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Abstract

We revisit the classic problem of fair division from a mechanism design perspective,
using Proportional Fairness as a benchmark. In particular, we aim to allocate a col-
lection of divisible items to a set of agents while incentivizing the agents to be truthful
in reporting their valuations. For the very large class of homogeneous valuations, we
design a truthful mechanism that provides every agent with at least a 1/e ≈ 0.368
fraction of her Proportionally Fair valuation. To complement this result, we show
that no truthful mechanism can guarantee more than a 0.5 fraction, even for the re-
stricted class of additive linear valuations. We also propose another mechanism for
additive linear valuations that works really well when every item is highly demanded.
To guarantee truthfulness, our mechanisms discard a carefully chosen fraction of the
allocated resources; we conclude by uncovering interesting connections between our
mechanisms and known mechanisms that use money instead.

1 Introduction

From inheritance and land dispute resolution to treaty negotiations and divorce settlements,
the problem of fair division of diverse resources has troubled man since antiquity. Not sur-
prisingly, it has now also found its way into the highly automated, large scale world of
computing. As the leading internet companies guide the paradigm shift into cloud comput-
ing, more and more services that used to be run on isolated machines are being migrated
to shared computing clusters. Moreover, instead of just human beings bargaining or nego-
tiating, one now also finds programmed strategic agents seeking resources. The goal of the
resulting multiagent resource allocation problems [1] is to find solutions that are fair to the
agents without introducing unnecessary inefficiencies.

One of the most challenging facets of this change is the need for higher quality incentive
design in the form of protocols or mechanisms. As the peer-to-peer revolution has taught
us, a proper set of incentives can make or break a system as the number of agents grows [2,
Chapter 23]. We therefore revisit this classic fair division problem from a purely mechanism
design approach, aiming to create simple and efficient mechanisms that are not susceptible to
strategic manipulation by the participating agents; in particular, we want to design truthful
mechanisms for fair division of heterogeneous goods.

One distinguishing property of resource allocation protocols in computing is that, more
often than not, they need to eschew monetary transfers completely. This is so because, for
instance, agents could represent internal teams in an internet company which are competing
for resources. This, of course, severely limits what the mechanism designer can achieve since
the collection of payments is the most versatile method for designing truthful mechanisms.
In light of this, essentially the only tool left for aligning the agents’ incentives with the ob-
jectives of the system is what Hartline and Roughgarden referred to as “money burning” [3].
That is, the system can choose to intentionally degrade the quality of its services (in our
case this will mean discarding resources) in order to influence the preferences of the agents.
This degradation of service can often be interpreted as an implicit form of “payment”, but
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since these payments do not correspond to actual trades, they are essentially burned or used
for other purposes.

But even before dealing with the fact that the participating agents may behave strategi-
cally, one first needs to ask what is the right objective for fairness. This question alone has
been the subject of long debates, in both social science and game theory, leading to a very
rich literature. At the time of writing this paper, there are five academic books [4, 5, 6, 7, 8]
written on the topic of fair division, providing an overview of various proposed solutions for
fairness. In this paper we will be focusing on resources that are divisible; for such settings,
the most attractive solution for efficient and fair allocation is the Proportionally Fair solution
(PF). In brief, a PF allocation is a Pareto optimal allocation x∗ which compares favorably
to any other Pareto optimal allocation x in the sense that, when switching from x to x∗, the
aggregate percentage gain in happiness of the agents outweighs the aggregate percentage
loss. The notion of PF was first introduced in the seminal work of Kelly [9] in the context
of TCP congestion control. Since then it has become the de facto solution for bandwidth
sharing in the networking community, and is in fact the most widely implemented solution
in practice (for instance see [10])2. The wide adoption of PF as the solution for fairness
is not a fluke, but is grounded in the fact that PF is equivalent to the Nash bargaining
solution [12], and to the Competitive Equilibria with Equal Incomes (CEEI) [13, 14, 15] for
a large class of valuation functions. Both Nash bargaining and the CEEI are well regarded
solutions in microeconomics for bargaining and fairness.

A notable property of the PF solution is that it gives a good tradeoff between fairness
and efficiency. One extreme notion of fairness is the Rawlsian notion of the egalitarian social
welfare that aims to maximize the quality of service of the least satisfied agent irrespective
of how much inefficiency this might be causing. On the other extreme, the utilitarian social
welfare approach aims to maximize efficiency while disregarding how unsatisfied some agents
might become. The PF allocation lies between these two extremes by providing a significant
fairness guarantee without neglecting efficiency. As we showed in a recent work [16], for
instances with just two players who have affine valuation functions the PF allocation has a
social welfare of at least 0.933 times the optimal one.

Unfortunately, the PF allocation has one significant drawback: it cannot be implemented
using truthful mechanisms without the use of payments; even for simple instances involving
just two agents and two items, it is not difficult to show that no truthful mechanism can
obtain a PF solution. This motivates the following natural question: can one design truthful
mechanisms that yield a good approximation to the PF solution? Since our goal is to obtain
a fair division, we seek a strong notion of approximation in which every agent gets a good
approximation of her PF valuation. One of our main results is to give a truthful mechanism
which guarantees that every agent will receive at least a 1/e fraction of her PF valuation
for a very large class of valuation functions. We note that this is one of the very few
positive results in multi-dimensional mechanism design without payments. We demonstrate
the hardness of achieving such truthful approximations by providing an almost matching
negative result for a restricted class of valuations.

While a 1/e approximation factor is quite surprising for such a general setting, in some
circumstances one would prefer to restrict the setting in order to achieve a ratio much
closer to 1. Our final result concerns such a scenario, which is motivated by the real-world
privatization auctions that took place in Czechoslovakia in the early 90s. At that time, the
Czech government sought to privatize the state owned firms dating from the then recently
ended communist era. The government’s goal was two-fold — first, to distribute shares of
these companies to their citizens in a fair manner, and second, to calculate the market prices
of these companies so that the shares could be traded in the open market after the initial

2We note that some of the earlier work on Proportional Fairness such as [9] and [11] have 2000+ and
3900+ citations respectively in Google Scholar, indicating the importance and usage of this solution.
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allocation. To this end, they ran an auction, as described in [17]. Citizens could choose to
participate by buying 1000 vouchers at a cost of 1,000 Czech Crowns, about $35, a fifth of
the average monthly salary. Over 90% of those eligible participated. These vouchers were
then used to bid for shares in the available 1,491 firms. We believe that the PF allocation
provides a very appropriate solution for this example, both to calculate a fair allocation and
to compute market prices. Our second mechanism solves the problem of finding allocations
very close to the PF allocation in a truthful fashion for such natural scenarios where there
is high demand for each resource.

1.1 Our results

In this work we provide some surprising positive results for the problem of multi-dimensional
mechanism design without payments. We focus on allocating divisible items and we use the
widely accepted solution of proportional fairness as the benchmark regarding the valuation
that each participating player deserves. In this setting, we undertake the design of truthful
mechanisms that approximate this solution; we consider a strong notion of approximation,
requiring that every player receives a good fraction of the valuation that she deserves ac-
cording to the proportionally fair solution of the instance at hand.

The main contribution of this paper is the Partial Allocation mechanism. In Section 3
we analyze this mechanism and we prove that it is truthful and that it guarantees that
every player will receive at least a 1/e fraction of her proportionally fair valuation. These
results hold for the very general class of instances with players having arbitrary homoge-
neous valuation functions of degree one (see Appendix B). This includes a wide range of
well studied valuation functions, from additive linear and Leontief, to Constant Elasticity of
Substitution and Cobb-Douglas [18]. We later show that for the cases of additive linear and
Leontief valuation functions the outcomes of this mechanism satisfy envy-freeness. Also, we
extend both the approximation and the truthfulness guarantees to instances with homoge-
neous valuations of any degree. To complement these positive results, we provide a negative
result showing that no truthful mechanism can guarantee to every player an allocation with
value greater than 0.5 of the value of the PF allocation, even if the mechanism is restricted
to the class of additive linear valuations.

In Section 4 we show that restricting the set of possible instances to ones involving
players with additive linear valuations3 and items with high prices in the competitive equi-
librium from equal incomes4 will actually enable the design of even more efficient and useful
mechanisms. We present the Strong Demand Matching (SDM) mechanism, a truthful mech-
anism that performs increasingly well as the competitive equilibrium prices increase. More
specifically, if p∗j is the price of item j, then the approximation factor guaranteed by this

mechanism is equal to minj
(
p∗j/

⌈
p∗j
⌉)
. It is interesting to note that scenarios such as the

privatization auction mentioned above involve a number of bidders much larger than the
number of items; as a rule, we expect this to lead to high prices and a very good approxi-
mation of the participants’ PF valuations.

Finally, in Section 5 we provide interesting connections between the two mechanisms
that we propose and well known mechanisms that use monetary payments (due to space
limitations, the discussion regarding the SDM mechanism is deferred to Appendix ??).
Specifically, we reveal a connection between the amount of resources being discarded and
monetary payments. In a nutshell, multiplicative reductions in the bidders’ final allocations
turn out to have an effect which is analogous to monetary payments. As a result, we

3Note that our negative results imply that the restriction to additive linear valuations alone would not
be enough to enable significantly better approximation factors.

4The prices induced by the market equilibrium when all bidders have a unit of scrip money; also referred
to as PF prices.
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anticipate that this approach may have a significant impact on other problems in mechanism
design without money. Indeed, we have already applied this approach to the problem of
maximizing social welfare without payments for which a special two-agent version of the
Partial Allocation mechanism allowed us to improve upon a setting for which mostly negative
results were known [16].

