) for ea
h r ∈ R

• for ea
h ai ∈ A and for ea
h r ∈ R, sending one unit of �ow along (r, ai) i� r ∈ P (ai)

• sending one unit of �ow along (ai, ti,h) and (ti,h, t) for ea
h 1 ≤ h ≤ uai
(P )



The proof pro
eeds in three steps.

STEP 1: Let f be an integer �ow in instan
e M, where fi denotes the amount of �ow sent through

vertex ai. We show that the following holds: f is a min 
ost �ow if and only if the two properties

1. for ea
h ai ∈ A, f sends �ow along the ar
s (ai, ti,h), for all 1 ≤ h ≤ fi, and

2. there is no sequen
e (ai1 , rj1 , ai2 , rj2 , . . . , rjℓ−1
, aiℓ) with fi1 − fiℓ ≥ 2, su
h that for all 1 ≤ h ≤

ℓ− 1 we have (i) (rjh , aih+1
) ∈ E and (ii) f sends �ow along the ar
 (rjh , aih)

are satis�ed. Note that the se
ond property re�e
ts the idea that a more �balan
ed� and thus 
heaper

�ow 
annot be immediately derived from f .

In parti
ular, we show that the above 
onditions are equivalent to the negative 
y
le optimality 
on-

dition. First, note that due to the fa
t that for ea
h edge (s, rj) demand and upper bound equal to 1,
the residual 
apa
ity of the edge is 0. I.e., the edge is not 
ontained in the residual network H . Thus,

H does not 
ontain any edge emanating from s. Hen
e, s 
annot be part of any 
y
le in R.
STEP 1a: Assume that one of the two 
onditions above are not satis�ed. Case I 
onsiders the 
ase

that the �rst 
ondition is violated. Case II 
onsiders the situation that the �rst 
ondition holds, but

the se
ond is violated.

Case I: For some ai ∈ A, there is an 1 ≤ h ≤ fi su
h that f does not send �ow along the edges

(ai, ti,h). Then, f must send along an edge (ai, ti,ℓ) for some ℓ > fi. But then it is easy to see that in

the residual network H the 
y
le γ = (t, ti,ℓ, ai, ti,h, t) is a 
y
le of 
ost c(γ) = −nℓ + nh < 0 due to

ℓ > h.

Case II: For all ai ∈ A, f sends one unit of �ow along the edges (ai, ti,h), 1 ≤ h ≤ fi. Assume

there is a pair (ai, aj) with fi − fj ≥ 2 su
h that (i) (r, aj) ∈ E and (ii) f sends �ow along the ar


(r, ai). Then, in the residual network H the 
y
le γ′ = (t, ti,fi , ai, r, aj, tj,fj+1, t) has negative 
ost:

c(γ′) = −nfi + nfj+1 < 0, be
ause fi − fj ≥ 2 by assumption.

Hen
e, if one of the two 
onditions is violated, there is a negative 
ost 
y
le.

STEP 1b: On the other hand, assume H 
ontains a negative 
ost 
y
le γ. We show that this implies

that at least one of the two 
onditions is violated. Clearly, s 
annot be 
ontained in γ. In addition, γ

annot be made up of vertex t and verti
es ti,j only, sin
e ea
h edge (ti,j , t) is of zero 
ost.

Assume γ does not 
ontain a vertex rj , 1 ≤ j ≤ m. Then, for some i, x, y, γ = (t, ti,x, ai, ti,y, t) holds.
Note that c(γ) = −c(ti,x, ai) + c(ai, ti,y) = −nx + ny

. Thus, c(γ) < 0 implies

x > y (2)

Assume that f sends �ow along (ai, ti,h) for all 1 ≤ h ≤ fi. Then the residual network H must 
ontain

(i) the edges (ti,h, ai) for 1 ≤ h ≤ fi as only edges with head ai. Thus, x ≤ fi follows. In addition,

sin
e f is integer and in the original network G the upper bound of the 
apa
ity of ea
h of the edges

(ai, ti,h) equals 1, it follows that f sends exa
tly one unit of �ow along ea
h of the ar
s (ai, ti,h), for
1 ≤ h ≤ fi. Hen
e, H 
annot 
ontain any of these edges. Thus, y > fi must hold. Putting things

together, we get x ≤ fi < y, in 
ontradi
tion with (2). Hen
e, the �rst 
ondition is violated.

