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Abstract

Computing the winners of an election is an important subtask in voting and preference
aggregation. The declarative nature of answer-set programming (ASP) and the
performance of state-of-the-art solvers render ASP very well-suited to tackle this
problem. In this work we present a novel, reduction-based approach for a variety of
voting rules, ranging from tractable cases to problems harder than NP. In addition, we
discuss how encodings of voting rules can be optimized and combined in our approach.
The encoded voting rules are put together in the extensible tool DEMOCRATIX,
which handles the computation of the winners and is also available as a web application.
To learn more about the capabilities and limits of the approach, the encodings are
evaluated thoroughly on real-world data as well as on random instances.

1 Introduction

Voting and preference aggregation are central topics in the field of computational social choice.
Here one is interested in how opinions (or preferences) can be aggregated in order to obtain a
collective decision. Application areas range from (political) elections to multi-agent systems,
where agents have to make a joint decision over a set of alternatives. Further applications are
network design and ranking algorithms for search engines (see, e.g., [11, 18]). Although voting
and preference aggregation are vivid and growing research areas the number of available
implementations and tools is still rather limited. In particular, there is no dedicated, freely
available system that encourages experimental research in this interdisciplinary area.

In this paper we present a novel reduction-based approach for winner determination:
Hereby, we express voting rules in the formalism of answer-set programming (ASP) (see, e.g.,
[17, 25]). ASP allows one to model problems declaratively, which not only leads to readable
and maintainable code but also results in succinct encodings (compared to imperative
languages). These encodings oftentimes closely resemble the mathematical definitions of
the respective voting rules, thereby yielding an “executable specification”. Furthermore,
due to the developments of the last years, sophisticated solvers have become available for
ASP ([15, 22]). All encoded voting rules are readily available in our tool DEMOCRATIX
that allows the user to automatically obtain the winners of elections and also to specify
further voting rules. This makes the tool especially well-suited for experimenting with new
voting rules, and allows one to model new rules “hands-on” together with experts from other
fields (similar to [27]). To enable a broader range of users to work with DEMOCRATIX, the
tool is additionally made available as a tutorial-like web application.

So far, preference aggregation in combination with ASP has hardly ever been explored.
One exception is the work of Konczak in 2006 [21], where the possible/necessary winner
problem in the setting of incomplete preferences is solved for several cases which are
polynomially decidable. In contrast, here we consider eleven different voting rules over fully
specified preferences. For three of these rules it is harder than NP to decide whether a given
candidate is among the winners. Furthermore, some work exists on implementations for
specific voting rules, including Kemeny winner determination (cf. [5, 9, 10]) and approximation
of Dodgson and Young elections [8]. Additionally, some commercial tools (e.g., OpenSTV [26])
are available as well as software that supports some polynomial voting rules (e.g., http:



//vote.sourceforge.net/). Another branch of research in the context of social choice,
where reduction-based approaches have been successfully employed, is automated theorem
proofing. One example is the application of the satisfiability problem (SAT) for finding
strategyproof social choice functions [4] and in the area of “ranking sets of objects” [16].
Furthermore, reductions to SAT and constraint satisfaction problems (CSP) have been
applied for proving, e.g., Arrow’s theorem [29].

To the best of our knowledge there does not exist a uniform system that permits the
declarative specification of voting rules that are harder than NP to decide. Our main
contributions are the following;:

e We present novel ASP encodings for a variety of voting rules, ranging from tractable
(Plurality, Borda and other scoring rules, Mazimin, Copeland®, and Black) to intractable
(Kemeny, Dodgson, and Young) rules. In addition, we discuss the handling of rules with
parameters, and show how encodings can be combined and optimized.

e DEMOCRATIX provides a uniform interface for all voting rules and hence can easily be
extended. This makes the tool especially suitable for experimenting with further voting
rules (and combinations thereof) in a declarative way. Moreover, our approach can be
integrated into other software where collective decision making is required.

e The tool is made available as a web application that allows to evaluate the provided voting
rules on any election with complete strict-orders given in the PrefLib format [23]. Several
interactive examples help to make the tool also accessible to non-experts. Furthermore,
we think the web application is useful for demonstrations and teaching, as examples and
exercises can be executed and modified directly in the browser.

o We evaluate our approach using all 227 complete strict-order benchmark instances from
PrefLib (see http://www.preflib.org/ and [23]) and a collection of randomly generated
elections. The benchmark results show the capabilities and limits of our approach as
well as how an increase in the number of voters/candidates influences the runtime. To
demonstrate how the runtime is influenced by different representations of a voting rule,
we provide two alternative encodings of Kemeny’s rule and compare their performance
thoroughly. Results indicate that our approach works well for all tractable rules and
even Kemeny’s rule. For Dodgson’s and Young’s rule our first benchmarks give a mixed
picture that depends on the structure of the instance.

The web application, the DEMOCRATIX source-code, and the encodings of the voting rules
are available at:
http://democratix.dbai.tuwien.ac.at/

This work is structured as follows: In Section 2 we recall the required basics of voting
theory and ASP; followed by Section 3, where we present our encodings. An overview of
the DEMOCRATIX system and the web application is given in Section 4. After that, in
Section 5, we provide an experimental evaluation of the tool. Finally, we conclude in Section 6
and provide an outlook on further developments.