1.2 Related Work

Our setting is closely related to the large topic of fair division or cake-cutting [4, 5, 6,
7, 8], which has been studied since the 1940’s, using the [0, 1] interval as the standard
representation of a cake. Each agent’s preferences take the form of a valuation function
over this interval, and then the valuations of unions of subintervals are additive. Note that
the class of homogeneous valuation functions of degree one takes us beyond this standard
cake-cutting model. Leontief valuations for example, allow for complementarities in the
valuations, and then the valuations of unions of subintervals need not be additive. On
the other hand, the additive linear valuations setting that we focus on in Section 4 is very
closely related to cake-cutting with piecewise constant valuation functions over the [0, 1]
interval. Other common notions of fairness that have been studied in this literature are,
proportionality5, envy-freeness, and equitability [4, 5, 6, 7, 8].

Despite the extensive work on fair resource allocation, truthfulness considerations have
not played a major role in this literature. Most results related to truthfulness were weak-
ened by the assumption that each agent would be truthful in reporting her valuations unless
this strategy was dominated. Very recent work [19, 20, 21, 22] studies truthful cake cutting
variations using the standard notion of truthfulness according to which an agent need not be
truthful unless doing so is a dominant strategy. Chen et al. [19] study truthful cake-cutting
with agents having piecewise uniform valuations and they provide a polynomial-time mecha-
nism that is truthful, proportional, and envy-free. They also design randomized mechanisms
for more general families of valuation functions, while Mossel and Tamuz [20] prove the ex-
istence of truthful (in expectation) mechanisms satisfying proportionality in expectation for
general valuations. Zivan et al. [21] aim to achieve envy-free Pareto optimal allocations
of multiple divisible goods while reducing, but not eliminating, the agents’ incentives to
lie. The extent to which untruthfulness is reduced by their proposed mechanism is only
evaluated empirically and depends critically on their assumption that the resource limita-
tions are soft constraints. Very recent work by Maya and Nisan [22] provides evidence that
truthfulness comes at a significant cost in terms of efficiency.

The recent papers of Guo and Conitzer [23] and of Han et al. [24] also consider the
truthful allocation of multiple divisible goods; they focus on additive linear valuations and
their goal is to maximize the social welfare (or efficiency) after scaling every player’s reported
valuations so that her total valuation for all items is 1. Guo and Conitzer [23] study two-
agent instances, providing both upper and lower bounds for the achievable approximation;
Han et al. [24] extend these results and also study the multiple agents setting. For problem
instances that may involve an arbitrary number of items both papers provide negative
results: no non-trivial approximation factor can be achieved by any truthful mechanism
when the number of players is also unbounded. For the two-player case, after Guo and
Conitzer [23] studied some classes of dictatorial mechanisms, Han et al. [24] showed that
no dictatorial mechanism can guarantee more than the trivial 0.5 factor. Interestingly, we
recently showed [16] that combining a special two-player version of the Partial Allocation
mechanism with a dictatorial mechanism can actually beat this bound, achieving a 2/3
approximation.

5It is worth distinguishing the notion of PF from that of proportionality by noting that the latter is a
much weaker notion, directly implied by the former.
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The resource allocation literature has seen a resurgence of work studying fair and ef-
ficient allocation for Leontief valuations [25, 26, 27, 28]. These valuations exhibit perfect
complements and they are considered to be natural valuation abstractions for computing
settings where jobs need resources in fixed ratios. Ghodsi et al. [25] defined the notion
of Dominant Resource Fairness (DRF), which is a generalization of the egalitarian social
welfare to multiple types of resources. This solution has the advantage that it can be imple-
mented truthfully for this specific class of valuations; as the authors acknowledge, the CEEI
solution would be the preferred fair division mechanism in that setting as well, and its main
drawback is the fact that it cannot be implemented truthfully. Parkes et al. [27] assessed
DRF in terms of the resulting efficiency, showing that it performs poorly. Dolev et al. [26]
proposed an alternate fairness criterion called Bottleneck Based Fairness, which Gutman
and Nisan [28] subsequently showed is satisfied by the proportionally fair allocation. Gut-
man and Nisan [28] also posed the study of incentives related to this latter notion as an
interesting open problem. Our results could potentially have significant impact on this line
of work as we are providing a truthful way to approximate a solution which is recognized
as a good benchmark. It would also be interesting to study the extent to which the Partial
Allocation mechanism can outperform the existing ones in terms of efficiency.

Our results fit into the general agenda of approximate mechanism design without money,
explicitly initiated by Procaccia and Tennenholtz [29]. More interestingly, the underlying
connection with VCG payments proposes a framework for designing truthful mechanisms
without money and we anticipate that this might have a significant impact on this literature.

2 Preliminaries

Let M denote the set of m items and N the set of n bidders. Each item is divisible,
meaning that it can be divided into arbitrarily small pieces, which are then allocated to
different bidders. An allocation x of these items to the bidders defines the fraction xij
of each item j that each bidder i will be receiving; let F = {x | xij ≥ 0 and

∑
i xij ≤ 1}

denote the set of feasible allocations. Each bidder is assigned a weight bi ≥ 1 which allows for
interpersonal comparison of valuations, and can serve as priority in computing applications,
as clout in bargaining applications, or as a budget for the market equilibrium interpretation
of our results. We assume that bi is defined by the mechanism as it cannot be truthfully
elicited from the bidders. The preferences of each bidder i ∈ N take the form of a valuation
function vi(·), that assigns nonnegative values to every allocation in F . We assume that
every player’s valuation for a given allocation x only depends on the bundle of items that
she will be receiving.

We will present our results assuming that the valuation functions are homogeneous of
degree one, i.e. player i’s valuation for an allocation x′ = f · x satisfies vi(x

′) = f · vi(x),
for any scalar f > 0. We later discuss how to extend these results to general homogeneous
valuations of degree d for which vi(x

′) = fd · vi(x). A couple of interesting examples of
homogeneous valuations functions of degree one are additive linear valuations and Leontief
valuations; according to the former, every player has a valuation vij for each item j and
vi(x) =

∑
j xijvij , and according to the latter, each player i’s type corresponds to a set of

values aij , one for each item, and vi(x) = minj {xij/aij}. (i.e. player i desires the items in
the ratio ai1 : ai2 : . . . : aim.)

An allocation x∗ ∈ F is Proportionally Fair (PF) if, for any other allocation x′ ∈ F the
(weighted) aggregate proportional change to the valuations after replacing x∗ with x′ is not
positive, i.e.:

∑

i∈N

bi[vi(x
′)− vi(x

∗)]

vi(x∗)
≤ 0. (1)

5



This allocation rule is a strong refinement of Pareto efficiency, since Pareto efficiency only
guarantees that if some player’s proportional change is strictly positive, then there must be
some player whose proportional change is negative. The Proportionally Fair solution can
also be defined as an allocation x ∈ F that maximizes

∏
i [vi(x)]

bi , or equivalently (after
taking a logarithm), that maximizes

∑
i bi log vi(x); we will refer to these two equivalent

objectives as the PF objectives. Note that, although the PF allocation need not be unique
for a given instance, it does provide unique bidder valuations [30].

We also note that the PF solution is equivalent to the Nash bargaining solution. John
Nash in his seminal paper [12] considered an axiomatic approach to bargaining and gave
four axioms that any bargaining solution must satisfy. He showed that these four axioms
yield a unique solution which is captured by a convex program; this convex program is
equivalent to the one defined above for the PF solution. Another well-studied allocation
rule which is equivalent to the PF allocation is the Competitive Equilibrium. Eisenberg [15]
showed that if all agents have valuation functions that are quasi-concave and homogeneous
of degree 1, then the competitive equilibrium is also captured by the same convex program
as the one for the PF solution. The Competitive Equilibrium with Equal Incomes (CEEI)
has been proposed as the ideal allocation rule for fairness in microeconomics [14, 13, 31, 32].

Given a valuation function reported from each bidder, we want to design mechanisms that
output an allocation of items to bidders. We restrict ourselves to truthful mechanisms, i.e.
mechanisms such that any false report from a bidder will never return her a more valuable
allocation. Since proportional fairness cannot be implemented via truthful mechanisms,
we will measure the performance of our mechanisms based on the extent to which they
approximate this benchmark. More specifically, the approximation factor, or competitive
factor of a mechanism will correspond to the minimum value of ρ(I) across all relevant
instances I, where

ρ(I) = min
i∈N

{
vi(x)

vi(x∗)

}
,

and x, x∗ are the allocation generated by the mechanism for instance I and a PF allocation
of I respectively (the value of vi(x

∗) is the same for every PF allocation x∗).

3 The Partial Allocation Mechanism

In this section, we define the Partial Allocation (PA) mechanism as a novel way to allo-
cate divisible items to bidders with homogeneous valuation functions of degree one. We
subsequently prove that this non-dictatorial mechanism not only achieves truthfulness, but
also guarantees that every bidder will receive at least a 1/e fraction of the valuation that
she deserves, according to the PF solution. This mechanism depends on a subroutine that
computes the PF allocation for the problem instance at hand; we therefore later study
the running time of this subroutine, as well as the robustness of our results in case this
subroutine returns only approximate solutions.