Thus, γ 
ontains a vertex r ∈ R. Assume the �rst 
ondition is not violated (otherwise there is nothing

to show). Then, there is a sequen
e (ai1 , rj1 , ai2 , rj2 , . . . , rjℓ−1
, aiℓ) su
h that

γ = (t, ti1,x, ai1 , rj1 , ai2 , rj2 , . . . , rjℓ−1
, aiℓ , tiℓ,y, t)

for some ℓ ≥ 2 and some x, y, with i1 6= iℓ.
Sin
e by assumption the �rst 
ondition is satis�ed, x ≤ fi1 and y ≥ fiℓ +1 hold. c(γ) = −c(ti1,x, ai1)+
c(aiℓ , tiℓ,y) = −nx + ny ≥ −nx + nfiℓ+1

. Now, c(γ) < 0 implies −nx + nfiℓ+1 < 0, i.e., x > fiℓ + 1.
Hen
e, fi1 ≥ x > fiℓ + 1 holds. Thus, fi1 ≥ fiℓ + 2 holds, sin
e all �ow values are integer. I.e., the

se
ond 
ondition is violated.



As a 
onsequen
e, the negative 
y
le 
ondition is in fa
t equivalent to the two above stated 
onditions.

STEP 2: Let P ′
be an allo
ation that maximizes Nash produ
t so
ial welfare. Throughout this proof,

let g be the integer �ow indu
ed by allo
ation P ′
. We show that g is a min 
ost �ow.

For ea
h ai ∈ A, g sends gi = uai
(P ′) units of �ow through vertex ai and one unit of �ow through

ea
h of the ar
s (ai, ti,h) for 1 ≤ h ≤ gi. Assume there is a pair (ai, aj) with gi − gj ≥ 2 su
h

that (i) (r, aj) ∈ E and (ii) g sends �ow along the ar
 (r, ai). Then, both ai, aj approve of item r.
Consider the assignment P ′′

de�ned by P ′′(a) = P (a) for a ∈ A \ {ai, aj}, P ′′(ai) = P ′(ai) \ {r} and

P ′′(aj) = P ′(aj) ∪ {r}. Then,
∏

ai∈A uai
(P ′′)

∏

ai∈A uai
(P ′)

=
(uai

(P ′)− 1)(uaj
(P ′) + 1)

uai
(P ′)(uaj

(P ′)
=

uai
(P ′)uaj

(P ′) + uai
(P ′)− uaj

(P ′)− 1

uai
(P ′)(uaj

(P ′)
> 1

where the last inequality follows from uai
(P ′)− uaj

(P ′)− 1 = gi − gj − 1 ≥ 1. This 
ontradi
ts with
the fa
t that P ′

maximizes Nash so
ial welfare. With Step 1, if follows that g is a min 
ost �ow.

STEP 3: Let f be an integer min 
ost �ow. We show that

∏

ai∈A fi =
∏

ai∈A gi holds. W.l.o.g., we

assume f1 ≥ f2 ≥ . . . ≥ fn. Clearly, there is a permutation π : A → A su
h that gπ(1) ≥ gπ(2) ≥ . . . ≥
gπ(n) holds. We show that fi = gπ(i) for ea
h 1 ≤ i ≤ n.
Assume the opposite, i.e., there is an index k ≥ 1 su
h that fi = gπ(i) for i < k and fk 6= gπ(k). If

fk > gπ(k), then

c(f)− c(g) =

n
∑

i=1

(

f(i)
∑

h=1

nh −

gπ(i)
∑

h′=1

nh′

)

= (n+ n2 + . . .+ nfk)− (n+ n2 + . . .+ ngπ(k)) +
n
∑

i=k+1

(

fi
∑

h=1

nh −

gπ(i)
∑

h′=1

nh′

)

= ngπ(k)+1 + ngπ(k)+2 . . .+ nfk +

n
∑

i=k+1

(

fi
∑

h=1

nh −

gπ(i)
∑

h′=1

nh′

) (3)

Note that for any �xed h ∈ N,
∑h

i=1 n
h = nh+1−1

n−1 − 1 holds. Thus,

n
∑

i=k+1

gπ(i)
∑

h′=1

nh′

≤ (n− k)

gπ(k)
∑

h′=1

nh′

< (n− k)
ngπ(k)+1

n− 1
≤ ngπ(k)+1

(4)

With (4) and fk > gπ(k), we get

n
∑

i=k+1

(

fi
∑

h=1

nh −

gπ(i)
∑

h′=1

nh′

) > −
n
∑

i=k+1

gπ(i)
∑

h′=1

nh′

> −ngπ(k)+1 ≥ −nfk

Together with (3) we get c(f)− c(g) > 0, in 
ontradi
tion with the fa
t that f is a min 
ost �ow.

