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Abstract

One view of voting is that voters have inherently different preferences – de gustibus
non est disputandum – and that voting is merely a method for reaching a reasonable
compromise solution. An alternative view is that some of the alternatives really are
better in an objective sense, and by voting over the alternatives we hope to be more
likely to reach the correct outcome. In this latter view, we can see the votes as noisy
estimates of the truth. Specifying a probabilistic noise model gives us a natural
“optimal” voting rule for determining the outcome based on the votes, namely, the
function that takes the votes as input and produces the outcome that maximizes the
likelihood of these votes as output.
We will first review some of the work on the maximum likelihood approach to voting.
Most of this work supposes that, conditional on the correct outcome, votes are
independent. In reality, however, voters are clearly influenced by the opinions of
those close to them. How should we model the effects of the social network, and
what does this imply for the maximum likelihood approach? We will first review
an earlier result [1] that states that, under certain assumptions, the social network
structure should not affect the voting rule. We then consider a new model under
which this is not true, and prove that computing the probability of the votes given
the correct outcome is #P-hard under this model. On the other hand, if the goal
is to simultaneously also give a point estimate of the hidden variables in the model,
then the optimization problem can be solved in polynomial time.

1 Introduction

Not all voting settings are created equal. In some, none of the alternatives are inherently the
“wrong” or “right” choice. Each voter finds some alternatives more palatable than others,
and this is fundamentally due to each voter’s personal preferences. In particular, it may
be the case that the voters know everything there is to know about the situation and that
they understand perfectly how the different personal circumstances in which other voters
find themselves lead them to have different preferences. The objective is merely to reach
an outcome that most voters find acceptable. In other settings, however, the situation is
different, and we may suppose that some alternatives are inherently better than others. For
example, the voters may genuinely be trying to evaluate each alternative’s absolute quality
(according to some measure), and the reason that they vote differently is not that they
have different personal interests in the matter, but rather that it is difficult to evaluate an
alternative’s quality and the voters simply differ in their assessments.

Of course, both of these are descriptions of extremes, and in many voting settings we find
elements of both. A standard political election clearly involves the voters having different
personal interests in the outcome and voting accordingly. Meanwhile, however, there is
typically also uncertainty about the candidates. For example, would a given candidate be
willing to work long hours if elected? Even if all voters agree that such a good work ethic is
important and desirable, they may have different assessments of which candidate would work
longer hours. However, in spite of the fact that these two views of voting often blur together,
it is conceptually useful to consider the extremes. In this paper, we will consider the second

1Please cite the published version [2].
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extreme, where one alternative is inherently better than the other, and any disagreement
among the voters is merely due to different assessments of this absolute quality. We will
be interested in the optimal design of the voting rule in this context. That is, given the
votes, how should the outcome of the election be chosen to maximize the probability that
the correct one is chosen?

The specific approach that we will consider is the maximum likelihood estimation ap-
proach to the design of voting rules. Its basic idea is that voters obtain noisy estimates
of the alternatives’ qualities and vote accordingly; and, given a precise probabilistic model
for how the alternatives’ true qualities lead to these noisy observations, we can attempt to
estimate the correct outcome of the election as the one that maximizes the likelihood of the
observed votes.

This approach dates back all the way to Condorcet [6], but there has been a recent resur-
gence of interest in it, especially from people in the computational social choice community.
It involves techniques from optimization and reasoning under uncertainty. Most of this work
so far has assumed that (conditional on the correct outcome) votes are independent. In this
paper, we will discuss a new model in which the social network structure among the agents
affects how votes are formed.

2 Background

In this section, we first review the maximum likelihood approach to voting in settings where
votes are drawn independently (conditional on the correct outcome). Then, we discuss an
existing model [1] in which the votes are not independent—the social network structure
plays a role—but nevertheless this social network structure does not end up affecting the
optimal voting rule.