The PA mechanism elicits the valuation function vi(·) from each player i and it computes
the PF allocation x∗ considering all the players’ valuations. The final allocation x output
by the mechanism gives each player i only a fraction fi of her PF bundle x∗i , i.e. for every
item j of which the PF allocation assigned to her a portion of size x∗ij , the PA mechanism
instead assigns to her a portion of size fi · x

∗
ij , where fi ∈ [0, 1] depends on the extent

to which the presence of player i inconveniences the other players; the value of fi may
therefore vary across different players. The following steps give a more precise description
of the mechanism.
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ALGORITHM 1: The Partial Allocation mechanism.

1 Compute the PF allocation x∗ based on the reported bids.
2 For each player i, compute the PF allocation x∗

−i that would arise in her absence.
3 Allocate to each player i a fraction fi of everything that she receives according to x∗, where

fi =

( ∏
i′ 6=i [vi′(x

∗)]bi′
∏

i′ 6=i [vi′(x
∗
−i)]

b
i′

)
1/bi

. (2)

Lemma 3.1. The allocation x produced by the PA mechanism is feasible.

3.1 Truthfulness

We now show that, despite the fact that this mechanism is not dictatorial and does not
use monetary payments, it is still in the best interest of every player to report her true
valuation function, irrespective of what the other players do. In Section 5 we also provide
some intuition behind the truthfulness of the PA mechanism by interpreting the unallocated
fractions of the items as appropriate transformations of VCG payments.

Theorem 3.2. The PA mechanism is truthful.

Proof. In order to prove this theorem, we approach the PA mechanism from the perspective
of some arbitrary player i. Let v̄i′(·) denote the valuation function that each player i′ 6= i
reports to the PA mechanism. We assume that the valuation functions reported by these
players may differ from their true ones, vi′(·). Player i is faced with the options of, either
reporting her true valuation function vi(·), or reporting some false valuation function v̄i(·).
After every player has reported some valuation function, the PA mechanism computes the
PF allocation with respect to these valuation functions; let xT denote the PF allocation that
arises if player i reports the truth and xL otherwise. Finally, player i receives a fraction of
what the computed PF allocation assigned to her, and how big or small this fraction will
be depends on the computed PF allocation. Let fT denote the fraction of her allocation
that player i will receive if xT is the computed PF allocation and fL otherwise. Since the
players have homogeneous valuation functions of degree one, what we need to show is that
fT vi(xT) ≥ fL vi(xL), or equivalently that

[fT vi(xT)]
bi ≥ [fL vi(xL)]

bi .

Note that the denominators of both fractions fT and fL, as given by Equation (2), will be
the same since they are independent of the valuation function reported by player i. Our
problem therefore reduces to proving that

[vi(xT)]
bi ·
∏

i′ 6=i

[v̄i′(xT)]
b
i′ ≥ [vi(xL)]

bi ·
∏

i′ 6=i

[v̄i′(xL)]
b
i′ . (3)

To verify that this inequality holds we use the fact that the PF allocation is the one that
maximizes the product of the corresponding reported valuations. This means that

xT = argmax
x∈F



[vi(x)]

bi ·
∏

i′ 6=i

[v̄i′(x)]
b
i′



 ,

and since xL ∈ F , this implies that Inequality (3) holds, and hence reporting her true
valuation function is a dominant strategy for every player i.
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The arguments used in the proof of Theorem 3.2 imply that, given the valuation functions
reported by all the other players i′ 6= i, player i can effectively choose any bundle that she
wishes, but for each bundle the mechanism defines what fraction player i can keep. One
can therefore think of the fraction of the bundle thrown away as a form of non-monetary
“payment” that the player must suffer in exchange for that bundle, with different bundles
matched to different payments. The fact that the PA mechanism is truthful implies that
these payments, in the form of fractions, make the bundle allocated to her by allocation x∗

the most desirable one. We revisit this interpretation in Section 5.

3.2 Approximation

Before studying the approximation factor of the PA mechanism, we first state a lemma
which will be useful for proving Theorem 3.4 (its proof is deferred to the Appendix).

Lemma 3.3. For any set of pairs (δi, βi) with βi ≥ 1 and
∑
i βi · δi ≤ b the following holds

(where B =
∑
i βi)

∏

i

(1 + δi)
βi ≤

(
1 +

b

B

)B
.

Using this lemma we can now prove tight bounds for the approximation factor of the
Partial Allocation mechanism. As we show in this proof, the approximation factor depends
directly on the relative weights of the players. For simplicity in expressing the approximation
factor, let bmin denote the smallest value of bi across all bidders of an instance and let
B̄ =

(∑
i∈N bi

)
− bmin be the sum of the bi values of all the other bidders. Finally, let

ψ = B̄/bmin denote the ratio of these two values.

Theorem 3.4. The approximation factor of the Partial Allocation mechanism for the class
of problem instances of some given ψ value is exactly

(
1 +

1

ψ

)−ψ

.

Proof. The PA mechanism allocates to each player i a fraction fi of her PF allocation, and
for the class of homogeneous valuation functions of degree one this means that the final
valuation of player i will be vi(x) = fi · vi(x

∗). The approximation factor guaranteed by the
mechanism is therefore equal to mini{fi}. Without loss of generality, let player i be the one
with the minimum value of fi. In the PF allocation x∗−i that the PA mechanism computes
after removing player i, every other player i′ experiences a value of vi′(x

∗
−i). Let di′ denote

the proportional change between the valuation of player i′ for allocation x∗ and allocation
x∗−i, i.e.

vi′(x
∗
−i) = (1 + di′)vi′(x

∗).

Substituting for vi′(x
∗
−i) in Equation (2) yields:

fi =

(
1∏

i′ 6=i(1 + di′)bi′

)1/bi

. (4)

Since x∗ is a PF allocation, Inequality (1) implies that

∑

i′∈N

bi′ [vi′(x
∗
−i)− vi′(x

∗)]

vi′(x∗)
≤ 0 ⇐⇒

∑

i′ 6=i

bi′di′ +
bi[vi(x

∗
−i)− vi(x

∗)]

vi(x∗)
≤ 0

⇐⇒
∑

i′ 6=i

bi′di′ ≤ bi. (5)
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The last equivalence holds due to the fact that vi(x
∗
−i) = 0, since allocation x∗−i clearly

assigns nothing to player i.
Let B−i =

∑
i′ 6=i bi′ ; using Inequality (5) and Lemma 3.3 (on substituting bi for b, di′

for δi, bi′ for βi, and B−i for B), it follows from Equation (4) that

fi ≥

(
1 +

bi
B−i

)−
B

−i

bi

. (6)

To verify that this bound is tight, consider any instance with just one item and the given
ψ value. The PF solution dictates that each player should be receiving a fraction of the
item proportional to the player’s bi value. The removal of a player i therefore leads to a
proportional increase of exactly bi/B−i for each of the other players’ PF valuation. The PA
mechanism therefore assigns to every player i a fraction of her PF allocation which is equal
to the right hand side of Inequality (6). The player with the smallest bi value receives the
smallest fraction.

The approximation factor of Theorem 3.4 implies that fi ≥ 1/2 for instances with two
players having equal bi values, and fi ≥ 1/e even when ψ goes to infinity; we therefore get
the following corollary.

Corollary 3.5. The Partial Allocation mechanism always yields an allocation x such that
for every participating player i

vi(x) ≥
1

e
· vi(x

∗).

To complement this approximation factor, we now provide a negative result showing
that, even for the special case of additive linear valuations, no truthful mechanism can
guarantee an approximation factor better than n+1

2n for problem instances with n players.

Theorem 3.6. There is no truthful mechanism that can guarantee an approximation factor
greater than n+1

2n + ǫ for any constant ǫ > 0 for all n-player problem instances, even if the
valuations are restricted to being additive linear.

Theorem 3.6 implies that, even if all the players have equal bi values, no truthful mech-
anism can guarantee a greater than 3/4 approximation even for instances with just two
bidders, and this bound drops further as the number of bidders increases, finally converg-
ing to 1/2. To complement the statement of Corollary 3.5, we therefore get the following
corollary.

Corollary 3.7. No truthful mechanism can guarantee that it will always yield an allocation
x such that for any ǫ > 0 and for every participating player i

vi(x) ≥

(
1

2
+ ǫ

)
· vi(x

∗).

3.3 Envy-Freeness

We now consider the question of whether the outcomes that the Partial Allocation mech-
anism yields are envy-free; we show that, for two well studied types of valuation functions
this is indeed the case, thus providing further evidence of the fairness properties of this
mechanism. We start by showing that, if the bidders have additive linear valuations, then
the outcome that the PA mechanism outputs is also envy-free.

Theorem 3.8. The PA mechanism is envy-free for additive linear valuations.

Following the same proof structure we can now also show that the PA mechanism is
envy-free when the bidders have Leontief valuations.

Theorem 3.9. The PA mechanism is envy-free for Leontief valuations.
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4 The Strong Demand Matching Mechanism

The main result of the previous section shows that one can guarantee a good constant factor
approximation for any problem instance within a very large class of bidder valuations. The
subsequent impossibility result shows that, even if we restrict ourselves to problem instances
with additive linear bidder valuations, no truthful mechanism can guarantee more than a
1/2 approximation.

In this section we study the question of whether one can achieve even better factors when
restricted to some well-motivated class of instances. We focus on additive linear valuations,
and we provide a positive answer to this question for problem instances where every item
is highly demanded. More formally, we consider problem instances for which the PF price
(or equivalently the competitive equilibrium price) of every item is large when the budget
of every player is fixed to one unit of scrip money6. The motivation behind this class of
instances comes from problems such as the one that arose with the Czech privatization
auctions [17]. For such instances, where the number of players is much higher than the
number of items, one naturally anticipates that all item prices will be high in equilibrium.