Analogously, fk < gπ(k) leads to a 
ontradi
tion with the fa
t that g is an integer min 
ost �ow (be
ause

of c(f) = c(g)). Thus, fi = gπ(i) holds for all 1 ≤ i ≤ k. Hen
e,
∏

ai∈A fi =
∏

ai∈A gi follows.

Sin
e g is an integer �ow of minimum total 
ost (step 2), from step 3

∏

ai∈A fi =
∏

ai∈A gi follows
for any integer min 
ost �ow f . Hen
e, in order to maximize the Nash produ
t so
ial welfare, it is

su�
ient to �nd an integer min 
ost �ow in instan
e M. This 
an be done in polynomial time (see,

e.g., Ahuja et al. (1993)). �

3.2 The hard 
ases: NPSW-Borda and NPSW-Lexi
ographi


Theorem 3.4 NPSW-Borda is NP-
omplete.



Proof. The proof pro
eeds by a redu
tion from Cubi
 Monotone 1-in-3 Sat (
f. Moore & Robson

(2001)) and is omitted here. �

Theorem 3.5 NPSW-Lexi
ographi
 is NP-
omplete.

Proof. We provide a redu
tion from the NP-
omplete problem Cubi
 Monotone 1-in-3 Sat

(
f. Moore & Robson (2001)). An instan
e I = (X,C) of that problem 
onsists of a set of vari-

ables X and a set C of 
lauses over X , su
h that ea
h 
lause is made up of exa
tly three variables of

X and ea
h variable o

urs in exa
tly three 
lauses. In Cubi
 Monotone 1-in-3 Sat we ask if there

is a truth assignment for X su
h that exa
tly one variable is true in ea
h 
lause of C.
Note that there are no negated literals 
ontained in any 
lause of C. In addition, observe that |X | = |C|
holds. Further note that φ 
an be a satisfying truth assignment in instan
e I only if it the number of

variables set true under φ is exa
tly

|X|
3 . Thus, |X | is a multiple of 3.

Given an instan
e I = (X,C) of Cubi
 Monotone 1-in-3 Sat we 
onstru
t an instan
e L =
(R,A, π, k) of NPSW-Lexi
ographi
 as follows. Let n = |X | = |C|, and ℓ = 12n.
R 
onsists of ℓ+ 6n+ n

3 items:

• the items d1, d2, . . . , dℓ

• the item sets X = {x1, x2, . . . , xn}, and Y = {x1,1, x1,2, x1,3, x2,1, x2,2, x2,3, . . . , xn,1, xn,2, xn,3}

• the item sets B = {b1,1, b1,2, b2,1, b2,2, . . . , bn,1, bn,2} and H = {h1, h2, . . . , hn
3
}

Over the sets B,H,X resp. Y we de�ne the rankings τB , τH , τX , and τY as follows:

• τX = x1 ≻ x2 ≻ . . . ≻ xn, τH = h1 ≻ h2 ≻ . . . ≻ hn
3
,

• τB = b1,1 ≻ b1,2 ≻ b2,1 ≻ . . . ≻ bn,2, and τY = x1,1 ≻ x1,2 ≻ x1,3 ≻ x2,1 ≻ . . . ≻ xn,3

Let S ∈ {B,H,X, Y }. For any subset Z of S, by τZ we denote the ranking τS restri
ted to the subset

Z. Within this proof, we represent the 
lause Ci = (xi1,k1 ∨xi2,k2 ∨xi3,k3), where kj ∈ {1, 2, 3} denotes
the kj-th o

urren
e of variable xij in C, by the set Ci = {xi1,k1 ∨ xi2,k2 ∨ xi3,k3}.

A 
onsists of ℓ+ 5n agents:

• For ea
h 1 ≤ i ≤ ℓ, the ranking of agent Di is given by

d1 ≻ d2 ≻ . . . ≻ dℓ ≻ τB ≻ τY ≻ τX ≻ τH

• For 1 ≤ i ≤ n, the ranking of agent Hi is given by

τH ≻ xi ≻ d1 ≻ d2 ≻ . . . ≻ d5n−1 ≻ τB ≻ τY ≻ τX\{xi} ≻ d5n ≻ . . . ≻ dℓ

• For 1 ≤ i ≤ n, the ranking of agent Xi is given by

xi ≻ d1 ≻ . . . ≻ dn ≻ xi,1 ≻ xi,2 ≻ xi,3 ≻ dn+1 ≻ . . . ≻ d5n−6 ≻

≻ τB ≻ τY \{xi,1,xi,2,xi,3} ≻ τX\{xi} ≻ d5n−5 ≻ . . . ≻ dℓ

• For 1 ≤ i ≤ n, the rankings of the agents αi, βi, γi are as follows. Let

ταi
= xi1,k1 ≻ d2n+5 ≻ d2n+6 ≻ . . . ≻ d3n+4 ≻ xi2,k2 ≻ d3n+5 ≻ d3n+6 ≻ . . . ≻ d4n+4 ≻ xi3,k3