2.1 The Maximum Likelihood Approach to Voting

The approach is easiest to describe in the context where there are only two alternatives—call
them −1 and 1. One of these two is the “correct” (or “better”) alternative, but it is not
directly observed which one. Let c ∈ {−1, 1} denote the correct alternative (and−c the other
alternative). In the most basic model, the voters’ votes are i.i.d., with each voter voting for c
with some fixed probability p > 0.5 and for −c with the remaining probability 1−p. Hence,
voter v’s vote Av represents a noisy estimate of the truth. Conditional on −1 (resp. 1) being
the correct alternative, a specific vote profile AV (a vector of votes, one for each voter) that
has n−1 votes for −1 and n1 votes for 1 has probability P (AV |c = −1) = pn−1(1 − p)n1

(resp. P (AV |c = 1) = pn1(1 − p)n−1). We would like to pick the winner of our election—
equivalently, our estimate ĉ of c—to be the one that maximizes this likelihood. Because
p > 1 − p, we should pick ĉ = −1 (resp. ĉ = 1) if n−1 > n1 (resp. n1 > n−1). That is, we
should simply pick the majority winner, the one that receives more votes (with ties broken
arbitrarily). The focus on maximizing the likelihood of the observed profile can also be
justified as follows: if we a priori believe that either alternative is equally likely to be the
correct one, then the alternative that maximizes the likelihood of the observed votes is also
the maximum a posteriori estimate of the correct alternative. This is because by Bayes’
rule we have P (c = ĉ|AV ) = P (AV |c = ĉ)P (c = ĉ)/P (AV ). Because P (c = ĉ) (due to the
equally-likely-a-priori assumption) and P (AV ) do not depend on ĉ, choosing ĉ to maximize
P (AV |c = ĉ) is equivalent to choosing it to maximize P (c = ĉ|AV ). The approach can be
generalized to settings where there is a potentially different probability pi for every voter i,
resulting in a weighted majority rule [11, 13].

In many settings, there are more than two alternatives. How should the above model
be extended to such a setting? First, it is natural to presume now that there is a correct

2



ranking of all the alternatives. Moreover, each voter’s noisy estimate is now also a ranking
of the alternatives. This fits well with the theory of voting more generally, where a vote is
often assumed to rank all alternatives. But what is the probability distribution over such
votes given the correct ranking? Condorcet [6] attempted to give such a model, and this
was later made more precise by Young [16, 17], who showed that the optimal voting rule
for the resulting noise model is one proposed by Kemeny [10]. A number of articles have
since been devoted to the study of different noise models and the optimal rules to which
they lead [8, 4, 14, 3]. Elkind and Slinko [9] give a recent overview. In this paper, however,
we will restrict our attention to settings with two alternatives.

2.2 Review: A Model Where Social Network Structure Plays a
Role but Does Not Matter

We next discuss a model [1] in which votes are not independent (even when conditioning
on the correct outcome). Instead, the voters are the vertices V of a social network. The
probability of a profile AV of votes (where Av is the vote of voter v) is

∏
v∈V fv(Av, AN(v)|c),

where N(v) is the set of voters that are neighbors of v. Hence, fv is intended to capture
the interaction between v and its neighbors (and the truth, i.e., the correct alternative).
Then, there is the further assumption in the model that for each v ∈ V , f factors as
fv(Av, AN(v)|c) = gv(Av|c)hv(Av, AN(v)). In words, there is one factor representing that
the voter is more likely to vote for the correct alternative, and another factor representing
the interaction between a voter and its neighbors (which does not depend on the correct
alternative). Under this assumption, it can be shown that the social network structure,
represented by the functions hv, does not affect the maximum likelihood rule. This is for
the simple reason that

arg max
ĉ

∏
v∈V

fv(Av, AN(v)|ĉ)

= arg max
ĉ

∏
v∈V

gv(Av|ĉ)hv(Av, AN(v))

= arg max
ĉ

∏
v∈V

gv(Av|ĉ)

3 A New Model That Takes Social Network Structure
into Account

The conclusion from the above model that we can simply ignore social network structure
should, of course, be taken with a grain of salt. Other models will lead to different conclu-
sions. The most interesting aspect of the above result, in my opinion, is that it is at least
not obvious how social network structure should affect the voting rule. In the below, we
will consider a new model that leads to a different conclusion. Like the model considered
above, this new model undeniably leaves out many important aspects of how agents form
their votes in social networks. Perhaps most notably, this new model still does not include
a temporal component for modeling the gradual evolution of opinion. The objective here,
rather, is to give a simple model that helps to illustrate which phenomena we are likely to
encounter as we move to more complex models.
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Figure 1: A social network with a vote profile for the vertices, and the two edge profiles that
are consistent with this vote profile. Open vertices indicate votes for −1 and closed vertices
indicate votes for 1. Similarly, for the edge profile graphs, open edges are associated with
−1 and closed edges are associated with 1.