For the rest of the chapter we assume that the weights of all players are equal and that
their valuations are additive linear. Let p∗j denote the PF price of item j when every bidder
i’s budget bi is equal to 1. Our main result in this section is the following:

Theorem 4.1. For additive linear valuations there exists a truthful mechanism that achieves
an approximation factor of minj

{
p∗j/⌈p

∗
j⌉
}
.

Note that if k = minj p
∗
j , then this approximation factor is at least k/(k + 1).

We now describe our solution which we call the Strong Demand Matching mechanism
(SDM). Informally speaking, SDM starts by giving every bidder a unit amount of scrip
money. It then aims to discover minimal item prices such that the demand of each bidder at
these prices can be satisfied using (a fraction of) just one item. In essense, our mechanism
is restricted to computing allocations that assign each bidder to just one item, and this
restriction of the output space renders the mechanism truthful and gives an approximation
guarantee much better than that of the PA mechanism for instances where every item is
highly demanded.

The procedure used by our mechanism is reminiscent of the method utilized by Demange
et al. for multi-unit auctions [33]. Recall that this method increases the prices of all over-
demanded items uniformly until the set R of over-demanded items changes, iterating this
process until R becomes empty. At that point, bidders are matched to preferred items.
For our setting, each bidder will seek to spend all her money, and we employ an analogous
rising price methodology, again making allocations when the set of over-demanded items is
empty. In our setting, the price increases are multiplicative rather than additive, however.
This approach also has some commonality with the algorithm of Devanur et al. [34] for
computing the competitive equilibrium for divisible items and bidders with additive linear
valuations. Their algorithm also proceeds by increasing the prices of over-demanded items
multiplicatively. Of course, their algorithm does not yield a truthful mechanism. Also, in
order to achieve polynomial running time in computing the competitive equilibrium, their
algorithm needs, at any one time, to be increasing the prices of a carefully selected subset of
these items; this appears to make their algorithm quite dissimilar to ours. Next we specify
our mechanism in more detail.

Let pj denote the price of item j, and let the bang per buck that bidder i gets from item
j equal vij/pj . We say that item j is an MBB item of bidder i if she gets the maximum

6Remark: Our mechanism does not make this assumption, but the approximation guarantees are much
better with this assumption.
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bang per buck from that item7. For a given price vector p, let the demand graph D(p)
be a bipartite graph with bidders on one side and items on the other, such that there is
an edge between bidder i and item j if and only if j is an MBB item of bidder i. We
call cj = ⌊pj⌋ the capacity of item j when its price is pj , and we say an assignment of
bidders to items is valid if it matches each bidder to one of her MBB items and no item
j is matched to more than cj bidders. Given a valid assignment A, we say an item j is
reachable from bidder i if there exists an alternating path (i, j1, i1, j2, i2, · · · , jk, ik, j) in the
graph D(p) such that edges (i1, j1), · · · , (ik, jk) lie in the assignment A. Finally, let d(R) be
the collection of bidders with all their MBB items in set R. Using these notions, we define
the Strong Demand Matching mechanism in Figure 2.

ALGORITHM 2: The Strong Demand Matching mechanism.

1 Initialize the price of every item j to pj = 1.
2 Find a valid assignment maximizing the number of matched bidders.
3 if all the bidders are matched then

4 conclude with Step 15.
5 Let U be the set of bidders who are not matched in Step 2.
6 Let R be the set of all items reachable from bidders in the set U .
7 Increase the price of each item j in R from pj to r · pj , where r ≥ 1 is the minimum value for

which one of the following events takes place:
8 if the price of an item in R reaches an integral value then

9 continue with Step 2.
10 if the set of MBB items of some bidder i ∈ d(R) increases, causing the set R to grow then

11 if for each item j added to R, the number of bidders already matched to it equals cj then

12 continue with Step 6.
13 if some item j added to R has cj greater than the number of bidders matched to it then

14 continue with Step 2.

15 Bidders matched to some item j are allocated a fraction 1/pj of it.

Lemma 4.2. The SDM mechanism terminates in polynomial time.

The proofs of the truthfulness and the approximation of the SDM mechanism use the
following lemma which states that the prices computed by the mechanism are the minimum
prices supporting a valid assignment. An analogous result was shown in [33] for a multi-unit
auction of non-divisible items. We provide an algorithmic argument.

Lemma 4.3. For any problem instance, if p ≥ 1 is a set of prices for which there exists a
valid assignment, then the prices q computed by the SDM mechanism will satisfy q ≤ p.

Using this lemma we can now prove the statements regarding the truthfulness and the
approximation factor of SDM; the following two lemmata imply Theorem 4.1.

Lemma 4.4. The SDM mechanism is truthful.

Lemma 4.5. The SDM mechanism achieves an approximation factor of minj
{
p∗j/⌈p

∗
j⌉
}
.

5 Connections to Mechanism Design with Money

In hindsight, a closer look at the mechanisms of this chapter reveals an interesting connection
between our work and known results from the literature on mechanism design with money.

7Note that for each bidder there could be multiple MBB items and that in the PF solution bidders are
only allocated such MBB items.
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What we show in this section is that one can uncover useful interpretations of money-
free mechanisms as mechanisms with actual monetary payments by instead considering
appropriate logarithmic transformations of the bidders’ valuations. In what follows, we
expand on this connection for the two mechanisms that we have proposed.

Partial Allocation Mechanism We begin by showing that one can actually interpret
the item fractions discarded by the Partial Allocation mechanism as VCG payments. The
valuation of player i for the PA mechanism outcome is vi(x) = fi · vi(x

∗), or

vi(x) =

( ∏
i′ 6=i [vi′(x

∗)]bi′
∏
i′ 6=i [vi′(x

∗
−i)]

b
i′

)1/bi

· vi(x
∗). (7)

Taking a logarithm on both sides of Equation (7) and then multiplying them by bi yields

bi log vi(x) = bi log vi(x
∗)−



∑

i′ 6=i

bi′ log vi′(x
∗
−i) −

∑

i′ 6=i

bi′ log vi′(x
∗)


 . (8)

Now, instead of focusing on each bidder i’s objective in terms of maximizing her valuation,
we instead consider a logarithmic transformation of that objective. More specifically, define
ui(·) = bi log vi(·) to be bidder i’s surrogate valuation. Since the logarithmic transformation
is an increasing function of vi, for every bidder, her objective amounts to maximizing the
value of this surrogate valuation. Substituting in Equation (8) using the surrogate valuation
for each player gives

ui(x) = ui(x
∗)−



∑

i′ 6=i

ui′(x
∗
−i) −

∑

i′ 6=i

ui′(x
∗)


 .

This shows that the surrogate valuation of a bidder for the output of the PA mechanism
equals her surrogate valuation for the PF allocation minus a “payment” which corresponds
to exactly the externalities that the bidder causes with respect to the surrogate valuations!
Note that, in settings where monetary payments are allowed, a VCG mechanism first com-
putes an allocation that maximizes the social welfare, and then defines a set of monetary
payments such that each bidder’s payment corresponds to the externality that her presence
causes. The connection between the PA mechanism and VCG mechanisms is complete if
one notices that the PF objective aims to compute an allocation x maximizing the value of∑
i bi log vi(x), which is exactly the social welfare

∑
i ui(x) with respect to the players’ sur-

rogate valuations. Therefore, the impact that the fraction being removed from each player’s
PF allocation has on that player’s valuation is analogous to that of a VCG payment in the
space of surrogate valuations. The fact that the PA mechanism is truthful can hence be
deduced from the fact the players wish to maximize their surrogate valuations and the VCG
mechanism is truthful with respect to these valuations. Nevertheless, the fact that the PA
mechanism guarantees such a strong approximation of the PF solution remains surprising
even after revealing this reduction.

Also note that VCG mechanisms do not, in general, guarantee envy-freeness. The con-
nection between the PA mechanism and VCG mechanisms that we provide above, combined
with the envy-freeness results that we proved for the PA mechanism for both additive linear
and Leontief valuations, implies that the VCG mechanism is actually envy-free for settings
with money and bidders having the corresponding surrogate valuations. Therefore, these
results also contribute to the recent work on finding truthful, envy-free, and efficient mech-
anisms [35, 36].
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Strong Demand Matching Mechanism We now provide an even less obvious connec-
tion between the SDM mechanism and existing literature on mechanism design with money;
this time we illustrate how one can interpret the SDM mechanism as a stable matching
mechanism. In order to facilitate this connection, we begin by reducing the problem of
computing a valid assignment to the problem of computing a “stable” matching: we first
scale each bidder’s valuations so that her minimum non-zero valuation for an item is equal
to n, and then, for each item j we create n copies of that item such that the k-th copy
(where k ∈ {1, 2, . . . , n}) of item j has a reserve price rjk = k. Given some price for each
item copy, every buyer is seeking to be matched to one copy with a price that maximizes
her valuation to price ratio, i.e. an MBB copy. A matching of each bidder to a distinct
item copy in this new problem instance is stable if and only if every bidder is matched to an
MBB copy; it is easy to verify that such a stable matching will always exist since there are
n copies of each item. Note that in a stable matching any two copies of the same item, each
of which is being matched to some bidder, need to have exactly the same price, otherwise
the more expensive copy cannot be an MBB choice for the bidder matched to it.