τβi
= xi2,k2 ≻ d2n+5 ≻ d2n+6 ≻ . . . ≻ d3n+4 ≻ xi3,k3 ≻ d3n+5 ≻ d3n+6 ≻ . . . ≻ d4n+4 ≻ xi1,k1

ταi
= xi3,k3 ≻ d2n+5 ≻ d2n+6 ≻ . . . ≻ d3n+4 ≻ xi1,k1 ≻ d3n+5 ≻ d3n+6 ≻ . . . ≻ d4n+4 ≻ xi2,k2



The ranking of αi is given by

d1 ≻ . . . ≻ dn+4 ≻ bi,1 ≻ bi,2 ≻ dn+5 ≻ . . . d2n+4 ≻ ταi
≻ d4n+5 ≻ . . . ≻ d5n−1 ≻

τB\{bi,1,bi,2} ≻ τY \Ci
≻ τX ≻ τH ≻ d5n ≻ . . . ≻ dℓ

The ranking of βi (resp. γi) results from παi
by repla
ing ταi

with τβi
(resp. τγi

).

Let M := |R| − 1, and

κ = [2M−(n+1) + 2M−(n+2) + 2M−(n+3)]
2n
3 · [2M−(n+4) · 2M−(n+5) · 2M−(3n+6)]

n
3

Set

k = (

ℓ−1
∏

i=0

2M−i) · 2
n
3 · 2

∑n
3

−1

i=0 (M−i) · 2(M−n
3 ) 2n

3 · κ

In instan
e L we ask if there is an allo
ation P with swN (P ) ≥ k.

We begin with two simple lemmata.

Lemma 3.6 Let P be an allo
ation. Let Q result from P by handing an item p ∈ P (a2) to agent a1
su
h that the following properties are satis�ed:

• ∃q ∈ P (a2) su
h that a2 ranks q higher than p

• a1 ranks p higher than the highest-ranked item of P (a1)

Then,

∏

a∈A ua(P ) <
∏

a∈A ua(Q).

Proof. Let ua2(p) = 2s and ua1(p) = 2t for some s, t ∈ N. Clearly, the stated properties imply

ua2(P ) > 2s+1
and ua1(P ) < 2t (5)

With (5), we 
an 
on
lude that

ua1(Q) · ua2(Q) = [ua1(P ) + 2t)] · [ua2(P )− 2s]

= ua1(P ) · ua2(P ) + 2tua2(P )− 2sua1(P )− 2s+t

> ua1(P ) · ua2(P ) + 2t+s+1 − 2s2t − 2s+t

= ua1(P ) · ua2(P )

holds. Therefore,

∏

a∈A ua(P ) <
∏

a∈A ua(Q). ♦

Lemma 3.7 Let P be an allo
ation. Let Q result from P by handing an item p ∈ P (a2) to agent a1
and q ∈ P (a1) to agent a2 su
h that for some j ∈ N the following properties are satis�ed:

• a2 ranks q at most j positions lower than p

• a1 ranks p at least (j + 1) positions higher than the highest-ranked item of P (a1)

Then,

∏

a∈A ua(P ) <
∏

a∈A ua(Q).

Proof. Let λ denote the rank of the highest-ranked item of P (a1) in the ranking of a1. Then,

2λ ≤ ua1(P ) < 2λ+1
(6)



holds. Let µ denote the rank of item p in the ranking of a2; 2
µ ≤ ua2(P ) holds. Comparing the Nash

produ
t so
ial welfare a
hieved by the allo
ations, it is enough to 
onsider

ua1(Q) · ua2(Q)− ua1(P ) · ua2(P )

sin
e for the remaining the agents the utilities of P and P ′

oin
ide. Now,

ua1(Q) · ua2(Q)− ua1(P ) · ua2(P )

≥ (ua1(P ) + 2λ+(j+1) − 2λ)(ua2(P ) + 2µ−j − 2µ)− ua1(P ) · ua2(P )

