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Abstract

We consider the problem of allocating indivisible goods to agents who have preferences over
the goods. In such a setting, a central task is to maximize social welfare. In this paper, we
assume the preferences to be additive, and measure social welfare by means of of the Nash
product. We focus on the computational complexity involved in maximizing Nash product
social welfare when scores inherent in classical voting procedures such as Approval or Borda
voting are used to associate utilities with the agents’ preferences. In particular, we show that
the maximum Nash product social welfare can be computed efficiently when Approval scores
are used, while for Borda and Lexicographic scores the problem becomes NP-complete.

1 Introduction

The allocation of goods (items, resources) to agents who have preferences over these goods (multiagent
resource allocation) is a fundamental problem of economics, and, in particular, social choice theory.
This problem has been tackled in various scenarios (see, e.g., Chevaleyre et al. (2006) for a survey),
where, e.g., we distinguish between divisible and indivisible goods, and centralized and decentralized
approaches. Here, we consider the case of indivisible and nonshareable goods to be distributed among
agents who report their preferences to a central authority. Typically, individual utilities of (bundles
of) items are associated with the preferences over the items. In this work, this is done via numerical
scores used in voting rules. Now, a major task is to find an allocation which maximizes the social
welfare achieved. Different notions of social welfare have been introduced, the most important being
utilitarian, egalitarian, and Nash Product social welfare (cf. Brandt et al. (2013)).

Loosely speaking, utilitarian social welfare of an allocation is given by the sum of the agents’ utilities
resulting from the allocation. A more fine-grained approach is egalitarian social welfare, where the
lowest of the agents’ individual utilities in a given allocation is considered. In a certain sense, the Nash
product social welfare links these two approaches: by measuring the product of the agents’ utilities
in an allocation, maximizing the Nash product social welfare targets at a “balanced” allocation (see
also Nguyen et al. (2014)). In particular, the Nash product increases when inequality among two agents
is reduced (given the respective change is mean-preserving; see also Ramezani & Endriss (2010)). For
further desirable properties that are satisfied by the Nash product, such as independence of individual
scale of utilities, we refer to Moulin (2003).

A central question in maximizing social welfare is the computational complexity involved. We assume
that the agents have additive preferences, i.e., for each agent, the utility of a set of goods is the sum
of the utilities of the single goods it contains.

Clearly, maximizing utilitarian social welfare is an easy task — simply allocate each item to an agent who
it yields the highest utility for (see also Brandt et al. (2013)). In contrast, it is known that maximizing
egalitarian social welfare and Nash Product social welfare are NP-complete for additive utilities and
general scoring functions (Roos & Rothe (2010)). Very recently, Baumeister et al. (2013) have shown
that maximizing egalitarian social welfare remains NP-complete for a number of prototypical scoring
functions: Quasi-Indifference, Borda, and Lexicographic scoring. On the positive side, it is known
that the maximum egalitarian social welfare can be computed in polynomial time for Approval scores
(Golovin (2005)). To the best of our knowledge, the computational complexity of maximizing Nash
product social welfare under scoring functions such as Approval, Borda, or Lexicographic scoring



has not been considered yet. In this paper, we investigate the computational complexity involved in
maximizing Nash product social welfare under these classical scoring functions.

Related work and our contribution. In the context of maximizing social welfare in multiagent
resource allocation, complexity results have been achieved with respect to different types of utility
representation: the bundle form, k-additive form, or straight-line programs. For the bundle form
representation, NP-completeness results for utilitarian (Chevaleyre et al. (2008)), egalitarian (Roos
& Rothe (2010)), and Nash product social welfare (Roos & Rothe (2010) and Ramezani & Endriss
(2010)) are known. For straight-line programs, Dunne et al. (2005) show that maximizing utilitar-
ian social welfare is NP-complete, while Nguyen et al. (2014) show that maximizing social welfare is
NP-complete both for the egalitarian and Nash product approach. Both maximizing egalitarian social
welfare and maximizing Nash Product social welfare turn out to be NP-complete for 1-additive, i.e.,
additive utilities already (Lipton et al. (2004) and Roos & Rothe (2010)). In these works, reductions
from PARTITION are given, which do not imply the NP-completeness for any of the scoring functions
considered in our work. Given additive utilities, very recently Baumeister et al. (2013), besides many
other results, have proven that maximizing egalitarian social welfare is NP-complete for Borda, Lexi-
cographic, and Quasi-Indifference scoring.

In this paper, we show that maximizing Nash Product social welfare is NP-complete for Borda and
Lexicographic scores, whereas it is polynomially solvable for Approval scores. The computational
complexity involved when Quasi-Indifference scores are used is still open.

2 Formal Framework

2.1 Preliminaries

Let R = {ry,72,...,7m} be a set of m indivisible resources (items) and let A = {ay,...,a,} be a set
of n agents. An allocation is a mapping that assigns to each agent a subset of resources such that each
resource is handed to exactly one agent. Formally, an allocation P is a mapping P : A — 27 with
U.ea Pla) = R and P(a;) N P(a;) = () whenever i # j.