3.1 The Independent Conversations Model

The model can be described as follows. Every voter will have a conversation with each of
her neighbors, so that there is exactly one conversation per edge. This conversation will
turn out in favor of one of the two alternatives. The outcomes of the conversations are
i.i.d., and every voter votes according to the majority of the outcomes of the conversations
in which she participated. More specifically:

Definition 1 (Independent conversations model). For simplicity, assume that every voter
has an odd number of neighbors. Associated with every edge e = (v, w) is a random al-
ternative Ae, which is equal to the correct winner c with probability p > 0.5 and to the
other alternative −c with probability 1 − p. The edge profile AE = (Ae)e∈E is not di-
rectly observed, but each vertex votes according to the majority of its incident edges, i.e.,
Av = maj{A(v,w)}w∈N(v). Hence, the probability of observing the profile AV = (Av)v∈V
given that the correct alternative is ĉ is the sum of the probabilities of the edge profiles AE

that are consistent with AV , that is,

P (AV |ĉ) =
∑

AE : for all v∈V,
Av=maj{A(v,w)}w∈N(v)

pn(ĉ,AE)(1− p)|E|−n(ĉ,AE)

where n(ĉ, AE) is the number of edges associated with ĉ in AE. The maximum likelihood
alternative ĉ, then, is the one maximizing this expression.

Example 1. Figure 1 illustrates the model. At the top, it shows the social network and the
votes cast by the voters (vertices). Below, it shows the (only) two different edge profiles (ways
of labeling the edges) that would result in this vote profile. If 1 is the correct alternative,
each of these edge profiles has probability p5(1− p)4. Hence, P (AV |1) = 2p5(1− p)4. (Here,
P (AV |1) is shorthand for P (AV |c = 1).) Similarly, P (AV | − 1) = 2p4(1 − p)5. It follows
that 1 maximizes the likelihood.

Note that under this model, it is possible that no edge profiles are consistent with
the observed votes—for example, if two vertices that are each other’s only neighbor vote
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Figure 2: A graph consisting of two cliques of size four. Open vertices indicate votes for −1.

Figure 3: A “wheel” graph (note there is no vertex in the middle). Closed vertices indicate
votes for 1.

differently. To address this, it would be straightforward to extend the model so that a
vertex has some small probability of voting against the majority of its incident edges. Since
the model is anyway supposed to be illustrative rather than comprehensive, for the sake of
simplicity, we will not flesh out this extension here.

The outcome in Example 1 was perhaps not surprising. Let us now consider an example
where it is not immediately obvious which alternative should win.

Example 2. Consider the graph in Figure 2, consisting of two cliques of size 4. Suppose
all these vertices vote for −1. Because every vertex has 3 incident edges, an edge profile is
consistent with this profile AV cliques if and only if every vertex has at most one incident edge
that is associated with 1—that is, the edges associated with 1 constitute a matching. In this
graph, there is 1 matching with 0 edges, there are 12 with 1 edge, 42 with 2 edges, 36 with 3
edges, and 9 with 4 edges. Thus, if −1 is in fact the correct alternative, then the probability
of AV cliques is P (AV cliques |−1) = p12 +12p11(1−p)+42p10(1−p)2 +36p9(1−p)3 +9p8(1−p)4.
For p = 0.6, we obtain P (AV cliques | − 1) = 8.73 · 10−2. On the other hand, if 1 is the correct
alternative, then the probability of AV cliques is P (AV cliques |1) = (1−p)12+12(1−p)11p+42(1−
p)10p2 + 36(1− p)9p3 + 9(1− p)8p4. For p = 0.6, we obtain P (AV cliques |1) = 4.71 · 10−3.