= ua1(P )(2µ−j − 2µ) + (2λ+(j+1) − 2λ)ua2(P ) + 2λ+µ+1 − 2λ+(j+1)+µ − 2λ+µ−j + 2λ+µ

= [ua1(P )2µ−j − 2λ+µ−j ] + [2λ+µ+1 − 2µua1(P )] + [(2λ+(j+1) − 2λ)ua2(P )− 2λ+(j+1)+µ + 2λ+µ]

> [(2λ+(j+1) − 2λ)ua2(P )− 2λ+(j+1)+µ + 2λ+µ]

where the last inequality follows from (6). Sin
e ua2(P ) ≥ 2µ, we hen
e get

ua1(Q)·ua2 (Q)−ua1 (P )·ua2(P ) > [(2λ+(j+1) − 2λ)2µ − 2λ+(j+1)+µ + 2λ+µ] = 0

As a 
onsequen
e,

∏

a∈A ua(P ) <
∏

a∈A ua(Q). ♦

Claim. I is a �yes�-instan
e of Cubi
 Monotone 1-in-3 Sat if and only if L is a �yes�-instan
e of

NPSW-Lexi
ographi
.

Proof of Claim. �Only-if �-part: Let φ be a truth assignment that sets true exa
tly one variable in

ea
h 
lause. Abusing notation, we identify φ with the set of variables set true under φ. Re
all that

|φ| = n
3 . We de�ne the allo
ation P as follows.

• P (Di) = di for ea
h 1 ≤ i ≤ ℓ. Thus, the total produ
t of the utilities of these agents is

∏ℓ−1
i=0 2

M−i
.

• For ea
h xi ∈ φ, let P (Xi) = xi,

� for the q-th 
lause Cj that 
ontains xi, q ∈ {1, 2, 3}, assign xi,q to the one among αj , βj, γj
that ranks xi,q highest (i.e., dire
tly below d2n+4, in position 3n+7); for the two remaining

agents among αj , βj, γj , allo
ate bi,1 to one and bi,2 to the other agent.

� allo
ate exa
tly one of {h1, . . . , hn
3
} to agent Hi.

Hen
e, the total produ
t of the utilities of these agents is

(2M )
n
3 · (2M−(3n+6) · 2M−(n+4) · 2M−(n+5))

n
3 · (2M · 2M−1 · · · 2M−n

3 +1)

• For ea
h xi /∈ φ, let P (Hi) = xi and P (Xi) = {xi,1, xi,2, xi,3}. The total produ
t of the utilities
of these agents is

(2M )
2n
3 · (2M−(n+1) + 2M−(n+2) + 2M−(n+3))

2n
3

Thus,

∏

a∈A ua(P ) = k, implying that L is a �yes�-instan
e.

�If �-part: Let P be an allo
ation with

∏

a∈A ua(P ) ≥ k. This implies that the maximum Nash produ
t

so
ial welfare a
hieved ex
eeds the threshold k. W.l.o.g. we assume that P is an allo
ation of maximum

Nash produ
t so
ial welfare. We show that P must satisfy several properties:

1. di is allo
ated to Di for ea
h 1 ≤ i ≤ n: Assume there is an agent Di su
h that P (Di) ∩
{d1, . . . , dℓ} = ∅. Let r ∈ P (Di) denote the item whi
h Di ranks highest among the items in

P (Di). We distinguish the following 
ases.



(a) There is a Dj who gets allo
ated at least two elements of {d1, . . . , dℓ}. Let dmin be the

lowest ranked of these items in the ranking of Dj . Consider the allo
ation P ′
whi
h results

from P by handing dmin to Di. With Lemma 3.6,

∏

a∈A ua(P ) <
∏

a∈A ua(P
′) holds whi
h


ontradi
ts with the 
hoi
e of P .

(b) There is an agent a 6= Dj who gets allo
ated at least one of {d1, . . . , dℓ}. Take an arbitrary

su
h d ∈ P (a). Consider the allo
ation P ′′
whi
h results from P by handing r to a and d

to Di. If a ranks r above d, trivially ua(P
′′) > ua(P ) and uDi

(P ′′) > uDi
(P ) follow, sin
e

Di by 
onstru
tion ranks d above r.
Assume a ranks r below d. We 
an observe that in the ranking of Di, r is among the last

(6n+ n
3 ) positions. For any other agent, r is ranked higher by 
onstru
tion. Thus, a ranks

r higher than Di does; also by 
onstru
tion, Di ranks d at least as high as a does. Hen
e,

the number µ of items between d and r in the ranking of Di ex
eeds the number of items

between d and r in the ranking of a by at least one item. In other words, Lemma 3.7 
an

be applied, again leading to a 
ontradi
tion with the 
hoi
e of P .