2 Preliminaries

2.1 Voting Theory

Let C be a finite set of candidates with |C] = m and V = {1,2,...,n} a finite set of
voters. Furthermore, let = be a preference relation, i.e., a strict total order over C'. The
top-ranked candidate of > is at position 1, the successor at position 2, ..., and the last-ranked



candidate is at position m. The vote of voter i € V' is the preference relation ;. A collection
of preference relations P = (>1,...,>,) is called a preference profile. A voter i prefers
candidate ¢ over candidate ¢’ if ¢ >=; ¢/. We denote by prf(c,c’) the number of voters that
prefer c over .

An election is given by E = (C,V,P). A voting rule F is a mapping from an election
E to a non-empty subset of the candidates W C C, i.e., the winners of the election. (We
remark that, strictly speaking, “voting correspondence” would be more appropriate here.
However, for sake of simplicity, we use the term “voting rule” throughout this work.) In the
following we briefly recall the voting rules discussed in this paper.
Scoring rules. The class of (positional) scoring rules can be expressed by scoring vectors
a=(a1,...,am), where a; € Nfor 1 <i<m with a1 > as > -+ > ay, and ag > ayy,. To
evaluate an election according to a scoring rule, the candidate ranked at position ¢ gains «;
points. The winners of the election are the candidates having maximum score.

The well-known plurality rule can easily be expressed via the vector o = (1,0,0,...,0).
A similar rule, the veto rule, can be expressed by a = (1,1,...,1,0). In another rule,
k-approval, the candidates at position 1 to k gain one point each. Finally, Borda’s rule uses
the scoring vector « = (m —1,m —2,...,0).

Maximin. Another well-known rule is the Maximin rule (Simpson’s rule). Here the Simpson
score, given by simpson(c) = min.x.cc prf(c, ¢’), has to be computed for each candidate.
The winners are now exactly those candidates who have a maximum Simpson score.
Copeland. In Copeland’s rule candidates are compared pairwise. In case one candidate is
preferred by more voters he receives one point, the other candidate receives zero points. In
case of a tie, both receive 0.5 points. The sum over the points is called the Copeland score.
Winners are the candidates with maximum Copeland score. Faliszewski et al. [13] propose
an extension of this rule, called Copeland®. Here, « is a rational number in [0, 1]. As above,
if a candidate is preferred over another one in pairwise comparison he receives one point. In
case of a tie, both receive a points.

Condorcet. The Condorcet winner is a candidate ¢ € C such that for all ¢ € C'\ {¢} the
condition prf(c,c’) > % holds. Notice that there are elections without Condorcet winner.
Dodgson and Young. Since a Condorcet winner is a very favorable property there are
several voting rules that try to modify an election as little as possible to obtain a Condorcet
winner. There are various notions characterizing this minimality of change. One such rule
is the voting rule attributed to Dodgson. For this rule, the Dodgson score is defined as
the number of swaps of adjacent candidates in the votes such that there is a Condorcet
winner. The winners are the Condorcet winners in elections with minimum Dodgson score.
In contrast to swapping candidates, in the related Young rule votes are removed until a
Condorcet winner exists.

Kemeny. Kemeny’s rule is based on the distance between votes. For two votes v1, v
and two candidates ¢1, co we define disagree(vy, va,c1,c2) to be 0 if v; and vy rank the
candidates c¢; and ¢ in the same way, and to be 1 otherwise. The distance between two
votes v; and vy is defined as dist(vy,v2) = Z{cl,cz}gc disagree(vy, va, ¢1, ¢2). The distance
between a preference relation > and an election E = (C,V,P = (>1,...,>,)) is given by the
Kemeny score kemeny(>-, E) = >, ., dist(>~, ;). A preference relation > with minimum
kemeny (-, E) is called a Kemeny consensus with respect to E. The winners according to
Kemeny’s rule are the top-ranked candidates in any Kemeny consensus.

Notice that determining the winner according to a scoring rule, Maximin, Copeland, as
well as finding the Condorcet winner can be done in polynomial time. For the remaining rules
the computational complexity is much higher: Deciding whether a candidate is a winner was
shown to be ©F-complete for Dodgson [19], Young [28] as well as Kemeny [20]. Recall that
the class ©F contains all problems that can be decided in polynomial time by a deterministic
Turing machine using O(logn) calls to an NP-oracle, where n is the input size.



2.2 Answer-Set Programming

In this section we give a brief introduction to normal logic programs under the answer-
set semantics [6, 17, 25]. Answer-set programming (ASP) allows one to specify problems
declaratively. Furthermore, powerful ASP solvers (e.g., [15, 22]) are publicly available and
the ASP community is constantly working on improving the performance (witnessed, for
example, by the biennial ASP competition [1]). In the following we introduce ASP, thereby
restricting ourselves to the syntax and semantics relevant in this work. For a more detailed
introduction see, e.g., [12, 14].

Normal programs and integrity constraints. We fix a countable set U of domain
elements, also called constants. An atom is an expression p(ty,...,t,), where p is a predicate
of arity a > 0 and each t; is either a variable or an element from Y. An atom is ground if it
is free of variables. By, denotes the set of all ground atoms over U.

A normal rule » with 0 < k < n is of the form

h < bi,...,bk, notbgy1,..., notby,.