Now consider the graph in Figure 3. Suppose all these vertices vote for 1. Again, because
every vertex has 3 incident edges, an edge profile is consistent with this profile AV wheel if and
only if the edges associated with −1 constitute a matching. In this graph, there is 1 matching
with 0 edges, there are 12 with 1 edge, 42 with 2 edges, 44 with 3 edges, and 7 with 4 edges.
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Using similar expressions as above, we obtain that for p = 0.6, P (AV wheel | − 1) = 4.99 · 10−3

and P (AV wheel |1) = 9.16 · 10−2.
Now consider taking the union of the two graphs. Because there are no edges between

the two graphs, they are drawn independently, so P (AV union |c) = P (AV cliques |c)P (AV wheel |c).
Thus we get, for p = 0.6, that P (AV union | − 1) = 8.73 · 10−2 · 4.99 · 10−3 = 4.36 · 10−4 and
P (AV union |1) = 4.71 · 10−3 · 9.16 · 10−2 = 4.31 · 10−4. Hence, −1 would be the maximum
likelihood estimate winner in this case. Intriguingly, if we change p to a value of 0.9 (but
keep everything else the same), then the calculations become P (AV union | − 1) = 8.20 · 10−1 ·
8.15 · 10−8 = 6.68 · 10−8 and P (AV union |1) = 8.88 · 10−8 · 8.23 · 10−1 = 7.31 · 10−8 so that
then, 1 wins! Intuition can be given for this as follows: as p goes to 1, one of the two graphs
(the “correct” voters) will have probability close to 1, and so the likelihood is primarily
determined by the other graph (the “incorrect” voters). The probability of the latter graph
is dominated by the terms with the largest matching (4 edges), because those have the fewest
factors (1 − p). Because the two-cliques graph has more of those matchings, it is better to
make it the “incorrect” graph—it is easier to explain why it might have voted so incorrectly.

The example illustrates that under the independent conversations model, there is no
purely graph-theoretic criterion for determining which voters are considered more important:
if there were such a criterion, the answer would not depend on the value of p.

3.2 Computational Hardness

In the examples above, we calculated probabilities by enumerating, or at least counting,
the various edge profiles that could give rise to the observed vote profiles. Can we scale
this approach to large graphs? For example, is there a scheme that always allows us to
count the various types of edge profiles quickly? Or, if this is not possible, perhaps there
is a shortcut that allows us to compute the relevant probabilities without any counting?
Unfortunately, the following complexity result suggests that our problem is fundamentally
a hard counting problem.

Theorem 1. Computing P (AV |ĉ) is #P-hard under the independent conversations model.

Proof. We reduce from the following problem: given a bipartite graph G′ with n′ vertices
on each side, how many perfect matchings does it have? This problem is #P-complete [15].
Given this bipartite graph G′ = (V ′, E′), we construct a social network G = (V,E) and
votes AV over the alternatives −1 and 1 as follows. For each vertex v′ on the left side of V ′,
in G we construct a vertex vv′ , which votes for 1, and another nv′−1 vertices v1v′ , . . . , v

nv′−1
v′

(where nv′ is the number of neighbors of v′ in G′; w.l.o.g., nv′ ≥ 1), which all vote for 1
as well. For each vertex w′ on the right side of V ′, in G we construct a vertex vw′ , which
votes for −1, and another nw′ + 1 vertices v1w′ , . . . , v

nw′+1
w′ , which all vote for 1 except for

two (say, v1w′ and v2w′ vote for −1—again, w.l.o.g., nw′ ≥ 1). We construct an edge from
every viv′ (resp. every viw′) to its corresponding vv′ (resp. vw′). Moreover, for every edge
(v′, w′) ∈ E′, we construct an edge (vv′ , vw′) ∈ E (call these the “original” edges). Figure 4
illustrates the reduction.