Now, a valid assignment of the initial input of the SDM mechanism implies a stable
matching in the new problem instance: set the price pjk of the k-th copy of item j to be
equal to the price pj of item j in the valid assignment, unless this violates its reserve price,
i.e. pjk = max{pj , rjk}, and match each bidder to a distinct copy of the item that she was
assigned to by the valid assignment; the validity of the assignment implies that, for each
item j, the number of bidders assigned to it is at most ⌊pj⌋, and hence the number of item
copies for which pjk ≥ rjk, i.e. pjk = pj is enough to support all these bidders. Similarly,
a stable matching of the item copies implies a valid assignment of the actual items of the
initial problem instance: the price pj of each item j is set to be equal to the minimum price
over all its copies (pj = mink{pjk}), and each bidder who is matched to one of these copies
is allocated a fraction 1/pj of the corresponding actual item.

Using this reduction, we can now focus on the problem of computing such a stable
matching of each bidder to just one distinct copy of some item; that is, we wish to define a
price pjk ≥ rjk for each one of the m · n item copies, as well as a matching of each bidder
to a distinct copy such that every bidder is matched to one of her MBB copies for the given
prices. If we consider the same surrogate valuations ui(·) = log vi(·), the objective of each
bidder i to be matched to a copy of some item j that maximizes the ratio vij/pjk is translated
to the objective of maximizing the difference log vij − log pjk. If one therefore replaces the
values vij of the valuation vector reported by each bidder i with the values log vij , then the
initial problem is reduced to the problem of computing stable prices for these transformed
valuations, assuming that monetary payments are allowed. This problem has received a lot
of attention in the matching literature, building upon the assignment model of Shapley and
Shubik [37]. Having revealed this connection, we know that we can truthfully compute a
bidder optimal matching that does not violate the reserve prices using, for example, the
mechanism of Aggarwal et al. [38]; one can verify that these are exactly the logarithmic
transformations of the prices of the SDM mechanism, and also that this is the matching
the SDM mechanism computes. Note that increasing the surrogate prices of overdemanded
item copies by some additive constant corresponds to increasing the corresponding actual
prices by a multiplicative constant. Therefore, this transformation also sheds some light on
why the SDM mechanism uses multiplicative increases of the item prices.

6 Conclusion and Open Problems

Our work was motivated by the fact that no incentive compatible mechanisms were known
for the natural and widely used fairness concept of Proportional Fairness. In hindsight, our
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work provides several new contributions. First, the class of bidder valuation functions for
which our results apply is surprisingly large and it contains several well studied functions;
previous truthful mechanisms for fairness were studied for much more restricted classes of
valuation functions. Second, to the best of our knowledge, this is first work that defines
and gives guarantees for a strong notion of approximation for fairness, where one desires to
approximate the valuation of every bidder. Finally, our Partial Allocation mechanism can be
seen as a framework for designing truthful mechanisms without money. This mechanism can
be generalized further by restricting the range of the outcomes (similar to maximal-in-range
mechanisms when one can use money). Specifically, the set of feasible outcomes F can be
restricted to any downward closed subset of outcomes; that is, as long as (x

1
, x

2
, ..., xn) ∈ F

implies (f
1
· x

1
, f

2
· x

2
, ..., fn · xn) ∈ F for every set of scalars fi ∈ [0, 1], then the mechanism

remains well defined. We believe that this generalization is a powerful one, and might allow
for new solutions to other mechanism design problems without money.

In terms of open problems, the obvious one is to close the gap between the approximation
guarantee of Theorem 3.4 and the inapproximability result of Theorem 3.6. According to
these bounds, when all the bidders have equal bi values, the best possible approximation
guarantee lies somewhere between 0.5 and 0.75 for two-bidder instances and between 0.368
and 0.5 as the number of bidders goes to infinity.

Possibly the most interesting open problem though is the study of the following natural
objective: instead of aiming to maximize the minimum vi(x)/vi(x

∗) ratio across every bidder
i, one may instead wish to maximize the product of all these ratios. Note that maximizing
this objective is equivalent to maximizing the PF objective

∏
i vi(x). The Partial Allocation

mechanism guarantees a 1/e approximation of the form

(
∏

i

vi(x)

)1/n

≥
1

e

(
∏

i

vi(x
∗)

)1/n

. (9)

On the other hand, the inapproximability result of Theorem 3.6 does not apply to this objec-
tive and hence one might hope to significantly improve the guarantee of Inequality (9). The
way to do this would be to possibly sacrifice the value of some bidders, something that the
objective studied in this paper would not allow, in favor of this aggregate measure. Alter-
natively, one could prove stronger inapproximability results showing that no such truthful
mechanism exists.

Finally, a broader question that arises from this work has to do with the power of “money
burning”. Specifically, one can verify that, in dealing with scale-free objectives such as the
one studied in this work and the one proposed above, discarding fractions of the bidders’
resources allows the mechanism designer to not worry about the actual scale of each bidder’s
valuations: the assumption of homogeneity is sufficient for designing truthful mechanisms
with non-trivial approximation guarantees. If, on the other hand, discarding resources were
disallowed and the mechanism designer were restricted to using only monetary payments,
then homogeneity would not be sufficient and the scale of each bidder’s valuations would need
to be elicited somehow before the appropriate payments could be chosen; this significantly
complicates the work of the mechanism designer. It would therefore be very interesting to
better understand the settings for which “money burning” may lead to improved results
despite the inefficiencies that it introduces.

Acknowledgments. The second author would like to thank Vasilis Syrgkanis for his help
in clarifying the connection between the Partial Allocation mechanism and VCG payments.
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APPENDIX

A Omitted Proofs

This section of the Appendix includes the proofs that are missing from the main section.

A.1 Proofs for the PA Mechanism

Proof of Lemma 3.1. Since the PF allocation x∗ is feasible, to verify that the allocation
produced by the PA mechanism is also feasible, it suffices to show that fi ∈ [0, 1] for every
bidder i. The fact that fi ≥ 0 is clear since both the numerator and the denominator are
non-negative. To show that fi ≤ 1, note that

x∗−i = arg max
x′∈F




∏

i′ 6=i

vi′(x
′)



 .

Since x∗ remains a feasible allocation (x∗ ∈ F) after removing bidder i (we can just discard
bidder i’s share), this implies

∏

i′ 6=i

vi′(x
∗) ≤

∏

i′ 6=i

vi′(x
∗
−i).

Proof of Lemma 3.3. We first prove that this lemma is true for any number k of pairs when
βi = 1 for every pair. For this special case we need to show that, if

∑k
i=1

δi ≤ b, then

k∏

i=1

(1 + δi) ≤

(
1 +

b

k

)k
.
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Let δ̄i denote the values that actually maximize the left hand side of this inequality and

∆k′ =
∑k′

i=1
δ̄i denote the sum of these values up to δ̄k′ . Note that it suffices to show that

δ̄i = b/k for all i since we have

k∏

i=1

(1 + δi) ≤

k∏

i=1

(1 + δ̄i),

and replacing δ̄i with b/k yields the inequality that we want to prove.
To prove that δ̄i = b/k we first prove that for any k′ ≤ k and any i ≤ k′ we get

δ̄i = ∆k′/k
′; we prove this fact by induction on k′: For the basis step (k′ = 2) we show that

δ̄1 = ∆2/2. For any given value of ∆2 we know that any choice of δ1 will yield

2∏

i=1

(1 + δi) = (1 + δ1)(1 + ∆2 − δ1).

Taking the partial derivative with respect to δ1 readily shows that this is maximized when
δ1 = ∆2/2, thus δ̄1 = ∆2/2. For the inductive step we assume that δ̄i = ∆k′−1/(k

′ − 1)
for all i ≤ k′ − 1. This implies that for any given value of ∆k′ , given a choice of δk′ the
remaining product is maximized if the following holds

k′∏

i=1

(1 + δi) =

(
1 +

∆k′ − δk′

k′ − 1

)k′−1

(1 + δk′).

Once again, taking the partial derivative of this last formula with respect to δk′ for any
given ∆k′ shows that this is maximized when δk′ = ∆k′/k

′. This of course implies that

∆k′−1 = k′−1

k′ ∆k′ so δ̄i = ∆k′/k
′ for all i ≤ k′.

This property of the δ̄i that we just proved, along with the fact that ∆k ≤ b implies

k∏

i=1

(1 + δi) ≤

(
1 +

∆k

k

)k
≤

(
1 +

b

k

)k
.

We now use what we proved above in order to prove the lemma for any rational δi using
a proof by contradiction. Assume that there exists a multiset A of pairs (δi, βi) with βi ≥ 1
and

∑
i βi · δi ≤ b such that

∏

i

(1 + δi)
βi >

(
1 +

b

B

)B
, (10)

where B =
∑
i βi. Let M be an arbitrarily large value such that β′

i = Mβi is a natural
number for all i. Also, let b′ =Mb. Then

∑
i β

′
i · δi ≤ b′, and B′ =M ·B =

∑
i β

′
i. Raising

both sides of Inequality 10 to the power of M yields

∏

i

(1 + δi)
β′

i >

(
1 +

b′

B′

)B′

.

To verify that this is a contradiction, we create a multiset to which, for any pair (δi, βi) of
multiset A, we add β′

i pairs (δi, 1). This multiset contradicts what we showed above for the
special case of pairs with βi = 1.
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Extending the result to real valued δi just requires approximating the δi closely enough
with rational valued terms. Specifically, let δi = δ′i + ǫi, where ǫi ≥ 0 and δ′i is rational.
Then

∑
i δ

′
iβi ≤ b, and by the result for rational δ,

∏

i

(1 + δ′i)
βi ≤

(
1 +

b

B

)B
.