The head of a rule r is a set H(r) = {h}, containing exactly one element. The body of
ris B(r) = BT (r) U B~ (r) with B¥(r) = {by1,...,bx} and B~ (r) = {bgt1,...,b,}. Here,

h,bi,...,b, are atoms, and “not” stands for default negation. An atom z is a positive literal,
while not x is a default negated literal. In the body of a rule we denote by b(t1;...;t;) the
sequence of unary atoms b(ty),...,b(¢;). Extending normal rules we have integrity contraints

where H(r) =0 and B(r) # 0.

A rule r is safe if each variable in r occurs in BT (r). A rule r is ground if no variable
occurs in 7. A fact is a ground rule with an empty body. A program is a finite set of safe
rules. If each rule in a program is normal (resp. ground), we call the program normal (resp.
ground).

Answer sets. For any program m, let U, be the set of all constants appearing in 7. Gr(r)
is the set of rules r, obtained by applying, to each rule r € 7, all possible substitutions
7 from the variables in r to elements of U,. An interpretation I C By satisfies a ground
rule r iff H(r) NI # 0 whenever BT(r) C I and B~ (r) NI = (. I satisfies a ground
program m, if each r € w is satisfied by I. A non-ground rule r (resp., a program ) is
satisfied by an interpretation I iff I satisfies all groundings of r (resp., Gr(w)). I C By
is an answer set of 7 iff it is a subset-minimal set satisfying the Gelfond-Lifschitz reduct
al ={H(r) < BT (r) | INB~(r) = 0,r € Gr(n)}.

Optimization programs. Besides normal programs, we consider the class of optimization
programs, i.e., normal programs which additionally contain weak constraints

by, .. b, notbgyr,..., notb,. [w]

where all b; are as in rules and the weight w is a positive integer variable occurring in
bi,...,b; or a constant. Answer sets are minimized w.r.t. the costs, i.e., the sum of weights.
Aggregates and arithmetic expressions. In addition to atoms, the body of a rule
can contain aggregates of the form x := aggr,{p(t1,...,t,) : p1 : ... : pi} where aggr €
{sum, min, max}, p(t1,...,t,) is an atom, py, ..., p; are conditional atoms and ¢ is an integer
variable occurring in t4,...,t,. Variable z gets assigned an integer that corresponds to the
value of aggr evaluated on the values of ¢ in all grounded instantiations of p in interpretation
I, such that py,...,p; are in I. Furthermore, x := count{p(t1,...,t,)} counts the number
of grounded occurrences of p(ty,...,t,) in I. In addition, we allow standard relations and
arithmetic expressions. All these extensions are readily supported by modern ASP solvers.



3 Winner Determination with ASP

In this section we present our approach for encoding voting rules in ASP. In particular, we
focus on the following four aspects: (1) We present our novel encodings for both polynomially
solvable voting rules and rules which are harder than NP. (2) We provide an alternative
encoding for Kemeny’s rule to demonstrate how encodings of computationally hard voting
rules can be optimized. (3) We explain how voting rules with parameters (such as Copeland®
and k-approval) can be modeled in ASP. (4) We close this section by explaining how voting
rules can be combined.

Encoding Elections. For the encodings to follow we assume the election to be given as a
set of ASP facts. Let E = (C,V,P) be an election with C = {c1,...,cpnfand V ={1,...,n}.
Furthermore, let prefs(P) = {>1,...,>}, | < n, denote the set of distinct preferences
relations occurring in the profile P, and ve(P, ) denote the number of times preference
relation > occurs in P. For 1 < ¢ <[, let the preference relation »; € prefs(P) be of the
form ¢;, >; ¢iy >4 -+ >i ¢;,,. The input of the ASP encoding is now given as follows: Each
preference relation »-; is represented by m facts p(i, j, ¢;;), where 1 < j <'m, and a single
fact votecount(i, ve(P, =;)). Additionally, three unary facts voternum(n), candnum(m), and
prefnum(l) are added to the input. Note that it is easy to adapt this representation to handle
also partial orders as well as non-anonymous voting rules.

The output of the ASP solver applied to the encoding of a voting rule together with the
encoding of the election is either one or several answer sets containing winner predicates, or
UNSATISFIABLE (in case no winner exists). For problems which are ©5-complete only the
answer sets having minimum cost are to be considered.

3.1 ASP Encodings for Voting Rules

Scoring rules. The family of scoring rules can be expressed very naturally in ASP. Here,
we start with an ASP program for Borda’s rule, depicted in Encoding 1. The first rule is
used to obtain the candidate relation, which contains all elements of {1,...,m}. Then, we
need to determine for each candidate in every preference relation the score according to his
position (rule 2). Observe that this score is multiplied by VC, i.e., the number of occurrences
of the preference relation in P. Next, we sum the scores of a candidate over all votes (rule 3).
Finally, in rules (4) and (5) the winner(s) are determined. Notice that in ASP “_” denotes
an anonymous variable.

Encoding 1: Borda

candidate(]) + candnum(M),1 <1 < M. (1)
posScore(P, C, S - VC) < p(P, Pos, C),candnum(M), S := M — Pos, votecount(P, VC). (2)
score(C, N) < candidate(C), N = s%m{posScore(,, C,9)}. 3)
maxScore(M) «+ M = mgx{score(, ,9)}. (4)
winner(C') < candidate(C'), score(C, M), maxScore(M). (5)

It is very simple to modify Encoding 1 to specify other scoring rules, such as plurality,
k-approval, and veto. Since k-approval is a voting rule with a parameter, we defer the
discussion to Section 3.3. The plurality rule can be obtained by replacing rule (2) of
Encoding 1 with posScore(P, C, VC) «+ p(P, 1, C), votecount(P, V(). Similarly, for Veto
we need to replace rule (2) with posScore(P, C, VC) < p(P, Pos, C),candnum(M ), Pos #
M, votecount(P, VC).