Which edge profiles ÂE are consistent with the profile AV ? First, we note that every viv′
(resp. every viw′) has only a single edge. The alternative with which that edge is associated
must thus coincide with the alternative chosen by viv′ (resp. viw′). For each left-hand-side
vv′ ∈ V , this immediately gives nv′ − 1 edges incident to vv′ that are associated with 1.
Because vv′ votes for 1 and has 2nv′ − 1 incident edges in G, at least one of the original
edges incident to vv′ must be associated with 1 as well. On the other hand, for each right-
hand-side vw′ ∈ V , vw′ has only two non-original incident edges that are associated with
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Figure 4: An illustration of the reduction. On the left-hand side, there is an instance of
the problem of counting the number of perfect matchings in a bipartite graph. On the
right-hand side, there is an instance of the problem of computing P (AV |ĉ). Here, again,
open vertices indicate votes for −1, and closed vertices indicate votes for 1.

−1. Because vw′ votes for −1 and has 2nw′ + 1 incident edges in G, at least nw′ − 1 of the
original edges incident to vw′ must be associated with −1—or, equivalently, at most one of
the original edges incident to vw′ may be associated with 1. It follows that for ÂE to be
consistent with AV , every vv′ must have exactly one incident original edge associated with
1 (or otherwise some vw′ would have more than one), and similarly every vw′ must have
exactly one incident original edge associated with 1 (or otherwise some vv′ would have less
than one). That is, ÂE is consistent with AV if and only if the original edges associated with
1 constitute a perfect matching (and the non-original edges take their required associated
alternative). Therefore, the number of consistent edge profiles is equal to the number of
perfect matchings in the original bipartite graph. Every one of these edge profiles has the
same probability (because they all have the same number of edges associated with 1), and
therefore the probability P (AV |ĉ) is proportional to the number of matchings in the original
bipartite graph.

3.3 Estimating the Correct Alternative and the Edge Profile To-
gether Is Easy

As should be clear from the above proof, the computational hardness of computing the
relevant probabilities is due to the hidden variables (AE) over whose possible values we
must sum. It seems such computational hardness is likely to occur for many other models
that involve hidden variables. However, another approach is to compute an estimate not
only of the correct winner (summing over all the hidden variables in the process), but
rather to estimate the correct winner together with the hidden variables, so that we need
not sum over the latter, but rather have a point estimate of them. In the model considered
here, this corresponds to estimating the correct winner c together with the edge profile AE ,
so as to maximize P (AV , ÂE |ĉ). Note that P (AV , AE |c) = P (AV |AE , c)P (AE |c), where
P (AV |AE , c) = P (AV |AE) is 1 if AE is consistent with AV and 0 otherwise. Therefore, the
goal is to find ĉ and ÂE to maximize P (ÂE |ĉ), under the constraint that ÂE is consistent
with AV .2 It turns out that it is actually possible to do so in polynomial time. In fact, we

2It should be pointed out here that there is no guarantee that this will result in the same estimate ĉ
as in the previous case where we sum over all edge profiles. A similar issue occurs in the standard model
(with conditionally independent votes) when there are more than two alternatives. There, we have to choose
whether to estimate the entire correct ranking, or merely the correct top alternative. What we obtain in
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can do so even under the following slightly richer model, in which different edges can have
different probabilities of being associated with the correct alternative.

Definition 2 (Independent weighted conversations model). This model is identical to
the independent conversations model from Definition 1, except here, rather than a single
universal value p, there is a separate probability pe ≥ 1/2 associated with each edge, which
is the probability that that edge will be associated with the correct alternative.

Theorem 2. An element of arg max(ĉ,ÂE) P (AV , ÂE |ĉ) can be computed in polynomial time,
even in the independent weighted conversations model.

Proof. As discussed above, the goal is to find ĉ and ÂE to maximize P (ÂE |ĉ), under the
constraint that ÂE is consistent with AV . For each possibility for ĉ, we proceed by reducing
the problem to a maximum weighted b-matching problem (for a discussion of this problem
and further references, see, for example, Penn and Tennenholtz [12]). This is a generalized
weighted matching problem in which each vertex v has a lower bound lv and an upper bound
uv on how many of its incident edges may be chosen in the matching, and the edges have
weights. We wish to maximize the total weight of the chosen edges. (In the general version
of the problem, it is possible to choose an edge more than once, i.e., associate an unrestricted
nonnegative integer with each edge; moreover, lower and upper bounds (capacities) on the
number of times each edge can be chosen may be provided. We will only need the case
where each edge can be chosen at most once.)