Now, in our model, we start with ordinal inputs, i.e., the agents rank resources, and map these ranks
to numerical scores then. Note that we do not claim that these numerical scores are equivalent or at
least close to the agents’ actual utilities. However, starting with numerical inputs instead would have
several drawbacks (see also Baumeister et al. (2013)); e.g., often it is easier for agents to rank items
instead of associating numerical values with each single item, especially in contexts where money is
not a key factor. Next, as also pointed out in Baumeister et al. (2013), the use of numerical inputs
has the severe disadvantage that it insinuates comparability of interpersonal preferences. Finally, note
that our approach is very common in voting theory, as in fact it resembles the way that positional
scoring rules proceed!.

In particular, we assume that agents have preferences over the single resources. The preferences are
expressed by means of strict orders »,, over R, which are summarized by the n-tuple 7 = (>4, >a,
seey>a, ) called profile. We denote by rank,, (r) the rank of resource r in the ranking of agent a;.
We adopt scores used in voting procedures to evaluate these preferences by means of utility functions
Uq : R — Q, a € A. We assume that the utility functions are additive, i.e., for any subset R’ C R we
have u,(R') = >, cp ua(R'). For the sake of readability, we may write u,(P) instead of u,(P(a)).
Given a profile 7, we consider the following types of scores (where r € R):

e k-approval scores: For each agent a € A,

r) 1 ifrank.(r) <k
U (1) =
0 otherwise

LObviously, with the clear difference that we are finally interested in allocations instead of winners of elections.



e Borda scores: For each agent a € A, uo(r) = m+ 1 — rank,(r).

e Lezicographic scores: For each agent a € A, u,(r) = 2m @ ka(r)

Given k-approval scores, for each a € A, u, partitions the set R into a set S, := {r € R: uq(r) = 1}
(the set of resources agent a approves of) and a set S¢ := {r € R : uq(r) = 0} (the set of resources agent
a disapproves of). Conversely, specifying the set .S, (of size k) for each agent a uniquely determines the
corresponding k-approval scores. More generally (and slightly abusing notation), given a set S(a) C R
for each a € A, Approval scores are given by u,(r) =1 for r € S(a) and uq(r) =0 for r € R\ S(a).

Given an allocation P, the Nash product social welfare for P is given by swn(P) = [[;<;<,, ta; (P)-

2.2 Problem Definitions

In this paper, we consider the problem of maximizing the Nash product social welfare with respect to
the above scores, i.e., utility functions. The corresponding decision problems are defined as follows.

Definition 2.1 (NasH PRODUCT SOCIAL WELFARE MAXIMIZATION-approval)

GIVEN: Quadruple (R, A, S, k): R is a set of resources, A a set of agents, a collection
S ={Sa,,5a,--,5a,} of subsets S;;, C R, and k € N.

QUESTION: Is there an allocation P such that swy(P) > k, where uq,(r) =1 if r € S,
and uq, (r) =0 otherwise?

Analogously, we define NASH PRODUCT SOCIAL WELFARE MAXIMIZATION-Borda.

Definition 2.2 (NAsH PRODUCT SOCIAL WELFARE MAXIMIZATION-Borda)

GIVEN: Quadruple (R, A, 7, k): R is a set of resources, A a set of agents, 7 is a profile,
and k € N.
QUESTION: Is there an allocation P such that swy(P) > k for Borda scores?

It is straightforward to define NASH PRODUCT SOCIAL WELFARE MAXIMIZATION-lezicographic for lex-
icographic scores. In what follows, we use the shortcut NPSW for NASH PRODUCT SOCIAL WELFARE
MAXIMIZATION.

3 Complexity of NPSW

3.1 The easy case: NPSW-Approval

First, we show that NPSW is in P for approval scores. This is done by a transformation to the
polynomially solvable MIN CosT FLOW problem (cf. Ahuja et al. (1993)). We begin with some basic
definitions and two known properties of a min cost flow (i.e., an optimal solution of the MIN CoST
FLow problem).

Definition 3.1 In an instance M = (G,¢,¢,p,b) of MIN CoST FLOW, we are given a directed graph
G = (V,E). With each edge e € E, two rational numbers are associated: a cost c(e) and an upper
bound p(e) on the capacity of e. For each v € V, we are given the rational-valued vertex demand b(v).
The MIN CoST FLOW problem can be stated as follows:

min Z c(u,v) f(u,v)



s.t. ZU;(W)EE flu,v) — ZU;(MU)EE flu,v) = blu) foralueV (1)
0 < f(u,v) < p(u,v) for all(u,v) € E

A function f: E — Q is called flow, if [ satisfies the conditions stated in (1). The cost of a flow f is
defined by c(f) = 3>, pyep ¢, v) f(u,v).

In an instance M = (G, ¢, ¢, p,b) of MIN CosT FLOW, the capacity constraints on the edges are written
by means of [0, p(e)]. The cost of a directed cycle defined as the sum of the costs of the edges in the
cycle.

In M, we associate a residual network Gy with a flow f. G is constructed from G as follows. Each
edge (i,7) € E is replaced by the edges (¢,7) and (7,4). In Gy, the arc (4, 5) has cost ¢(4, j) and residual
capacity [0,p(i,5) — f(i,4)]; the arc (j,4) has cost ¢(j,7) = —c(4,7) and residual capacity [0, f(4,7)]-
Finally, G's consists of edges with positive residual capacity only.