But then
∏

i

(1 + δi)
βi ≤

∏

i

(1 + δ′i + ǫi)
βi

≤
∏

i

[
(1 + δ′i)

(
1 +

ǫi
1 + δ′i

)]βi

≤

(
1 +

b

B

)B∏

i

(
1 +

ǫi
1 + δ′i

)βi

.

Since ǫi can be arbitrarily small, it follows that even for real valued δi

∏

i

(1 + δi)
βi ≤

(
1 +

b

B

)B
.

Proof of Theorem 3.6. For an arbitrary real value of n > 1, let ρ = n+1

2n , and assume that
Q is a truthful resource allocation mechanism that guarantees a (ρ + ǫ) approximation for
all n-player problem instances, where ǫ is a positive constant. This mechanism receives as
input the bidders’ valuations and it returns a valid (fractional) allocation of the items. We
will define n+1 different input instances for this mechanism, each of which will consist of n
bidders and m = (k + 1)n items, where k > 2

ǫ will take very large values. In order to prove
the theorem, we will then show that Q cannot simultaneously achieve this approximation
guarantee for all these instances, leading to a contradiction. For simplicity we will refer to
each bidder with a number from 1 to n, to each item with a number from 1 to (k+1)n, and
to each problem instance with a number from 1 to n+ 1.

We start by defining the first n problem instances. For i ≤ n, let problem instance i be
as follows: Every bidder i′ 6= i has a valuation of kn + 1 for item i′ and a valuation of 1
for every other item; bidder i has a valuation of 1 for all items. In other words, all bidders
except bidder i have a strong preference for just one item, which is different for each one
of them. The PF allocation for such additive linear valuations dictates that every bidder
i′ 6= i is allocated only item i′, while bidder i is allocated all the remaining kn + 1 items.
Since Q achieves a ρ+ ǫ approximation for this instance, it needs to provide bidder i with
an allocation which the bidder values at least at (ρ+ ǫ) (kn + 1). In order to achieve this,
mechanism Q can assign to this bidder fractions of the set M−i of the n− 1 items that the
PF solution allocates to the other bidders as well as fractions of the set Mi of the kn + 1
items that the PF allocation allocates to bidder i. Even if all of the n − 1 items of M−i

were fully allocated to bidder i, the mechanism would still need to assign to this bidder an
allocation of value at least (ρ+ ǫ) (kn + 1) − (n − 1) using items from Mi. Since k > 2

ǫ ,
n− 1 < ǫ

2
(kn+1), and therefore mechanism Q will need to allocate to bidder i a fractional

assignment of items in Mi that the bidder values at least at
(
ρ+ ǫ

2

)
(kn+ 1). This implies

that there must exist at least one item in Mi of which bidder i is allocated a fraction of
size at least

(
ρ+ ǫ

2

)
. Since all the items in Mi are identical and the numbering of the items

is arbitrary, we can, without loss of generality, assume that this item is item i. We have
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therefore shown that, for every instance i ≤ n mechanism Q will have to assign to bidder i
at least

(
ρ+ ǫ

2

)
of item i, and an allocation of items in Mi that guarantees her a valuation

of at least
(
ρ+ ǫ

2

)
(kn+ 1).

We now define problem instance n+1, in which every bidder i has a valuation of kn+1
for item i and a valuation of 1 for all other items. The PF solution for this instance would
allocate to each bidder i all of item i, as well as k items from the set {n+ 1, ..., (k + 1)n}
(or more generally, fractions of these items that add up to k). Clearly, every bidder i can
unilaterally misreport her valuation leading to problem instance i instead of this instance;
so, in order to maintain truthfulness, mechanism Q will have to provide every bidder i of
problem instance n + 1 with at least the value that such a deviation would provide her
with. One can quickly verify that, even if mechanism Q when faced with problem instance
i provided bidder i with no more than a

(
ρ+ ǫ

2

)
fraction of item i, still such a deviation

would provide bidder i with a valuation of at least
(
ρ+

ǫ

2

)
(kn+ 1) +

(
ρ+

ǫ

2

)
kn ≥

(
ρ+

ǫ

2

)
2kn.

The first term of the left hand side comes from the fraction of item i that the bidder receives
and the second term comes from the average fraction of the remaining items. If we substitute
ρ = n+1

2n , we get that the truthfulness of Q implies that every bidder i of problem instance
n+ 1 will have to receive an allocation of value at least

(
n+ 1

2n
+
ǫ

2

)
2kn = kn+ k + ǫkn.

For any given constant value of ǫ though, since k > 2

ǫ and n > 1, every bidder will need to
be assigned an allocation that she values at more than kn + k + 2, which is greater than
the valuation of kn + k + 1 that the player receives in the PF solution. This is obviously
a contradiction since the PF solution is Pareto efficient and there cannot exist any other
allocation for which all bidders receive a strictly greater valuation.

Proof of Theorem 3.8. Let x∗ denote the PF allocation including all the bidders, with each
bidder’s valuations scaled so that vi(x

∗) = 1. Let vi(x
∗
j ) denote the value of bidder i for

x∗j , the PF share of bidder j in x∗, and let x∗−i denote the PF allocation that arises after
removing some bidder i. The PA mechanism allocates each (unweighted) bidder i a fraction
fi of her PF share, where

fi =

∏
k 6=i [vk(x

∗)]
∏
k 6=i [vk(x

∗
−i)]

=
1∏

k 6=i [vk(x
∗
−i)]

.

In order to prove that the PA mechanism is envy-free, we need to show that for every
bidder i, and for all j 6= i, fivi(x

∗) ≥ fjvi(x
∗
j ), or equivalently

1∏
k 6=i [vk(x

∗
−i)]

≥
vi(x

∗
j )∏

k 6=j [vk(x
∗
−j)]

⇔
∏

k 6=j

[vk(x
∗
−j)] ≥ vi(x

∗
j )
∏

k 6=i

[vk(x
∗
−i)]. (11)

To prove the above inequality, we will modify allocation x∗−i so as to create an allocation
x−j such that ∏

k 6=j

[vk(x−j)] ≥ vi(x
∗
j )
∏

k 6=i

[vk(x
∗
−i)]. (12)

Clearly, for any feasible allocation x−j it must be the case that

∏

k 6=j

[vk(x
∗
−j)] ≥

∏

k 6=j

[vk(x−j)], (13)
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since x∗−j is, by definition, the feasible allocation that maximizes this product. Therefore,
combining Inequalities (12) and (13) implies Inequality (11). It remains to construct an
allocation x−j satisfying Inequality (12).

To construct allocation x−j , we use allocation x∗−i and we define the following weighted
directed graph G based on x∗−i: the set of vertices corresponds to the set of bidders, and a
directed edge from the vertex for bidder j to the vertex for bidder k exists if and only if x∗−i
allocates to bidder j portions of items that were instead allocated to bidder k in x∗. The
weight of such an edge is equal to the total value that bidder j sees in all these portions.
Since the valuations of all bidders are scaled so that vj(x

∗) = 1 for all j, this implies that,
if the weight of some edge (j, k) is v (w.r.t. these scaled valuations), then the total value of
bidder k for those same portions that bidder j values at v, is at least v. If that were not the
case, then x∗ would not have allocated those portions to bidder k; allocating them to bidder
j instead would lead to a positive aggregate proportional change to the valuations. This
means that we can assume, without loss of generality, that the graph is a directed acyclic
one; if not, we can rearrange the allocation so as to remove any directed cycles from this
graph without decreasing any bidder’s valuation.

Also note that for every bidder k 6= i it must be the case that vk(x
∗
−i) ≥ vk(x

∗). To
verify this fact, assume that it is not true, and let k be the bidder with the minimum value
vk(x

∗
−i). Since vk(x

∗
−i) < vk(x

∗) = 1, it must be the case that x∗−i does not allocate to
bidder k all of her PF share according to x∗, thus the vertex for bidder k has incoming
edges of positive weight in the directed acyclic graph G, and it therefore belongs to some
directed path. The very first vertex of this path is a source of G that corresponds to some
bidder s; the fact that this vertex has no incoming edges implies that vs(x

∗
−i) ≥ vs(x

∗) = 1.
Since vk(x

∗
−i) < 1 we can deduce that there exists some directed edge (α, β) along the path

from s to k such that vα(x
∗
−i) > vβ(x

∗
−i). Returning some of the portions contributing to

this edge from bidder α to bidder β will lead to a positive aggregate proportional change
to the valuations, contradicting that x∗−i is the PF allocation excluding bidder i. Having
shown that vk(x

∗
−i) ≥ vk(x

∗) for every bidder k other than i, we can now deduce that the
total weight of incoming edges for the vertex in G corresponding to any bidder k 6= i is no
more than the total weight of the outgoing edges. Finally, this also implies that the only
sink of G will have to be the vertex for bidder i.

The first step of our construction starts from allocation x∗−i and it reallocates some of
the x∗−i allocation, leading to a new allocation x̄. Using the directed subtree of G rooted at
the vertex of bidder j, we reduce to zero the weights of the edges leaving j by reducing the
allocation at j, increasing the allocation at i, and suitably changing the allocation of other
bidders. More specifically, we start by returning all the portions that bidder j was allocated
in x∗−i but not in x∗, back to the bidders who were allocated these portions in x∗. These
bidders to whom some portions were returned then return portions of equal value that they
too were allocated in x∗−i but not in x∗; this is possible since, for each such bidder, the
total incoming edge weight of its vertex is no more than the total outgoing edge weight. We
repeat this process until the sink, the vertex for bidder i, is reached. One can quickly verify
that

vi(x̄) ≥ vj(x
∗
−i)− vj(x̄); (14)

in words, the value that bidder i gained in this transition from x∗−i to x̄ is at least as large
as the value that bidder j lost in that same transition. Finally, in allocation x̄, whatever
value vj(x̄) bidder j is left with comes only from portions that were part of her PF share in
x∗.