In the reduction from our problem to the b-matching problem, we keep the graph the
same. Choosing an edge in the b-matching problem will correspond to associating it with
our current estimate of the correct alternative ĉ (and not choosing it will correspond to
associating it with our current estimate of the incorrect alternative −ĉ). Accordingly, for a
vertex v that is voting for ĉ and has nv neighbors, we set lv = (nv + 1)/2 (recall that nv is
odd by assumption) and uv = nv. For a vertex v that is voting for −ĉ, we set lv = 0 and
uv = (nv − 1)/2. These conditions are necessary and sufficient for ÂE to be consistent with
AV . Furthermore, we set the weight of edge e to we = log pe − log(1− pe).

3 This results in
a total objective value of ∑

chosen e

(log pe − log(1− pe)) =

−
∑
e∈E

log(1− pe) +
∑

chosen e

log pe +
∑

not chosen e

log(1− pe)

that we seek to maximize. Because −
∑

e∈E log(1 − pe) is a constant, this is equivalent to
maximizing ∑

chosen e

log pe +
∑

not chosen e

log(1− pe)

But by exponentiation, this is equivalent to maximizing

(
∏

chosen e

pe)(
∏

not chosen e

(1− pe)) = P (ÂE |ĉ)

as required.

the latter case is not guaranteed to be equal to the top alternative in our estimate of the correct ranking.
For further discussion, see Elkind and Slinko [9].

3In the case of independent voters with different probabilities pi of choosing the correct outcome, Nitzan
and Paroush [11] and Shapley and Grofman [13] also use a weight log pi − log(1 − pi).
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The fact that estimating the hidden variables together with the correct alternative can
be done in polynomial time may not generalize to other models. Nevertheless, it seems likely
that in many models, it will still be easier than summing over all the hidden variables; it
may be, for example, the difference between solving an NP-hard problem and a #P-hard
one.

4 Conclusion

Most of the work on interpreting voting rules as maximum likelihood estimators so far has
assumed that voters’ votes are drawn independently (conditional on the correct outcome).
While this assumption results in some nice characterizations, in many contexts it is clearly
unrealistic. Often, voters have the opportunity to discuss the alternatives with neighboring
voters before casting their votes, and this will affect their votes. On the other hand, it is not
straightforward to create a noise model that captures all the aspects of how conversations
with other voters affect vote formation. A model that truly achieves this would presumably
be quite baroque. Nevertheless, simple models, which undoubtedly leave out many real-
world aspects of social vote formation, can nevertheless provide insight into how an election
organizer should take social network structure into account in the design of the voting rule
(when it is possible to do so).

In this paper, we first reviewed basic existing results on MLE voting rules, paying par-
ticular attention to a result that, for a particular type of noise model that does take social
network structure into account, the optimal voting rule does not depend on this network
structure. Then, to illustrate how the same result may not hold under different models that
take social network structure into account, we considered a new noise model—the indepen-
dent conversations model—in which for every edge, there is a conversation that settles on one
of the two alternatives. The outcomes of these conversations are independent (conditional
on the correct outcome), and a voter votes according to the majority of the outcomes of the
conversations in which she participated. We illustrated the model with some examples. We
showed that computing the conditional probability of a vote profile in this model is in fact
#P-hard, by reduction from the problem of computing the number of perfect matchings in
a bipartite graph. Intuitively, this hardness is due to the fact that we need to sum over all
possible edge profiles (combinations of outcomes for the edges). Indeed, we then showed
that if the goal is to find a probability maximizing estimate of both the correct outcome
and the edge profile, this can be done in polynomial time using matching techniques. The
prevalence of matching techniques in these results is intriguing.

There can be little doubt, though, that the independent conversations model leaves out
many real-world aspects of how votes are socially formed. The most obvious gap is that
time still plays no role in the model. It would better match reality to explicitly model
the evolution of a voter’s opinion over time. One interesting approach would be to try to
integrate DeGroot-style models of opinion formation ([7]; for a recent article with further
references, see [5]) with the maximum likelihood approach to voting.
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