Theorem 3.1 (Negative cycle optimality condition; cf. Ahuja et al. (1993)) A flow f is an optimal
solution of MIN CosT FLow, if and only if G¢ does not contain a negative cost directed cycle.

Theorem 3.2 (Integrality property; cf. Ahuja et al. (1993)) If all arc capacities and all node demands
are integer, then there is an integer min cost flow.

Theorem 3.3 NPSW-Approval is in P.

Proof. Let Z = (R, A, 7, k) be an instance of NPSW-Approval. We assume that each item is approved
of by at least one agent (otherwise, items with are not approved by any agent are removed in a
preprocessing step). We argue that Z can be decided by solving an instance M of MIN CosT FLow.

M is defined as follows. In the graph G = (V, E), certain vertices are identified with items/agents
of the same label. In particular, V = {s,t} UAURU{t;;|i € A,j € R}. The vertex demands are
b(s) =m, b(t) = —m and b(v) = 0 for each v € V' \ {s,t}. In order to construct the edge set E,

e for each r € R we introduce edge (s,r) with capacity [0, 1] and zero cost.

e for each a; € A and for each r € R with u,,(r) = 1 we introduce the edge (r,a;) with capacity
[0,1] and zero cost.

e for each a; € A and 1 < 5 < m, we introduce

— the edge (ai,t; ;) with capacity [0, 1] and cost c(a;, t; ;) = n’
— the edge (¢ ;,t) with capacity [0,1] and zero cost.

By the integrality property, there is an integer min cost flow f in M. lLe., for each e € E, f either
does not send flow along e or f sends exactly 1 unit of flow along e. Clearly, due to the choice of the
vertex demands and the edge capacities [0, 1] of the edges (s,r), for each r € R there is exactly one
unit of flow sent through vertex r. Due to the capacities of the edges (r,a) this means that for each
r € R, there is exactly one a € A such that f sends (one unit of) flow along (r,a). Thus, the mapping
Py : A — R defined by r € Pf(a) iff f(r,a) =1 is an allocation in Z. On the other hand, it is not hard
to see that an allocation P induces an integer flow f¥ in M by

e sending one unit of flow along (s,r) for each r € R
e for each a; € A and for each r € R, sending one unit of flow along (r,a;) iff r € P(a;)

¢ sending one unit of flow along (a;,t; ) and (t;p,t) for each 1 < h < ug, (P)



The proof proceeds in three steps.

STEP 1: Let f be an integer flow in instance M, where f; denotes the amount of flow sent through
vertex a;. We show that the following holds: f is a min cost flow if and only if the two properties

1. for each a; € A, f sends flow along the arcs (a;,;p), for all 1 <h < f;, and

2. there is no sequence (@i, , 7y, Qigy Tjgs - - - s Tjo_1, Gip) With fi; — fi, > 2, such that for all 1 < h <
¢ — 1 we have (i) (rj,,as,,,) € £ and (ii) f sends flow along the arc (r;, , a;, )

are satisfied. Note that the second property reflects the idea that a more “balanced” and thus cheaper
flow cannot be immediately derived from f.

In particular, we show that the above conditions are equivalent to the negative cycle optimality con-
dition. First, note that due to the fact that for each edge (s,r;) demand and upper bound equal to 1,
the residual capacity of the edge is 0. Le., the edge is not contained in the residual network H. Thus,
H does not contain any edge emanating from s. Hence, s cannot be part of any cycle in R.

STEP 1la: Assume that one of the two conditions above are not satisfied. Case I considers the case
that the first condition is violated. Case II considers the situation that the first condition holds, but
the second is violated.

Case I: For some a; € A, there is an 1 < h < f; such that f does not send flow along the edges
(@i, tin). Then, f must send along an edge (a;,t;¢) for some ¢ > f;. But then it is easy to see that in
the residual network H the cycle v = (t,t;¢,a;,t;n,t) is a cycle of cost ¢(y) = —n’ +n" < 0 due to
> h.

Case II: For all a; € A, f sends one unit of flow along the edges (ai,t;p), 1 < h < f;. Assume
there is a pair (a;, a;) with f; — f; > 2 such that (i) (r,a;) € E and (ii) f sends flow along the arc
(r,a;). Then, in the residual network H the cycle v' = (t,t; 1, a;, 7, aj,tj 5, 11,t) has negative cost:
c(y) = —n'i + nfitl <0, because f; — f; > 2 by assumption.

Hence, if one of the two conditions is violated, there is a negative cost cycle.

STEP 1b: On the other hand, assume H contains a negative cost cycle 7. We show that this implies
that at least one of the two conditions is violated. Clearly, s cannot be contained in 7. In addition, -y
cannot be made up of vertex ¢ and vertices ¢; ; only, since each edge (¢; ;,t) is of zero cost.