Maximin (Simpson’s rule). This rule can nicely be expressed with help of aggregates.
In Encoding 2, rules (2) and (3) are used to compute the value of function prf(c;, ¢;) for any



pair of distinct candidates in C, (¢;, ¢;). To this end, in rule (2), we derive prefer(P, Cy, Cs),
whenever Cy > C5 holds in the preference relation corresponding to the variable P. The
value of function prf(cy, ¢a) is computed in rule (3). The Simpson score, given by the function
simpson(c) = minexeec pr(c, ¢’), is computed in rule (4) for each candidate. In rule (5)
the maximum of simpson(-) is computed over all candidates, and the candidates having
maximum Simpson score are selected in rule (6).

Encoding 2: Maximin (Simpson’s rule)

candidate(I) < candnum(M),1 <1 < M. (1)

prefer(P, C1, C2) < p(P, Pos1, C1),p(P, Posz, C2), Pos1 < Poss. (2)

preferCount(C4, Ca, N) < candidate(C1; C2), C1 # Ca, 3)
N = Sgéﬂ{VOtGCOUﬂt(P, VC) : prefer(P, C1, C2)}.

simpson(C, S) < S = m]\i{n{preferCount(C, —,N)}, candidate(C). (4)

maxSimpson(M) < M = msax{simpson(,, S)}. (5)

winner(C') <+ candidate(C'), simpson(C, M), maxSimpson(M). (6)

Condorcet. Determining whether a given election has a Condorcet winner (and determining
this winner) is a central subtask in several voting rules. The first three rules of Encoding 3
are as in the previous encoding. A candidate ¢ cannot be a Condorcet winner if there is
some other candidate ¢’ such that prf(c,c’) < 5. This search is encoded in rule (4) where
noWinner(C') is derived if such a counterexample can be found for candidate C. In case no
counterexample exists, we have indeed found the Condorcet winner (rule 5). The last two
rules (rule 6 and 7) ensure that no answer set is returned if no Condorcet winner exists.

Encoding 3: Condorcet

candidate(I) < candnum(M),1 <1 < M. (1)

prefer(P, C1, C2) < p(P, Pos1, C1),p(P, Posa, C2), Pos1 < Posa. (2)

preferCount(C1, Ca, N) < candidate(C1; C2), C1 # Ca, (3)
N = sg(n?q{votecount(P7 VC) : prefer(P, C1, C2)}.

noWinner(C) < preferCount(C, —, N),voternum(V), N -2 < V. (4)

winner(C) < candidate(C), not noWinner(C). (5)

anyWinner < winner(_). (6)

<+ not anyWinner. (7)

Notice that only stratified default negation and no weak constraints are used in the
previous encodings. Hence the encodings lie in the P fragment of ASP (data-complexity).
We remark that for such programs an ASP solver can compute the unique answer set (if
it exists) without backtracking. We now turn to harder voting rules, i.e., voting rules for
which the problem of winner determination is ©F-complete. To capture these problems, the
remaining encodings in this subsection make use of non-stratified default negation and weak
constraints.

Kemeny. Kemeny’s rule is particularly well-suited for illustrating the guess, check €
optimize approach of ASP. Roughly speaking, we guess a preference relation and compute
the Kemeny score. The Kemeny consensus is then obtained by minimizing over all guessed
preference relations. The winner is the top-ranked candidate in the Kemeny consensus.
In rule (1) of Encoding 4 the unary relation domain is obtained, which is used to identify
candidates and positions in preferences. We then determine for each preference relation
the candidates Cy that are worse-ranked than Cj (rule 2) and sum up the overall number
of voters that do not prefer Cy over C; (rule 3). Note that rules (1-3) can be computed



independently of the guess during grounding. In rules (4-9) the preference relation is guessed
by assigning to each candidate exactly one position.! We obtain the relation rank whenever
C} is better-ranked than Cj in our guessed preference relation (rule 10). What remains is
to compute the number of votes that disagree on C) being better-ranked than Cy (rule 11).
In rule (12), the sum over all N in gwrankC is computed (Kemeny score) and minimized
(Kemeny consensus). A candidate ranked first in a Kemeny consensus is a winner (rule 13).

Encoding 4: Kemeny

domain(I) < candnum(M),1 <1 < M. (1)
wrank(P, Ca, C1) < p(P, Pos1, C1),p(P, Posa, C2), Pos1 < Posa. (2)
wrankC(Ca, C1, N) < domain(Ch; C2), N = sggl{votecount(P, VC) : wrank(P, Ca, C1)}. 3)
gpref(Pos, C') < domain(Pos; C'), not npref(Pos, C). (4)
npref(Pos, C') « domain(Pos; C), not gpref(Pos, C). (5)

< gpref(Pos, C1), gpref(Pos, Ca), C1 # Cs. (6)

< gpref(Pos1, C), gpref(Posa, C), Pos1 # Posa. (7)

occupied(Pos) < gpref(Pos, _). (8)

+ domain(Pos), not occupied(Pos). 9)

rank(C1, C2) < gpref(Pos1, C1), gpref(Posa, C2), Pos1 < Posa. (10)
gwrankC(C1, C, N) < rank(C1, C2),wrankC(Cy, C2, N). (11)
«~ gwrankC(—,_,N). [N] (12)

winner(C) « gpref(1, C). (13)

Dodgson. For Dodgson’s rule, one could guess all (m!)™ possible preference profiles, check
whether there exists a Condorcet winner and minimize over the number of swaps. In order
to avoid unnecessary guesses we impose the following constraints (see [3, Observation 1]).
It is sufficient to allow at most one candidate shift per vote, i.e., one candidate is swapped
successively i positions towards the top in the preference relation.