Bidder j’s total valuation for any portions of her PF share in x∗ that are allocated to
other bidders in x∗−i is equal to 1−vj(x̄). Thus, bidder i’s valuation for those same portions
will be at most 1 − vj(x̄); otherwise modifying x∗ by allocating these portions to i would
lead to a positive aggregate change to the valuations. This means that for bidder i the
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portions remaining with bidder j in allocation x̄ have value at least vi(x
∗
j ) − (1 − vj(x̄)).

We conclude the construction of allocation x−j by allocating all the remaining portions
allocated to bidder j in x̄ to bidder i, leading to

vi(x−j) ≥ vi(x̄) + vi(x
∗
j )− (1− vj(x̄))

≥ vj(x
∗
−i)− vj(x̄) + vi(x

∗
j )− (1− vj(x̄))

≥ vj(x
∗
−i)− 1 + vi(x

∗
j )

≥ [vj(x
∗
−i)− 1]vi(x

∗
j ) + vi(x

∗
j )

= vj(x
∗
−i)vi(x

∗
j ).

The second inequality is deduced by substituting from Inequality (14); the last inequality
can be verified by using the fact that vi(x

∗
j ) ≤ 1, and multiplying both sides of this inequality

with the non-negative value vj(x
∗
−i)− 1, leading to [vj(x

∗
−i)− 1]vi(x

∗
j ) ≤ vj(x

∗
−i)− 1. Also

note that for all k /∈ {i, j}, vk(x−j) = vk(x
∗
−i). We therefore conclude that Inequality (12)

is true.

Proof of Theorem 3.9. Just as in the proof of Theorem 3.8, let x∗ denote the PF allocation
including all the bidders, with each bidder’s valuations scaled so that vi(x

∗) = 1. Also, let
vi(x

∗
j ) denote the value of bidder i for x

∗
j , the PF share of bidder j in x∗, and let x∗−i denote

the PF allocation that arises after removing some bidder i.
Following the steps of the proof of Theorem 3.8 we can reduce the problem of show-

ing that the PA mechanism is envy-free to constructing an allocation x−j that satisfies
Inequality (12), i.e. such that

∏

k 6=j

[vk(x
∗
−j)] ≥

∏

k 6=j

[vk(x−j)] ≥ vi(x
∗
j )
∏

k 6=i

[vk(x
∗
−i)].

To construct allocation x−j , we start from allocation x∗−i and we reallocate the bundle of
item fractions allocated to bidder j in x∗−i to bidder i instead, while maintaining the same
allocations for all other bidders. Therefore, after simplifying the latter inequality using the
fact that vk(x−j) = vk(x

∗
−i) for all k 6= i, j, what we need to show is that

vi(x−j) ≥ vi(x
∗
j )vj(x

∗
−i). (15)

Note that, given the structure of Leontief valuations, every bidder is interested in bundles of
item fractions that satisfy specific proportions. We can, without loss of generality, assume
that the PF allocation allocates a fraction of some resource to a bidder only when this
fraction leads to an increase of the bidder’s valuation. This means that the bundle of item
fractions allocated to bidder j in x∗ and the one allocated to her in x∗−i both satisfy the
same proportions; that is, there exists some constant c such that, for each one of the items,
bidder j receives in x∗−i exactly c times the amount of that item that she receives in x∗. As
a result, given the fact that Leontief valuations are homogeneous of degree one, vj(x

∗
−i) =

c · vj(x
∗) = c (using the fact that vj(x

∗) = 1). Similarly, since x−j allocates to bidder i the
bundle of bidder j in x∗−i, and using the homogeneous structure of Leontief valuations, this
implies that vi(x−j) = c · vi(x

∗
j ). Substituting these two equalities in Inequality (15) verifies

that the inequality is true, thus concluding the proof.

A.2 Proofs for the SDM Mechanism

Proof of Lemma 4.2. We first explain how to carry out Steps 6-14. Set R can be computed
using a breadth-first-search like algorithm. To determine when the event of Step 8 takes
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place, we just need to know the smallest ⌈pj⌉/pj ratio over all items whose price is being
increased. For the event of Step 10, we need to calculate, for each bidder in d(R), the ratio
of the bang per buck for her MBB items and for the items outside the set R.

In terms of running time, if c(R) =
∑
j∈R cj denotes the total capacity in R, it is not

difficult to see that if U is non-empty, |d(R)| > c(R). Note that each time either the event
of Step 8 or the event of Step 13 occurs, c(R) increases by at least 1, and thus, using the
alternating path from a bidder in the set U to the corresponding item, we can increase the
number of matched bidders by at least 1; this means that this can occur at most n times.
The only other events are the unions (of connected components in graph D(p)) resulting
from the event of Step 11. Between successive iterations of either Step 8 or 13, there can be
at most min(n,m) iterations of Step 11. Thus there are O(n ·min(n,m)) iterations of Step
11 overall and O(n) iterations of Steps 8 and 13.

Proof of Lemma 4.3. Aiming for a contradiction, assume that qj > pj for some item j, and
let q̃ be the maximal price vector that the SDM mechanism reaches before increasing the
price of some item j′ beyond pj′ for the first time. In other words, q̃ ≤ p and q̃j′ = pj′ . Also,
let S = {j ∈ M | q̃j = pj}, which implies that q̃j < pj for all j /∈ S. Clearly, any bidder
i who has MBB items in S at prices q̃ will not be interested in any other item at prices p.
This implies that the valid assignment that exists for prices p assigns every such bidder to
one of her MBB items j ∈ S. Therefore, the total capacity of items in S at prices q̃ is large
enough to support all these bidders and hence no item in S will be over-demanded at prices
q̃. As a result, the SDM mechanism will not increase the price of any item in S, which leads
us to a contradiction.

Proof of Lemma 4.4. Given a problem instance, fix some bidder i and let x′ and q′ denote
the assignment and the prices that the SDM mechanism outputs instead of x and q when
this bidder reports a valuation vector v′i instead of her true valuation vector vi.

If the item j to which bidder i is assigned in x′ is one of her MBB items w.r.t. her true
valuations vi and prices q′, then x′ would be a valid assignment for prices q′ even if the
bidder had not lied. Lemma 4.3 therefore implies that q ≤ q′. Since the item to which
bidder i is assigned by x is an MBB item and q ≤ q′, we can conclude that vi(x) ≥ vi(x

′).
If on the other hand item j is not an MBB item w.r.t. the true valuations of bidder i and

prices q′, we consider an alternative valid assignment and prices. Starting from prices q′, we
run the steps of the SDM mechanism assuming bidder i has reported her true valuations vi,
and we consider the assignment x̄ and the prices q̄ that the mechanism would yield upon
termination. Assignment x̄ would clearly be valid for prices q̄ if bidder i had reported the
truth; therefore Lemma 4.3 implies q ≤ q̄ and thus vi(x) ≥ vi(x̄). As a result, to conclude
the proof it suffices to show that vi(x̄) ≥ vi(x

′). To verify this fact, we show that q′j = q̄j ,
implying that x̄ allocates to i (a fraction of) some item which she values at least as much
as a 1/q′j fraction of item j.

Consider the assignment x′−i that matches all bidders i′ 6= i according to x′ and leaves
bidder i unmatched. In the graph D(q′), if item j is reachable from bidder i given the valid
assignment x′−i, then all bidders would be matched by the very first execution of Step 1 of the
mechanism. This is true because the capacity of item j according to prices q′ is greater than
the number of bidders matched to it in x′−i. The alternating path (i, j1, i1, j2, i2, · · · , jk, ik, j)
implied by the reachability can therefore be used to ensure that bidder i is matched to an
MBB item as well; this is achieved by matching i to j1, i1 to j2 and so on. Otherwise, if not
all bidders can be matched in that very first step of the SDM mechanism, the mechanism
can instead match the bidders according to x′−i and set U = {i}.8 Before the price of

8Note that this may not be the only way in which the SDM mechanism can proceed but, since the bidders’
valuations for the final outcome are unique, this is without loss of generality.
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item j can be increased, Step 10 must add this item to the set R. If this happens though,
item j becomes reachable from bidder i thus causing an alternating path to form, and
the next execution of Step 1 of the mechanism yields a valid assignment before q′j is ever
increased.

Proof of Lemma 4.5. We start by showing that there must exist a valid assignment at prices
fp∗, where p∗ corresponds to the PF prices and f = maxj⌈p

∗
j⌉/p

∗
j . Given any PF allocation

x∗, we consider the bipartite graph on items and bidders that has an edge between a bidder
and an item if and only if x∗ assigns a portion of the item to that bidder. If there exists
a cycle in this graph, one can remove an edge in this cycle by reallocating along the cycle
while maintaining the valuation of every bidder. To verify that this is possible, note that
all the items that a bidder is connected to by an edge are MBB items for this bidder, and
therefore the bidder is indifferent regarding how her spending is distributed among them.
Hence w.l.o.g. we can assume that the graph of x∗ is a forest.