Assume «y does not contain a vertex r;, 1 < j < m. Then, for some i, z,y, v = (¢, iz, @i, ti,y, t) holds.
Note that c(y) = —c(ti 2, a;) + cag, tiy) = —n* +nY. Thus, ¢(y) < 0 implies

x>y (2)

Assume that f sends flow along (a;,t; ) for all 1 < h < f;. Then the residual network H must contain
(i) the edges (tip,a;) for 1 < h < f; as only edges with head a;. Thus, z < f; follows. In addition,
since f is integer and in the original network G the upper bound of the capacity of each of the edges
(@i, t;n) equals 1, it follows that f sends exactly one unit of flow along each of the arcs (a;,t; ), for
1<h<fi Hence, H cannot contain any of these edges. Thus, y > f; must hold. Putting things
together, we get < f; < y, in contradiction with (2). Hence, the first condition is violated.

Thus, v contains a vertex r € R. Assume the first condition is not violated (otherwise there is nothing
to show). Then, there is a sequence (ai,,7j,, Giys Tjas - - > j,_1, @i, ) such that

Y= (tatihwuailurj1aa/i27rj27 e Jrj£717a7;£7t7:£7y7t)

for some ¢ > 2 and some z,y, with iy # iy.

Since by assumption the first condition is satisfied, « < f;, and y > f;, +1 hold. ¢(v) = —c(ti, o, @iy ) +
c(ai,, tiyy) = —n® +n¥ > —n® + nfietl Now, c(y) < 0 implies —n® + nfiet!t <0, ie., 2 > f;, + 1.
Hence, f;; > « > fi, + 1 holds. Thus, f;, > fi, + 2 holds, since all flow values are integer. Le., the
second condition is violated.



As a consequence, the negative cycle condition is in fact equivalent to the two above stated conditions.

STEP 2: Let P’ be an allocation that maximizes Nash product social welfare. Throughout this proof,
let g be the integer flow induced by allocation P’. We show that g is a min cost flow.

For each a; € A, g sends g; = ug, (P’) units of flow through vertex a; and one unit of flow through
each of the arcs (a;,¢; ) for 1 < h < g;. Assume there is a pair (a;,a;) with g; — g; > 2 such
that (i) (r,a;) € E and (ii) g sends flow along the arc (r,a;). Then, both a;,a; approve of item r.
Consider the assignment P defined by P"”(a) = P(a) for a € A\ {a;,a;}, P"(a;) = P'(a;) \ {r} and
P’"(aj) = P'(aj) U{r}. Then,

[lacatai(P")  (uq,(P) = 1)(ua,(P') +1) g, (P)tta,(P') + ua,(P') — uq, (P') — 1

[o.enta,(P) ta; (P')(ua,; (P') - ta; (P")(ua,; (P")

where the last inequality follows from u,, (P’) — ue,(P') =1 = g; — g; — 1 > 1. This contradicts with
the fact that P/ maximizes Nash social welfare. With Step 1, if follows that ¢ is a min cost flow.
STEP 3: Let f be an integer min cost flow. We show that [[, c 4 fi = [[,,c 9: holds. W.Lo.g., we
assume f1 > fo > ... > f,. Clearly, there is a permutation 7 : A — A such that gr1) > gr2) > ... >
gr(n) holds. We show that f; = g ;) for each 1 <i <n.

Assume the opposite, i.e., there is an index k > 1 such that f; = g for i < k and fi # grr)- If
fi > Gr(k)> then

>1

n f(9) Ini)
c(f)—clg) = D O n"=> n")
i=1 h=1 h'=1
n fi 9 (i) ,
= m+n?+..  4nf)—(n+n?+.. . FnImm) 4 Z(Znh—Znh)
i=k+1 h=1 h'=1
n Ji 0!
= pim0F 4 w2 goplk 4 Z (Z”h - Z n") (3)
i=k+1 h=1 h'=1
Note that for any fixed h € N, 2?21 nh = "h::l_l — 1 holds. Thus,
n  9x@) ) Ir (k) ) Gr iy 1
5 5w < o S <o @
i=k+1h/=1 h=1 e
With (4) and fi, > g, we get
n fi 9r (i) . n  9r(i) ,
3 (St ) - 3 S st 2
i=k+1 h=1 h'=1 i=k+1h/=1

Together with (3) we get ¢(f) — c(g) > 0, in contradiction with the fact that f is a min cost flow.
Analogously, fr < gx(x) leads to a contradiction with the fact that g is an integer min cost flow (because
of ¢(f) = c(g))- Thus, fi = gr(;) holds for all 1 <i < k. Hence, [[,,c4 fi = []4,ca 9 follows.

Since g is an integer flow of minimum total cost (step 2), from step 3 HaieA fi= HaieA g; follows
for any integer min cost flow f. Hence, in order to maximize the Nash product social welfare, it is

sufficient to find an integer min cost flow in instance M. This can be done in polynomial time (see,
e.g., Ahuja et al. (1993)). O

3.2 The hard cases: NPSW-Borda and NPSW-Lexicographic

Theorem 3.4 NPSW-Borda is NP-complete.



Proof. The proof proceeds by a reduction from CuBiC MONOTONE 1-IN-3 SAT (cf. Moore & Robson
(2001)) and is omitted here. O

Theorem 3.5 NPSW-Lexicographic is NP-complete.