As a 
onsequen
e, ea
h agent Di gets at least (and thus exa
tly) one item of {d1, . . . dℓ}. Sin
e
the rankings of the agents Di, 1 ≤ i ≤ ℓ, 
oin
ide, w.l.o.g. we assume that di is allo
ated to Di.

2. hi is allo
ated to one of {H1, . . . , Hn}, for ea
h 1 ≤ i ≤ n
3 . Assume hi is allo
ated to an agent

a /∈ {H1, . . . , Hn}. Then, take an arbitrary Hj ∈ {H1, . . . , Hn} who is not allo
ated any item

of {h1, . . . , hn
3
}. Obviously, su
h an agent Hj exists. It is easy to see that for the allo
ation

P̄ whi
h results from P by handing hi to Hj , and, in turn, any item of P (Hj) to a satis�es

uHj
(P̄ ) > uHj

(P ) and ua(P̄ ) > ua(P ), i.e.,
∏

a∈A ua(P ) <
∏

a∈A ua(P̄ ).

3. xi is allo
ated to one of {Hi, Xi}, for ea
h 1 ≤ i ≤ n. Assume xi is assigned to an agent

a /∈ {Hi, Xi}. Consider the allo
ation P̃ whi
h results from P by handing xi to Xi, and, in turn,

the item r′ of P (Xi) whi
h Xi ranks highest to agent a. Re
all that r
′ /∈ {d1, . . . , dℓ, h1, . . . hn

3
}.

If r′ /∈ {xi+1, . . . , xn}, then obviously uXi
(P̃ ) > uXi

(P ) and ua(P̃ ) > ua(P ) hold, i.e.,

∏

a∈A ua(P ) <
∏

a∈A ua(P̃ ). Let r′ ∈ {xi+1, . . . , xn}. Then, Xi ranks xi more than 3n po-

sitions above r′. Note that any agent a /∈ {Hi, Xi} ranks r′ at most (n− 1) positions below xi.

Thus, the 
onditions stated in Lemma 3.7 are satis�ed, and again we get a 
ontradi
tion with

the 
hoi
e of P .

4. Hj is allo
ated exa
tly one of {h1, . . . , hn
3
} ∪ {xj}, for ea
h 1 ≤ j ≤ n. Note that with Step 3

this means that Hj is allo
ated exa
tly one of {h1, . . . , hn
3
} ∪ {x1, . . . , xn}. This step is split in

three parts:

(a) Hj is allo
ated at most one of {h1, . . . , hn
3
}, for ea
h 1 ≤ j ≤ n. Assume there is an agent

Hj who is allo
ated at least two items of {h1, . . . , hn
3
}. Let hg be the lower-ranked of the

two items in the ranking of Hj . For the allo
ation P̂ whi
h results from P by handing hg to

an agent Hj′ who P does not allo
ate an item of {h1, . . . , hn
3
} to, we get with Lemma 3.6

that

∏

a∈A ua(P ) <
∏

a∈A ua(P̂ ) holds.

(b) If Hj is allo
ated one of {h1, . . . , hn
3
}, then Hj is not allo
ated xj . Let h ∈ {h1, . . . , hn

3
}

be allo
ated to Hj . Assume the opposite. Consider the allo
ation Q whi
h results from P
by handing xj to Xj . Again, with Lemma 3.6 uHj

(Q) · uXi
(Q) > uHj

(P ) · uXi
(P ) follows.

(
) If Hj is allo
ated none of {h1, . . . , hn
3
}, then Hj is allo
ated xj . Assume the opposite. Sin
e

by assumption

∏

a∈A ua(P ) > 0, P must allo
ate an item r to agent Hj . Again, let r be

the item highest-ranked by Hj that Hj re
eives under P .
From Steps 1-3, we 
an 
on
lude that r ∈ {b1,1, . . . , bn,2} ∪ {x1,1, . . . , xn,3} holds. Consider

the allo
ation Q′
whi
h results from P by handing xj to Hj , and, in turn, item r to Xj . By


onstru
tion, Xi ranks r more than

n
3 positions higher than Hj does. On the other hand,

Hj ranks xj exa
tly

n
3 positions lower than Xi does. Therefore, the number µ of items



between xj and r in the ranking of Hj ex
eeds the number of items between xj and r in

the ranking of Xi by at least one item. As a 
onsequen
e, Lemma 3.7 yields a 
ontradi
tion

with the 
hoi
e of P .