To allow for a simpler presentation of this encoding, we assume that the input is given in
extensive form. In extensive form we do not make use of the votecount predicate to represent
preferences occurring multiple times in profile P. Instead, for a preference relation >; of
the form ¢;; = ¢;, =i --- =i ¢;,, we introduce vc(P, =;) many facts v(f(i, ), j,c;;) where
1<j<m,1<x<ve(P,>;),and f is a bijection that assigns to each pair (i, z) a distinct
voter in V. Notice that this conversion to extensive form can be easily realized during the
preparation of the input or directly in the ASP encoding.

In Encoding 5 we first obtain the voters and the domain (positions and candidates) as
in the previous encodings (rules 1-2). In rules (3-4) we guess the shifts in the votes. For a
voter V the candidate at position Pos; will be shifted to Poss. At most one shift per voter
(rules 5-6) to a better position (rule 7) is allowed. The preference profile is now recomputed:
The candidate C; is moved from Pos; to Posg (rule 8) and each candidate originally at
Pos with Posy < Pos < Pos; is shifted by one position downwards (rule 9). In the newly
computed votes nv, the shifted candidates are assigned to their new positions (rule 10)
and the remaining positions are filled with the respective candidates of the original vote
(rules 11-12). Rules (13-18) encode the computation of the Condorcet winner, similar to
Encoding 3. Finally, rule (19) minimizes over the number of swaps. Note that one shift
consists of Pos; — Poss elementary exchanges, i.e., swaps, of adjacent candidates.

Young’s rule can be encoded quite similarly to Dodgson’s rule. The basic idea is to
replace rules (3-12) by a set of rules that guess the votes to be deleted. Now, in rules (13-19)
we check whether this gives a Condorcet winner and minimize over the number of votes

1We remark that these rules can be simplified by using an additional construct, the so-called choice rule
(see, e.g., [7]). Currently, this construct is, however, not supported by all ASP solvers.



to be deleted. In case the input is expressed in a compact way (i.e., using votecount), the
encoding gets more complex. This is because we have to update votecount accordingly if a
vote is removed. We have to omit a more detailed discussion due to space limitations.

Encoding 5: Dodgson

voter([) + voternum(N),1 < T < N. (1)

domain(I) < candnum(M),1 <1 < M. (2)

shift(V, Posy, Posa) < voter( V), domain(Pos1; Poss), not noshift(V, Posi, Posz). (3)
noshift(V, Pos1, Posa) < voter( V'), domain(Pos1; Pos2), not shift(V, Pos1, Posa). (4)
+ shift(V, Pos1, _ ), shift(V, Pos}, _), Pos1 # Pos}. (5)

+ shift(V, _, Posa), shift(V, _, Posh), Posa # Posh. (6)

< shift(V, Pos1, Pos2), Pos1 < Posa. (7)

sv(V, Posa, C1) < shift(V, Pos1, Pos2),v(V, Pos1, C1). (8)

sv(V, PosShift, C) < shift(V, Pos1, Pos2),v(V, Pos, C), Posa < Pos, (9)

Pos < Pos1, PosShift :== Pos + 1.

nv(V, PosShift, C) < sv(V, PosShift, C). (10)
occupied(V, Pos) < sv(V, Pos, _). (11)
nv(V, Pos, C1) < v(V, Pos, C1), not occupied(V, Pos). (12)
prefer(V, C1, C2) < nv(V, Posi, C1),nv(V, Posa, C2), Pos1 < Posa. (13)
preferCnt(C1, C2, N) < domain(Cy; C2), C1 # C2, N := count{prefer(_, C1, C2)}. (14)
noWinner(C') < preferCnt(C, —, N),voternum(V), N -2 < V. (15)
winner(C') - domain(C), not noWinner(C). (16)
anyWinner < winner(_). (17)

< not anyWinner. (18)

« shift(—, Pos1, Pos2). [Pos1 — Posa] (19)

3.2 Optimizing Voting Rule Encodings

While the runtime performance for the polynomial voting rules is sufficiently good, improving
the performance of the encodings of hard voting rules remains a challenging task (see
Section 5 for details on the performance). In this section we exemplarily describe an
alternative encoding for Kemeny’s rule, which exhibits a notably better runtime behavior
than Encoding 4. In Encoding 6 we apply general ASP techniques that help to reduce the
runtime of the solver as well as ideas that are rather specific to Kemeny’s rule.

In contrast to Encoding 4, where the preference relation is guessed directly (i.e., by setting
each candidate’s position explicitly), in the optimized Encoding this preference relation is
obtained implicitly: The idea is to only guess the relative order for each pair of candidates
within the relation, and then check whether this guess forms a valid preference relation.