Proof. We provide a reduction from the NP-complete problem CuBI¢C MONOTONE 1-IN-3 SAT
(cf. Moore & Robson (2001)). An instance Z = (X,C) of that problem consists of a set of vari-
ables X and a set C of clauses over X, such that each clause is made up of exactly three variables of
X and each variable occurs in exactly three clauses. In CuBIC MONOTONE 1-IN-3 SAT we ask if there
is a truth assignment for X such that exactly one variable is true in each clause of C.

Note that there are no negated literals contained in any clause of C. In addition, observe that | X| = |C|

holds. Further note that ¢ can be a satisfying truth assignment in instance Z only if it the number of

variables set true under ¢ is exactly % Thus, | X| is a multiple of 3.

Given an instance Z = (X,C) of CuBIC MONOTONE 1-IN-3 SAT we construct an instance £ =
(R, A, 7, k) of NPSW-Lexicographic as follows. Let n = |X| = |C|, and ¢ = 12n.
R consists of £ + 6n + 5 items:

e the items dy,ds,...,ds
o the item sets X = {z1,22,...,2n}, and Y = {x1 1,212,213, %2,1,T2.2, 2,3, - - - , T, 1, Tr,2, T3
e the item sets B = {b1,1,b1.2,b21,b2.2,...,bn1,bp2} and H = {h1,ha,... h=}
Over the sets B, H, X resp. Y we define the rankings 75, 7, 7x, and 7y as follows:
° TX:l'l>—5L‘2>—...>—!En,TH=h1>—h2>—...>—h%,
e Tp=bi1>bia>ba1>...=bpo,and Ty =211 > T12 > T1,3 > T2 > ... > Tp3

Let S € {B,H,X,Y}. For any subset Z of S, by 7z we denote the ranking 7g restricted to the subset
Z. Within this proof, we represent the clause C; = (24, k; V @iy ky V Tig ks ), Where k; € {1,2, 3} denotes
the k;-th occurrence of variable z;; in C, by the set C; = {@i, x, V Tiy ko V Tig k5 }-

A consists of ¢ + 5n agents:

e For each 1 <14 </, the ranking of agent D, is given by

di=do=...=dp =TB =Ty =Tx = TH

e For 1 < i < n, the ranking of agent H; is given by

TH =Ty =dy=da > ... =dspn—1 = TB = Ty > Tx\{x;} = dsn = ... = dg

e For 1 <i < n, the ranking of agent X, is given by

r; = dy >~ ...>—dn>-131‘11 = Tij2 = T;3 >‘dn+1 — ... = dsn_g -
- TB » TY\{2i,1,2: 2,053} - TX\{x;} = dsp_s5 = ... >=dy

e For 1 < < n, the rankings of the agents «;, 5;,7; are as follows. Let

Ta; = Tiq,ky ™ d2n+5 - d2n+6 - d3n+4 > Ty ko ™ d3n+5 - d3n+6 .- d4n+4 = Tig ks

TB; = Tiy ko - d2n+5 - d2n+6 - ... d3n+4 - Tig ks - d3n+5 - d3n+6 - ... d4n+4 - A

Ta; = Lig ks - d2n+5 - d2n+6 ... d3n+4 - Ty ky - d3n+5 - d3n+6 ... d4n+4 - Tiy ko

k3



The ranking of «; is given by

di > ... = dpya > bi,l - bi,2 = dpts > ... daptq > Ta; ™ dants = ... = dsp—1 >
TB\{bi1,bio} 7 TY\C; = TX = TH = dsp = ... = dg

The ranking of §; (resp. 7;) results from 7., by replacing 7o, with 73, (resp. 7).
Let M :=|R|—1, and
ko= M- (D) | gM—(n+2) 4 2M7<n+3>]%" @M~ (n+d) QM —(n+45)  9M—(3n+6)) 5

Set -
k= (2% 2¢ oS B M=) g2
1=0

In instance £ we ask if there is an allocation P with swy(P) > k.

We begin with two simple lemmata.

Lemma 3.6 Let P be an allocation. Let Q result from P by handing an item p € P(az) to agent ay
such that the following properties are satisfied:

e dg € P(ag) such that as ranks q higher than p

e a1 ranks p higher than the highest-ranked item of P(aq)

Then, [ cq a(P) < Ilpca ta(@Q).
Proof. Let ug,(p) = 25 and u,, (p) = 2! for some s,t € N. Clearly, the stated properties imply

Ugy (P) > 2571 and u,, (P) < 2° (5)
With (5), we can conclude that

Uay (@) 10y (Q) = [tay(P) +2")] - [ty (P) — 2°]

= Ug (P) *Uay (P) + 2tu¢l2 (P) - 2Sua1 (P) — 2%+
> U, (P) Ug, (P) + 2t+s+1 _ 2s2t _ 2s+t
= Uqy (P) 'uaz(P)
holds. Therefore, [],c 4 1a(P) <] c4 ua(Q). O