For a given tree in this forest, root it at an arbitrary bidder. For each bidder in this tree,
assign her to one of her child items, if any, and otherwise to her parent item. Note that the
MBB items for each bidder at prices fp∗ are the same as at prices p∗, so every bidder is
assigned to one of her MBB items. Therefore, in order to conclude that this assignment is
valid at prices fp∗ it is sufficient to show that the capacity constraints are satisfied. The
fact that fp∗j ≥ ⌈p∗j⌉ implies that

⌊
fp∗j
⌋
≥ ⌈p∗j⌉, so we just need to show that, for each item

j, at most ⌈p∗j⌉ bidders are assigned to it. To verify this fact, note that any bidder who is
assigned to her parent item does not have child items so, in x∗, she is spending all of her
unit of scrip money on that parent item. In other words, for any item j, the only bidder
that may be assigned to it without having contributed to an increase of j’s PF price by 1 is
the parent bidder of j in the tree; thus, the total number of bidders is at most ⌈p∗j⌉.

Now, let q and x denote the prices and the assignment computed by the SDMmechanism;
by Lemma 4.3, since there exists a valid assignment at prices fp∗, this implies that q ≤ fp∗.
The fact that the SDM mechanism assigns each bidder to one of her MBB items at prices
q implies that vi(x) = maxj{vij/qj}. On the other hand, let r be an MBB item of bidder i
at the PF prices p∗. If bidder i had bi units of scrip money to spend on such MBB items,
this would mean that vi(x

∗) = bi(vir/p
∗
r) so, since bi = 1, this implies that vi(x

∗) = vir/p
∗
r .

Using this inequality along with the fact that qj ≤ fp∗j for all items j, we can show that

vi(x) = max
j

{
vij
qj

}
≥

vir
qr

≥
vir
fp∗r

=
1

f
· vi(x

∗),

which implies that vi(x) ≥ minj{p
∗
j/⌈p

∗
j⌉} · vi(x

∗) for any bidder i.

B Extension of PA to General Homogeneous Valuations

We can actually extend most of the results that we have shown for homogeneous valuation
functions of degree one to any valuation function that can be expressed as vi(f · x) =
gi(f) · vi(x), where gi(·) is some increasing invertible function; for homogeneous valuation
functions of degree d, this function is gi(f) = fd. If this function is known for each bidder,
we can then adapt the PA mechanism as follows: instead of allocating to bidder i a fraction
fi of her allocation according to x∗ as defined in Equation (2), we instead allocate to this
bidder a fraction g−1

i (fi), where g
−1

i (·) is the inverse function of gi(·). If, for example, some

bidder has a homogeneous valuation function of degree d, then allocating her a fraction f
1/d
i

of her PF allocation has the desired effect and both truthfulness and the same approximation
factor guarantees still hold. The idea behind this transformation is that all that we need
in order to achieve truthfulness and the approximation factor is to be able to discard some
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fraction of a bidder’s allocation knowing exactly what fraction of her valuation this will
correspond to.

C Running Time and Robustness

The PA mechanism has reduced the problem of truthfully implementing a constant factor
approximation of the PF allocation to computing exact PF allocations for several different
problem instances, as this is the only subroutine that the mechanism calls. If the valuation
functions of the players are affine, then there is a polynomial time algorithm to compute
the exact PF allocation [34, 39].

We now show that, even if the PF solution can be only approximately computed in
polynomial time, our truthfulness and approximation related statements are robust with
respect to such approximations (all the proofs of this section are deferred to the Appendix).
More specifically, we assume that the PA mechanism uses a polynomial time algorithm that
computes a feasible allocation x̃ instead of x∗ such that

[
∏

i

[vi(x̃)]
bi

]1/B
≥

[
(1− ǫ)

∏

i

[vi(x
∗)]bi

]1/B
, where B =

n∑

i=1

bi.

Using this algorithm, the PA mechanism can be adapted as follows:

ALGORITHM 3: The Approximate Partial Allocation mechanism.

1 Compute the approximate PF allocation x̃ based on the reported bids.
2 For each player i, compute the approximate PF allocation x̃−i that would arise in her absence.

3 Allocate to each player i a fraction f̃i of everything that she receives according to x̃, where

f̃i = min



1 ,

( ∏
i′ 6=i [vi′(x̃)]

b
i′

∏
i′ 6=i [vi′(x̃−i)]bi′

)
1/bi


 . (16)

For this adapted version of the PA mechanism to remain feasible, we need to make sure
that f̃i remains less than or equal to 1. Even if, for some reason, the allocation x̃−i computed
by the approximation algorithm does not satisfy this property, the adapted mechanism will
then choose f̃i = 1 instead.

We start by showing two lemmas verifying that this adapted version of the PA mechanism
is robust both with respect to the approximation factor it guarantees and with respect to
the truthfulness guarantee.

Lemma C.1. The approximation factor of the adapted PA mechanism for the class of
problem instances of some given ψ value is at least

(1− ǫ)

(
1 +

1

ψ

)−ψ

.

Proof. For any given approximate PF allocation x̃, one can quickly verify that the valuation
of bidder i for her final allocation only decreases as the value of

∏
i′ 6=i [vi′(x̃−i)]

b
i′ increases.

We can therefore assume that the approximation factor is minimized when the denominator
of Equation (16) takes on its maximum value, i.e. x̃−i = x∗−i. This implies that the fraction
in this equation will always be less than or equal to 1, and the valuation of bidder i will
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therefore equal

f̃i · vi(x̃) ≥

( ∏
i′ [vi′(x̃)]

b
i′

∏
i′ 6=i [vi′(x

∗
−i)]

b
i′

)1/bi

≥ (1− ǫ)

( ∏
i′ [vi′(x

∗)]bi′∏
i′ 6=i [vi′(x

∗
−i)]

b
i′

)1/bi

= (1− ǫ)fi · vi(x
∗).

The first inequality holds because the right hand side is minimized when x̃−i = x∗−i, and
the second inequality holds because x̃ is defined to be an allocation that approximates x∗.
The result follows on using Theorem 3.4 to lower bound fi.

Lemma C.2. If a player misreports her preferences to the adapted PA mechanism, she may
increase her valuation by at most a factor (1− ǫ)−2.

Proof. In the proof of the previous lemma we showed that, if bidder i is truthful, then her
valuation in the final allocation produced by the adapted PA mechanism will always be at
least (1 − ǫ) times the valuation fi · vi(x

∗) that she would receive if all the PF allocations
could be computed optimally rather than approximately. We now show that her valuation
cannot be more than (1 − ǫ)−1 times greater than fi · vi(x

∗), even if she misreports her
preferences. Upon proving this statement, the theorem follows from the fact that, even if
bidder i being truthful results in the worst possible approximation for this bidder, still any
lie can increase her valuation by a factor of at most (1− ǫ)−2.

For any allocation x̃ we know that
∏
i′ [vi′(x̃)]

b
i′ ≤

∏
i′ [vi′(x

∗)]bi′ , by definition of PF.
Also, any allocation x̃−i that the approximation algorithm may compute instead of x∗−i will
satisfy

∏
i′ 6=i [vi′(x̃)]

b
i′ ≥ (1 − ǫ)

∏
i′ 6=i [vi′(x

∗)]bi′ . Using Equation (16) we can thus infer
that no matter what the computed allocations x̃ and x̃−i are, bidder i will experience a
valuation of at most

( ∏
i′ [vi′(x̃)]

b
i′

∏
i′ 6=i [vi′(x̃−i)]

b
i′

)1/bi

≤

( ∏
i′ [vi′(x

∗)]bi′∏
i′ 6=i [vi′(x̃−i)]

b
i′

)1/bi

≤ (1− ǫ)

( ∏
i′ [vi′(x

∗)]bi′∏
i′ 6=i [vi′(x

∗
−i)]

b
i′

)1/bi

≤ (1− ǫ) fi · vi(x
∗).

Finally, we show that if the valuation functions are, for example, concave and homoge-
neous of degree one, then a feasible approximate PF allocation can indeed be computed in
polynomial time.

Lemma C.3. For concave homogeneous valuation functions of degree one, there exists an
algorithm that computes a feasible allocation x̃ in time polynomial in log 1/ǫ and the problem
size, such that ∏

i

[vi(x̃)]
bi ≥ (1− ǫ)

∏

i

[vi(x
∗)]bi .

Proof. As the valuation functions are all concave and homogeneous of degree one, so is the
following product, (

∏

i

[vi(x)]
bi

)1/B

.
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Also, note that this product has the same optima as the PF objective. Consequently the
above optimization is an instance of convex programming with linear constraints, which
can be solved approximately in polynomial time. More precisely, an approximation with an
additive error of ǫ to the optimal product of the valuations can be found in time polynomial
in the problem instance size and log(1/ǫ) [40]. In addition, the approximation is a feasible
allocation.

We normalize the individual valuations to have a value 1 for an allocation of everything.
If B =

∑
i bi is the sum of the bidders’ weights then, at the optimum, bidder i has valuation

at least bi/B. To verify that this is true, just note that the sum of the prices of all goods
in the competitive equilibrium will be B and bidder i will have a budget of bi. Since
each bidder will spend all her budget on the items she values the most for the prices at
hand, her valuation for her bundle will have to be at least bi/B. This implies that the
optimum product valuation is at least

∏
i(bi/B)bi/B ≥ mini bi/B; this can be approximated

to within an additive factor ǫ ·mini bi/B in time polynomial in log 1/ǫ + logB, and this is
an approximation to within a multiplicative factor of 1− ǫ.
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