In particular, within Encoding 6 we apply the following optimizations: (a) Rule (6.2)
combines rules (4.2-4.3) of Encoding 4. This reduces the size of the grounding, since wrank/3
is not derived explicitly. (b) By the condition C; < Ci in rule (6.2) only half of the
candidates are compared. (c) The guess in rules (6.3-6.4) directly contains the costs (N resp.
U — N) for a candidate C being preferred over a candidate Cs. Since the weak constraint
in rule (6.9) directly minimizes over these costs, the ASP solver is guided towards guessing
first on prefer/3 predicates with low costs. (d) Rules (6.5-6.7) guarantee that the guess forms
a valid preference relation. With xpref/2, the transitive closure over prefer/3 is obtained,
and relations containing a cycle are removed. (e) Rule (6.8) is redundant but increases
performance: Each candidate is either ranked before or after each other candidate.

In general, an increase in performance may be achieved by the following techniques:



(1) Remove guess-independent parts from the guess, and let them being solved by the
grounder (e.g., wrankC/3). (2) It may be possible to reduce the grounding size by additional
conditions (e.g., in rule 6.2). (3) For optimization problems, the solver is more performant
if the costs are stated directly in the guess (e.g., rule 6.3-6.4). (4) Sometimes, redundant
constraints give an increase in performance (e.g., rule 6.8). For more details on advanced
modeling techniques we refer to the literature (see e.g., [14, Chapter 8]).

Encoding 6: Kemeny (Optimized)

candidate(]) +— candnum(M),1 <1 < M. (1)

wrankC(Ca, C1, N) <+ candidate(Cy; C2), C1 < C2, N = sggq{votecount(P7 Ve): (2)
p(P, Pos1, C1) : p(P, Posa, C2) : Pos1 < Posa}.

prefer(Ca, C1, N) « wrankC(C2, C1, N),voternum(U), not prefer(Cy, Co, U — N). 3)

prefer(Cy, Ca, U — N) < wrankC(Cs, C1, N), voternum(U), not prefer(Cz, C1, N). (4)

xpref(Cy, Ca) < prefer(Cq, Co, —). (5)

xpref(C1, C3) < xpref(Cy, Ca),xpref(Ca, Cs3). (6)

« xpref(C, C). (7

«+ candidate(Cy; C2), C1 # C2, not xpref(Ci, Ca2), not xpref (Ca, C1). (8)

« prefer(—, _,N). [N] 9)

someBetter( () < prefer(Cq, Ca, —). (10)

winner(C) <+ candidate(C'), not someBetter( (). (11)

3.3 Voting Rules with Parameters

In some cases it is desirable to pass parameters along with the input instance to the encoding
of the voting rule. These parameters are passed to the encoding in form of ASP facts.

Copeland®. As ASP only supports integer arithmetic, we define for Copeland® two
parameters, a and b. In case a candidate is preferred over another one he receives a points,
in case of a tie he receives b points. The winners are the candidates with the highest sum
over the points. For a = 2 and b = 1 the winners are exactly the Copeland winners.
k-approval. Another rule that is influenced by a parameter is the k-approval rule,
a scoring rule where the top k£ candidates gain one point each. Here the parameter
is given in the fact kApp(K). The k-approval rule can simply be implemented by re-
placing rule (2) in the encoding of Borda’s rule (Encoding 1) by posScore(P, C, V(') «+
p(P, Pos, C),votecount(P, VC), kApp(K), Pos < K.

3.4 Combining Voting Rules

Having a plethora of voting rules at hand it is a natural question to ask how one can combine
existing voting rules. For instance, Black’s rule is a combination of Condorcet and Borda’s
rule. Another example is the recent work of Narodytska et al. [24] where the properties of
combinations of rules are studied.

Our approach of using ASP encodings of voting rules readily supports the combination
of voting rules. Besides using a sequence of ASP solver calls, a much more elegant way is to
specify a monolithic encoding. Here one has to make sure that the predicates occurring in
the heads of the rules originating from different encodings are made disjoint and that the
input relations do not occur in the heads. Notice that the former condition can be ensured
by prefixing while the latter condition should hold in most reasonable encodings anyway.



Black. Black’s rule returns the Condorcet

winner if it exists, and otherwise returns the Encoding 7: Black

Borda winners. In Encoding 7, the winners are winnercond (C) « -+ &
contained in the relations winnercona(C) and condorcet <— winnercond (— ). (2
winnergorda(C), respectively. The effort needed computeBorda < not condorcet. (3)
for “gluing” the encodings together is minimal. winnerporqa(C) < computeBorda, . . . (4)
We add the atom computeBorda to the body of winner(C) + winnercong(C). (5)
each rule that is exclusively used to compute winner(C) < winnergorda(C). (6)

the winners of Borda’s rule. In rules (1-2) it is
checked whether a Condorcet winner exists. If there is no Condorcet winner, rule (3) fires
and enables the computation of the Borda winners (rule 4).

Another case where combining voting rules is applicable, is the following: For voting rules
that measure the distance to elections with a Condorcet winner (e.g., Dodgson, Young), it
might be favorable to first check whether the instance already has a Condorcet winner. Only
in case there is no Condorcet winner the grounding for the guess part has to be computed.
Notice that such an encoding follows the same pattern as used for Black’s rule.