Lemma 3.7 Let P be an allocation. Let Q result from P by handing an item p € P(a2) to agent aq
and q € P(a1) to agent as such that for some j € N the following properties are satisfied:

e as ranks q at most j positions lower than p

e a1 ranks p at least (j + 1) positions higher than the highest-ranked item of P(a;)

Then, [ 4 a(P) < Ilpca ta(@Q).
Proof. Let A denote the rank of the highest-ranked item of P(a;) in the ranking of a;. Then,

2 < g, (P) < 21 (6)



holds. Let p denote the rank of item p in the ranking of as; 2# < wu,, (P) holds. Comparing the Nash
product social welfare achieved by the allocations, it is enough to consider

Uay (Q) * Uay (Q) = Uay (P) * Uay (P)

since for the remaining the agents the utilities of P and P’ coincide. Now,

Ua,y (Q) * Uay (Q) — Uq, (P) * Uay (P)

> (ta, (P)+ 2270 — 2%) (g, (P) + 2#77 — 24) — ug, (P) - ua, (P)

= g, (P)(2H77 — 21) 4+ (MUY 9X )y, (P) 4 2AFHFL _ oA 9A i | oAtk

= [uq, (P)207 — 2MR=d] 4 AL _omy, (P)] 4 [(2k+(j+1) — 2V, (P) — QA+ +u 4 MK
> [(2>\+(j+1) _ 2)\)’“112 (P) _ 2)\+(j+1)+u + 2)\+u]

where the last inequality follows from (6). Since u,,(P) > 2, we hence get

Uy (Q) -ty (Q)—ttay (P)-ttay (P) > [(2A+(j+1) _ 2)\)2# — oAU+ +p + 2>\+#] -0

As a consequence, [[,c4 ta(P) <] e ua(@)- O
Claim. 7 is a “yes’-instance of CuBIC MONOTONE 1-IN-3 SAT if and only if £ is a “yes”-instance of
NPSW-Lexicographic.

Proof of Claim. “Only-if ~part: Let ¢ be a truth assignment that sets true exactly one variable in
each clause. Abusing notation, we identify ¢ with the set of variables set true under ¢. Recall that
|¢| = %. We define the allocation P as follows.

e P(D;) = d; for each 1 < i < ¢. Thus, the total product of the utilities of these agents is
-1 —q
[Ticg2¥
e For each z; € ¢, let P(X;) = z;,

— for the g-th clause C; that contains z;, ¢ € {1,2, 3}, assign z; 4 to the one among «;, 5;, 7v;
that ranks x; 4 highest (i.e., directly below day4, in position 3n + 7); for the two remaining
agents among o, 3;, v;, allocate b; ; to one and b; » to the other agent.

— allocate exactly one of {hi,...,hz} to agent H;.

Hence, the total product of the utilities of these agents is

(2M)% . (2M—(3’ﬂ+6) . 2M—(’ﬂ+4) . 2M—(’ﬂ+5))% . (2M . 2M—1 . 2M—%+1)

e For each x; ¢ ¢, let P(H;) = x; and P(X;) = {x;1,2;2,%i,3}. The total product of the utilities
of these agents is
(2M)2T" . (2M—(n+1) +oM—=(n+2) 4 2M7(n+3))2T"

Thus, [[,c4 ta(P) = k, implying that £ is a “yes™instance.

“If -part: Let P be an allocation with [],. 4 ua(P) > k. This implies that the maximum Nash product
social welfare achieved exceeds the threshold k. W.l.o.g. we assume that P is an allocation of maximum
Nash product social welfare. We show that P must satisfy several properties:

1. d; is allocated to D; for each 1 < i < n: Assume there is an agent D; such that P(D;) N
{d1,...,d¢} = 0. Let r € P(D;) denote the item which D, ranks highest among the items in
P(D;). We distinguish the following cases.



(a) There is a D; who gets allocated at least two elements of {di,...,d¢}. Let dmin be the
lowest ranked of these items in the ranking of D;. Consider the allocation P’ which results
from P by handing dmin to D;. With Lemma 3.6, [],c 4 ua(P) < [[,c4 ta(P’) holds which
contradicts with the choice of P.

(b) There is an agent a # D; who gets allocated at least one of {d1,...,d,}. Take an arbitrary

such d € P(a). Consider the allocation P which results from P by handing r to a and d
to D;. If a ranks r above d, trivially uq(P”) > uq(P) and up,(P"”) > up,(P) follow, since
D; by construction ranks d above r.
Assume a ranks r below d. We can observe that in the ranking of D;, r is among the last
(6n + %) positions. For any other agent, r is ranked higher by construction. Thus, a ranks
r higher than D; does; also by construction, D; ranks d at least as high as a does. Hence,
the number p of items between d and r in the ranking of D; exceeds the number of items
between d and r in the ranking of a by at least one item. In other words, Lemma 3.7 can
be applied, again leading to a contradiction with the choice of P.

As a consequence, each agent D; gets at least (and thus exactly) one item of {d1,...d,;}. Since
the rankings of the agents D;, 1 < ¢ </, coincide, w.l.0.g. we assume that d; is allocated to D;.