5. Two of {αi, βi, γi} are allo
ated exa
tly one of {bi,1, bi,2}, for ea
h 1 ≤ i ≤ n. This step is proven

in two parts.

(a) bi,1 (resp. bi,2) is allo
ated to αi, βi or γi , for ea
h 1 ≤ i ≤ n. Assume bi,1 is not allo
ated
to one of these agents. Clearly, at most one of αi, βi, γi is allo
ated bi,2. W.l.o.g. assume

bi,2 is not allo
ated to αi. By Step (1), this implies that αi ranks bi,1 more than 2n positions

higher than the highest-ranked among the items in P (αi). Take an arbitrary p ∈ P (αi).
Note that with Steps (1)-3, p /∈ {d1, . . . , dℓ, x1, . . . , xn, h1, . . . , hn

3
}∪{bi,2} follows. Consider

the allo
ation Q whi
h results from P by handing p to the agent a with bi,1 ∈ P (a) and,
in turn, bi,1 to agent αi. By 
onstru
tion (in parti
ular, by the items dn+5, . . . , d2n+4

in the ranking of αi), it follows that the 
onditions of Lemma 3.7 are satis�ed. Thus

∏

a∈A ua(P ) <
∏

a∈A ua(Q) holds, in 
ontradi
tion with the 
hoi
e of P .

(b) bi,1 and bi,2 are not allo
ated to the same agent, for ea
h 1 ≤ i ≤ n. Assume the opposite.

Then, analogously to above, by the use of Lemma 3.7 we 
an �nd an allo
ation with a

higher Nash produ
t so
ial welfare than P .

6. For ea
h 1 ≤ i ≤ n and a ∈ {αi, βi, γi}, the following holds: If bi,1 or bi,2 is allo
ated to a, then a
is allo
ated no further item. It remains to show that no item of Y is allo
ated to a. We provide a

proof for agent αi and bi,2 ∈ P (αi) (the other 
ases follow analogously). Assume at least one of

Y is allo
ated to αi. Let xg,j be allo
ated to αi. Consider the allo
ation Q′
whi
h results from

P by handing xg,j to agent Xg. Let uαi
(xg,j) = 2ε for some ε ∈ N. Note that uXg

(xg,j) ≥ 2ε+2n

and

uαi
(P ) ≥ 2M−(n+4) + 2ε (7)

hold. We get

uXg
(Q′) · uαi

(Q′)− uXg
(P ) · uαi

(P )

≥ (uXg
(P ) + 2ε+2n) · (uαi

(P )− 2ε)− uXg
(P ) · uαi

(P )

≥ [uXg
(P ) · uαi

(P )− 2εuXg
(P ) + 2ε+2n2M−(n+4)]− uXg

(P ) · uαi
(P )

> −2ε+M+1 + 2ε+M+n−4

> 0

where the third line follows from (7), the fourth from uXg
(P ) < 2M+1

, and the last from n > 5.

7. For ea
h 1 ≤ i ≤ n and a ∈ {αi, βi, γi}, the following holds: If a is allo
ated an item of

{xi1,k1 , xi2,k2 , xi3,k3}, then a is allo
ated exa
tly one item. This follows analogously to Step 6.

8. None of the items in Y is allo
ated to an agent a ∈ {D1, . . . , Dℓ, H1, . . . , Hn}. Assume the

opposite. Take an arbitrary item xg,j ∈ P (a)∩Y . Note that ua(xg,j) = 2ε and uXg
(xg,j) ≥ 2ε+3n

for some ε < M − ℓ. Thus,
ua(P ) ≥ 2ε + 2M−n

3
(8)

Consider the allo
ation Q′′
whi
h results from P by handing xg,j to agent Xg. With (8),

uXg
(Q′′) · ua(Q

′′)− uXg
(P ) · ua(P )

≥ (uXg
(P ) + 2ε+3n) · (ua(P )− 2ε)− uXg

(P ) · ua(P )

> [uXg
(P ) · ua(P )− 2εuXg

(P ) + 2ε+3n2M−n
3 − uXg

(P ) · ua(P )

> −2ε+M+1 + 2ε+M+2n

> 0



and thus a 
ontradi
tion with the 
hoi
e of P is implied.