4 The DEMOCRATIX System

All implemented voting rules are put together in the tool DEMOCRATIX. The application
handles parsing of input instances in PrefLib format [23] to ASP facts. Internally, the
ASP solver clingo (version 3.0.5) [15] is called with the input instance and the encoding
of the voting rule as input. The tool is easily extendible, thereby allowing integration of
new (e.g., combined) voting rules and extensions for implementations of, e.g., incomplete
preferences. Furthermore, the tool is readily prepared to be used with other ASP solvers
such as gringo+claspD [15] and DLV [22]. Since DEMOCRATIX is implemented in Python,
it can be run both on Unix-based and Windows systems. It is licensed as open source.

DemocrATIX [TU[ 1 [EECT
Web interface | Examples | Downloads | Contact information
Profile Example instance
3
1.Sinpsons For testing purposes, you can copy/paste the
2.8iq Bang Theory following example profils te the profils input area:
—oA ) |3.1T crow 5
PR |25 1. Sinpsans
7 B o 2.Big Bang Theory
\rf 3.2 3,17 Crowd
5.1,2,3 28.28.5
33,12 11,2,3.1
2,1.3,2 gl
bl 7.3.2,1
5.1.2.3
3.3.1.2
v 2,1.3.2
[ copy to profile ]
Further information abeout the voting rules and
the input format are avaiable here,
®s DEMOCRATIX

Borda v [ Evaluste | Status:Job terminated.

Output

et Evaluating using rule 'borda’

-- STARTING SOLVER (clingo3) --

Answer

B A c score(1,17) score(3,33) score(2,34) maxScore (34) winner(2)
SATISFIABLE

Hodels 1

Tine : 0,000
Prepare  : 0.000
Prepro.  : 0.000
solving @ 0.000

-- SOLVER TERMINATED (exit code 10) --

Azagagand the winner is: 'Big Bang Theory'

Figure 1: Screenshot of the web front-end for DEMOCRATIX.

We also provide easy access to DEMOCRATIX via a web front-end that is available at
http://democratix.dbai.tuwien.ac.at/. A screenshot is depicted in Figure 1. There,
instances from PrefLib can be evaluated directly with respect to the voting rules considered in



this work. It is also possible to submit custom instances for which the winners are computed.
In the example section of the web page, the voting rules are presented and explained in
a tutorial-like style. The front-end features interactive evaluation and modification of the
provided examples. We believe that the web front-end is therefore particularly well-suited to
make voting theory also accessible to non-experts.

Our long-term goal is to constantly extend the DEMOCRATIX system, e.g., by including
further voting rules and providing support for partial-order and incomplete preference profiles.
We think that our declarative ASP-based approach is the right choice to provide concise,
well-readable and maintainable extensions for the system. To this end, we would also like to
invite the community to contribute to the system.

5 Evaluation

Within this work we evaluate our encodings on basis of all 227 complete strict-order instances
from the PrefLib library (as of February 25, 2014, available at http://www.preflib.org/
data/packs/soc.zip) [23, 2, 26]. In particular, the PrefLib library allows us to gain
a detailed insight into the runtime behavior of our tool on various kinds of instances.
Furthermore, we evaluate Kemeny’s rule on randomly generated instances using the impartial
culture model. For generating those instances we used the tool “PrefLibTools-0.1”. Note
that our goal here is to study the capabilities and (current) limits of our general, ASP-based
approach, rather than a comparison to rare rule-specific tailored implementations.

We performed benchmarks on a server with two Intel Xeon E5345 @ 2.33GHz processors
and 48 GB RAM running openSUSE 11.4, kernel 2.6.37.6-24. Each run, using clingo 3.0.5,
was limited to a single core and 16 GB RAM with a time limit of 10 minutes. We also tested
voting rules not presented in detail in Section 3, i.e., Bucklin, Copeland and Young.

5.1 Benchmark Results for the PrefLib Data Set

Table 1 contains the results for all complete, strict-order instances of the PrefLib library.

PrefLib (.soc) 04-163 | 04-182 | 11-002 | 12-001
Name Solved | TO | MO | t(max,s) t(s) t(s) t(s) t(s)
Plurality 227 0 0 0.43 0.05 0.05 0.06 0.05
Bucklin 227 0 0 0.62 0.05 0.05 0.61 0.05
Veto 227 0 0 0.65 0.05 0.05 0.06 0.05
Borda 227 0 0 0.68 0.05 0.05 0.06 0.05
Condorcet 227 0 0 1.50 0.05 0.05 1.28 0.05
Black 227 0 0 1.52 0.05 0.05 1.37 0.06
Maximin 227 0 0 1.50 0.05 0.05 1.38 0.06
Copeland 227 0 0 1.60 0.05 0.05 1.60 0.06
Kemeny 204 22 1 TO 0.05 0.05 TO TO
Kemeny (opt) 218 9 0 TO 0.05 0.05 TO 2.30
Dodgson 225 2 0 TO 265.44 TO TO 67.17
Young 224 2 1 TO TO TO 13.85 1.14

Table 1: Results for the 227 .soc (strict-order, complete) instances, with the total number of
solved instances, timeouts (TO) and memouts (MO). “t(max,s)” denotes the maximal (over all
instances) time needed, in seconds. Detailed runtimes for instances 04-163 (m=4,n=532), 04-183
(m=4,n=578), 11-002 (m=242,n=>5) and 12-001 (m=11,n=30) are given.