. h; is allocated to one of {Hy,...,Hy,}, for each 1 < i < 7. Assume h; is allocated to an agent
a ¢ {Hi,...,H,}. Then, take an arbitrary H; € {Hi,...,H,} who is not allocated any item
of {hi,..., h%}. Obviously, such an agent H; exists. It is easy to see that for the allocation

P which results from P by handing h; to H;, and, in turn, any item of P(H;) to a satisfies

up, (P) > up; (P) and ua(P) > ua(P), ie., [[yea a(P) <l cn ta(P).

. x; is allocated to one of {H;, X;}, for each 1 < i < n. Assume z; is assigned to an agent
a ¢ {H;, X;}. Consider the allocation P which results from P by handing z; to X;, and, in turn,
the item ' of P(X;) which X; ranks highest to agent a. Recall that v’ & {d1,...,d¢, h1,...ha}.
If v ¢ {it1,...,2,}, then obviously ux,(P) > ux,(P) and u(P) > wu.(P) hold, i.e.,
[Tocawa(P) < [laca uq(P). Let ' € {%i41,...,2,}. Then, X; ranks z; more than 3n po-
sitions above r’. Note that any agent a ¢ {H;, X;} ranks 7' at most (n — 1) positions below z;.
Thus, the conditions stated in Lemma 3.7 are satisfied, and again we get a contradiction with
the choice of P.

. Hj is allocated exactly one of {h1,...,hz}U{x;}, for each 1 < j <n. Note that with Step 3
this means that H; is allocated exactly one of {h1,...,hz}U{x1,...,2,}. This step is split in
three parts:

(a) Hj is allocated at most one of {h1,...,hn}, for each 1 < j <n. Assume there is an agent
Hj who is allocated at least two items of {h1,...,hn}. Let hy be the lower-ranked of the

two items in the ranking of H;. For the allocation P which results from P by handing h, to
an agent Hj who P does not allocate an item of {h1,...,hz} to, we get with Lemma 3.6

that [],c 4 ua(P) < [1,ea ta(P) holds.

(b) If H; is allocated one of {h1,...,hn}, then H; is not allocated x;. Let h € {h1,...,ha}
be allocated to H;. Assume the opposite. Consider the allocation @} which results from P
by handing z; to X;. Again, with Lemma 3.6 up, (Q) - ux,(Q) > un, (P) - ux,(P) follows.

(c) If Hj is allocated none of {hi,...,hx}, then Hj; is allocated x;. Assume the opposite. Since
by assumption [],. 4 ua(P) > 0, P must allocate an item 7 to agent H;. Again, let r be
the item highest-ranked by H; that H; receives under P.

From Steps 1-3, we can conclude that € {b11, ...,bp 2t U{2z1,1,...,2n,3} holds. Consider
the allocation @ which results from P by handing z; to H;, and, in turn, item r to X;. By

construction, X; ranks r more than 7 positions higher than H; does. On the other hand,

Hj ranks x; exactly 5 positions lower than X; does. Therefore, the number u of items



between x; and r in the ranking of H; exceeds the number of items between z; and 7 in
the ranking of X; by at least one item. As a consequence, Lemma 3.7 yields a contradiction
with the choice of P.

5. Two of {a, Bi,vi} are allocated exactly one of {b;1,bi 2}, for each 1 < i < n. This step is proven
in two parts.

(a) bi1 (resp. bi2) is allocated to o, B; or ~y; , for each 1 < i < n. Assume b; ; is not allocated
to one of these agents. Clearly, at most one of oy, B;, 7 is allocated b; 2. W.l.o.g. assume
bi 2 is not allocated to «;. By Step (1), this implies that a; ranks b; ; more than 2n positions
higher than the highest-ranked among the items in P(«;). Take an arbitrary p € P(o).
Note that with Steps (1)-3, p & {d1,...,de;Z1,. .., Tn, h1, ..., ho }U{b; 2} follows. Consider
the allocation @@ which results from P by handing p to the agent a with b;,; € P(a) and,
in turn, b;1 to agent «;. By construction (in particular, by the items d,ys,...,donta
in the ranking of «;), it follows that the conditions of Lemma 3.7 are satisfied. Thus
[Tocata(P) < Jl,eaua(Q) holds, in contradiction with the choice of P.

(b) bi1 and b; 2 are not allocated to the same agent, for each 1 <i < n. Assume the opposite.
Then, analogously to above, by the use of Lemma 3.7 we can find an allocation with a
higher Nash product social welfare than P.

6. For each 1 <i<mn anda € {o, Bi, 7V}, the following holds: If b; 1 or b; 2 is allocated to a, then a
is allocated no further item. It remains to show that no item of Y is allocated to a. We provide a
proof for agent a; and b; 2 € P(«;) (the other cases follow analogously). Assume at least one of
Y is allocated to c;. Let x4 ; be allocated to a;. Consider the allocation " which results from
P by handing z4,; to agent X,. Let uq, (24,;) = 2° for some € € N. Note that ux, (z4,;) > 252"
and

oy (P) = 2M=( ) 98 (7)

hold. We get
ux, (Q/) “Uay (Q/) —ux, (P) *Uay (P)
> (ux, (P) +2772") - (ua, (P) — 2°) — ux, (P) - ua, (P)

> [ux,(P) - ta; (P) — 2%ux, (P) + 25T22M=0 D) v (P) - ug, (P)
_28+M+1 + 2€+M+7l—4

V

> 0
where the third line follows from (7), the fourth from ux,(P) < 2™*! and the last from n > 5.