As an immediate 
onsequen
e, we know that (i) ea
h of D1, . . . , Dℓ, H1, . . . , Hn is allo
ated exa
tly one

item (follows from Steps 1-5 and Step 8), and (ii) there are at most 2n items available for the agents

X1, . . . , Xn (by the pigeonhole prin
iple), all of whi
h belonging to the set Y . From (i), it follows with

steps 1 and 4 that

∏

a∈{D1,...,Dℓ}

ua(P ) ·
∏

a∈{H1,...,Hn}

ua(P ) = (

ℓ−1
∏

i=0

2M−i) · 2
∑n

3
−1

i=0 (M−i) · 2(M−n
3 ) 2n

3
(9)

From Steps 3 and 4 we know that there are exa
tly

n
3 agents among the agentsXi that are allo
ated xi,

1 ≤ i ≤ n, while the remaining

2n
3 agents among X1, . . . , Xn are not allo
ated any item of X . Keeping

in mind that the Nash produ
t is maximized for the most balan
ed allo
ation, it is not di�
ult to

verify that the following observation holds.

Observation. If at most 2n items of Y are 
ontained in

⋃

a∈{X1,...,Xn}
P (a), then

∏

a∈{X1,...,Xn}

ua(P ) ≤ (2M )
n
3 · (2M−(n+1) + 2M−(n+2) + 2M−(n+3))

2n
3

(10)

holds; equality in (10) is a
hieved if and only if for all 1 ≤ i ≤ n, all the items {xi,1, xi,2, xi3} are

allo
ated to the agent Xi satisfying xi /∈ P (Xi).

Now, assume for some i, there is an a ∈ {αi, βi, γi} whi
h is allo
ated none of {bi,1, bi,2} ∪
{xi1,k1 , xi2,k2 , xi3,k3}. With Step 1, ua(P ) < 2M−7n

follows. With Steps 6 and 7, we get

∏

a∈{αi,βi,γi|1≤i≤n}

ua(P ) < (2M−7n · 2M−(n+4) · 2M−(n+5)) · (2M−(3n+6) · 2M−(n+4) · 2M−(n+5))n−1
(11)

Combining (9), (10), (11),

∏

a∈A < k follows.

Thus, for ea
h i and a ∈ {αi, βi, γi}, a is allo
ated at least � by Steps 6 and 7, that means exa
tly

� one of {bi,1, bi,2} ∪ {xi1,k1 , xi2,k2 , xi3,k3}. With Step 5, we 
an 
on
lude that exa
tly one agent of

{αi, βi, γi} is allo
ated exa
tly one of {xi1,k1 , xi2,k2 , xi3,k3}, obviously yielding an utility of 2M−(3n+6)
.

Hen
e, we get

∏

a∈{αi,βi,γi|1≤i≤n}

ua(P ) = (2M−(3n+6) · 2M−(n+4) · 2M−(n+5))n (12)

With (9) and (12), the above observation implies that

• for ea
h 
lause Ci, exa
tly one of {xi1,k1 , xi2,k2 , xi3,k3} is allo
ated to one of {αi, βi, γi} (i.e., one
of the variables xi1 , xi2 , xi3 is set �true�), and

• either all or none of {xi,1, xi,2, xi,3} are allo
ated to some agents of the set C = {αj , βj , γj |1 ≤
i, j ≤ n}, i.e., either {xi,1, xi,2, xi,3} ⊂ (

⋃

a∈C P (a)) or {xi,1, xi,2, xi,3} ∩ (
⋃

a∈C P (a)) = ∅ holds.

Therewith, the truth assignment φ whi
h sets xi �true� if and only if xi ∈ P (Xi) (i.e., xi,1, xi,2, xi,3 are

allo
ated to some agent {αj , βj , γj}, 1 ≤ j ≤ n), is a feasible truth assignment that sets �true� exa
tly

one variable of ea
h 
lause. Hen
e, I is a �yes�-instan
e of Cubi
 Monotone 1-in-3 Sat. �

4 Con
lusion

We have shown that maximizing Nash produ
t so
ial welfare is 
omputationally intra
table when

Borda or Lexi
ographi
 s
ores are used, and solvable in polynomial time for Approval s
ores. An



interesting open question is the 
omputational 
omplexity of maximizing Nash produ
t so
ial welfare

for Quasi-Indi�eren
e s
ores.

The NP-
ompleteness results for Borda and Lexi
ographi
 s
ores imply that the problem of �nding an

allo
ation that maximizes Nash produ
t so
ial welfare is an NP-hard problem in these 
ases. A further

interesting dire
tion for future resear
h is to investigate the existen
e of approximation algorithms for

the problem of �nding su
h an allo
ation that run in polynomial time.
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