The results show that for all voting rules, where the problem of winner determination
is in P, our ASP-based implementation is very fast. However, for problems above NP, we
obtain a mixed picture: Although the problem of winner determination is ©5-complete
for Kemeny’s, Dodgson’s and Young’s rule, we observed different runtime behavior for our



implementations. In particular, it became evident that the optimized Kemeny encoding
with 9 timeout instances is much more performant than the non-optimized encoding, where
we observed 22 timeouts and 1 memout. This increase in performance is studied in detail
in Section 5.2. Regarding Dodgson’s and Young’s rule, our encodings appear to be rather
efficient on almost all PrefLib instances (with an average runtime of 1.54s (Dodgson) and 0.13s
(Young) over all finished runs). However, one has to note that only 4 out of the 227 instances
have no Condorcet winner. Since both encodings are designed as combined voting rules,
where we first check whether there exists a Condorcet winner, for “easy” instances we can
obtain the winners in a very efficient way. For a more detailed study of the runtime behavior
in case there is no Condorcet winner, additional instances are necessary. If no suitable
real-world instances are available, one could generate random instances parameterized by
the “distance to Condorcet”. This more elaborate study is, however, left for future work.

To inspect the performance on the “hard” instances, Table 1 lists the detailed runtimes
for all implemented voting rules on the PrefLib instances without Condorcet winner. For
Kemeny's rule, in general there are m! possible preference relations to be guessed. Dodgson
has (m!)™ possibilities of swapping positions of candidates in the votes. Young’s rule allows
for 2™ combinations of removed votes from the preference profile. This difference in the
number of possible combinations for obtaining the winners is reflected in the observed
runtime: While the Kemeny winner(s) are determined within seconds for the instances
with a low number of candidates, we were unable to solve instance 11-002 with m = 242
candidates. Our implementation for Dodgson’s rule performed well on instance 12-001,
which comprises m = 11 candidates and n = 30 voters. Although instance 04-163 has a
rather high number of votes, we obtained the Dodgson winners within our time and memory
limits. Here, we were unable to determine the Young winners. We assume that this is mainly
due to solver-internal heuristics as well as the fact that the grounding for Young’s rule on
this instance is very large. However, for instances 11-002 (n = 5) and 12-001 (n = 30) the
Young implementation terminated very quickly.

5.2 Benchmark Results for the Kemeny Rule

To evaluate and compare the performance of Kemeny’s rule and its alternative encoding, we
generated instances (under the impartial culture model) with an increasing number of voters
and candidates. Thereby it becomes clear that one can indeed benefit from the optimization
techniques discussed in Section 3.2. The results are depicted in Figure 2.
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Figure 2: Benchmark results for Kemeny and its alternative (opt) variant. Each data point
represents the mean runtime over 10 different randomly generated instances, in seconds, log-scale.



For both, the standard (Encoding 4) and the alternative variant (Encoding 6) it becomes
evident that the runtime is exponential in the number of candidates: While solving instances
with m < 8 and n = 100000 takes less than 12s for the standard encoding, for more candidates
already approx. 60s (m = 9) and approx. 364s (m = 10) are needed. For m = 11, the
standard variant does not terminate within our time limit. The alternative, optimized variant
needs less than 6s for m < 8 and n = 100000, approx. 18s (m = 9), approx. 48s (m = 10)
and approx. 350s (m = 11). Although these results show that the alternative variant is much
more performant, they also indicate that a higher number of candidates drastically increases
the effort for the ASP solver. On the other hand, a higher number of voters only linearly
increases runtime. Overall, it becomes clear that tuning the encodings can yield a notable
improvement in terms of performance.

6 Conclusion

In this work we have introduced a reduction-based approach for computing the winners
of an election. To this end, we have presented ASP-encodings for a variety of well-known
voting rules and explored their runtime behavior. The encodings are integrated in our tool
DEMOCRATIX, that serves as a uniform and extensible system. The tool is also provided
in form of an easy-to-use web application to make it accessible to a broader range of users.

The strengths of our approach clearly lie in the readability of the encodings and the
extensibility of the tool. Regarding performance it turned out that problems solvable in
polynomial time perform very well and even Kemeny’s rule, which is ©5-complete, shows good
runtime behavior on both real-word benchmark instances as well as on random instances. We
have explained how Kemeny’s rule can be optimized and observed a significant improvement
in the runtime behavior. Furthermore, we have shown that even rather complicated rules
like Dodgson can be modeled naturally in ASP. However, for larger instances the distance to
an election having a Condorcet winner is critical for the runtime. Fortunately, any progress
made in the optimization techniques for ASP will directly improve the performance of
DEMOCRATIX. Conversely, our encodings of voting rules in combination with sufficiently
hard preference data could serve as challenging problems for evaluating the performance of
ASP solvers. Taken together, we believe that this work is a starting point for an ASP-based
software tool to support experimental research in the area of voting theory and preference
aggregation.

An important direction for future work is to develop encodings for other types of
preferences such as incomplete preferences. Furthermore, we intend to investigate how the
structure of elections (e.g., “distance to Condorcet”) influences runtime and how our tool
compares to rule-tailored systems. Another interesting step is the study of an ASP-based
approach for problems beyond winner determination (e.g., manipulation, bribery and control)
and to integrate the resulting encodings into DEMOCRATIX.
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