7. For each 1 < i < n and a € {a;,Bi,7i}, the following holds: If a is allocated an item of
{1 kys Tis ko » Tig ks |» then a is allocated exactly one item. This follows analogously to Step 6.

8. None of the items in Y is allocated to an agent a € {D1,...,Dy,Hy,...,Hy}. Assume the
opposite. Take an arbitrary item x4 ; € P(a)NY. Note that uq(z,,;) = 2° and ux, (z4,;) > 257"
for some ¢ < M — £. Thus,

ug(P) >2° +2M—35 (8)

Consider the allocation " which results from P by handing z, ; to agent X,. With (8),

ux, (QN) 'ua(QN) —ux, (P) - ua(P)

> (ux, (P) +2°9%) - (ua(P) — 2) — ux, (P) - ualP)
[ux, (P) - ua(P) — 2%ux, (P) +2°73"2M=% —uy (P) - ua(P)
_9etM+1 | gt M+2n

0

vV VvV Vv



and thus a contradiction with the choice of P is implied.

As an immediate consequence, we know that (i) each of Dy, ..., Dy, Hq, ..., H, is allocated exactly one
item (follows from Steps 1-5 and Step 8), and (ii) there are at most 2n items available for the agents
X1, ..., X, (by the pigeonhole principle), all of which belonging to the set Y. From (i), it follows with
steps 1 and 4 that

l—1
: 51 : ny2n
[T P I w) = (2 2=tomn g0 ©)
a€{D1,...,D¢} a€{Hy,....Hy,} i=0

From Steps 3 and 4 we know that there are exactly 5 agents among the agents X; that are allocated z;,

1 <4 < n, while the remaining %” agents among X1, ..., X, are not allocated any item of X. Keeping
in mind that the Nash product is maximized for the most balanced allocation, it is not difficult to
verify that the following observation holds.

Observation. If at most 2n items of Y are contained in J,c(x, . x,y Pla), then

H ua(P) < (QM)% . (2M7(n+1) 4 oM—(n+2) | 2M7(n+3))2T" (10)
ac{X1,...Xn}

holds; equality in (10) is achieved if and only if for all 1 < i < n, all the items {x;1,%;2,%i,} are
allocated to the agent X; satisfying x; ¢ P(X;).

Now, assume for some ¢, there is an a € {a4,f0;,v:} which is allocated none of {b;1,bi2} U
{@i kys Tin kas Tis ks }- With Step 1, uq(P) < 2M=™ follows. With Steps 6 and 7, we get

H ua(P) < (2M77n . 2M7(n+4) .2M7(n+5)) . (2M7(3n+6) .2M7(n+4) . 2M7(n+5))n71 (11)

a€{a;,Bi,vi|1<i<n}

Combining (9), (10), (11), [[,c4 < k follows.
Thus, for each ¢ and a € {«y, 5i,7:}, a is allocated at least — by Steps 6 and 7, that means exactly
—one of {b;1,bi2} U{Zi, k1sTis ke» Tis ks J- With Step 5, we can conclude that exactly one agent of
{cu, Bi,7i} is allocated exactly one of {2, k., Tiy ke i ks }» Obviously yielding an utility of 24~ (3n+6),
Hence, we get
H ua(P) _ (2M7(3n+6) . 2M7(n+4) . 2M7(n+5))n (12)
a€{a;,Bi,7il1<i<n}

With (9) and (12), the above observation implies that
e for each clause C;, exactly one of {Z;, &y, Tiy kss Tis ks | 1S allocated to one of {a, B;,vi} (i-e., one
of the variables z;, , x;,, x;, is set “true”), and
e cither all or none of {x;1,x;2,x;3} are allocated to some agents of the set C = {a;, 3;,7;|1 <

i,j <n}, ie., either {z; 1,22, 2i3} C (Usee Pla)) or {zi1,2i2, 253} N (Uyee Pa)) = 0 holds.

Therewith, the truth assignment ¢ which sets z; “true” if and only if z; € P(X;) (i.e., i 1,22, ;3 are
allocated to some agent {¢;, 8;,7;}, 1 < j <n), is a feasible truth assignment that sets “true” exactly
one variable of each clause. Hence, 7 is a “yes’-instance of CUBIC MONOTONE 1-IN-3 SAT. ]

4 Conclusion

We have shown that maximizing Nash product social welfare is computationally intractable when
Borda or Lexicographic scores are used, and solvable in polynomial time for Approval scores. An



interesting open question is the computational complexity of maximizing Nash product social welfare
for Quasi-Indifference scores.

The NP-completeness results for Borda and Lexicographic scores imply that the problem of finding an
allocation that maximizes Nash product social welfare is an NP-hard problem in these cases. A further
interesting direction for future research is to investigate the existence of approximation algorithms for
the problem of finding such an allocation that run in polynomial time.
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