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Abstract

Picking sequences are a natural way of allocating indivisible items to agents in a
decentralized manner: at each stage, a designated agent chooses an item among those
that remain available. We address the computational issues of the manipulation
of picking sequences by an agent or a coalition of agents. We show that a single
agent with additively separable preferences can compute an optimal manipulation
in polynomial time. Then we consider several notions of coalitional manipulation,
depending on whether transfers of items and/or side payments are allowed. We
briefly consider agents with non-additive preferences. We also give a nontrivial upper
bound on the impact of manipulation on the loss of social welfare.

1 Introduction

We study a very simple protocol for allocating indivisible goods to agents. The picking
sequence protocol works as follows: we define a sequence of agents, and each agent is asked
to take in turn one object among those that remain. For example, according to sequence
ABCCBA, agent A will choose first, then agent B will pick one object, then C (two objects),
and so on. This simple protocol is used in a lot of everyday life situations (allocating courses
to students, initial resources in some board games...). Its simplest version, namely, the strict
alternation protocol for two agents (e.g., ABABABAB) has been studied first by Kohler and
Chandrasekaran [9] in a game-theoretic setting, and then further by Brams and Taylor [4],
who also pay attention to balanced alternation (e.g., ABBABAAB) and Brams and King
[3] for characterizing efficient allocations in a centralized setting. Budish and Cantillon
[5] study a variant of the model (course allocation to students with a mechanism which
is a randomized version of a picking sequence) and show that not only it is manipulable
in theory, but that it also is manipulated by students in practice. Picking sequences were
formally studied in a more general and systematic way by by Bouveret and Lang [2], and
further by Kalinowski et al. [8] who give a game-theoretic study of picking sequences, and
Kalinowski et al. [7] who (among other results) prove that for a plausible set of criteria,
strict alternation is the best picking sequence for two agents.

In this paper, we study this protocol from the point of view of single-agent and coalitional
manipulation, and especially of their computational difficulty. The strategical issues of
picking sequences have already been studied by Kohler and Chandraesekaran [9], who prove
that the subgame perfect Nash equilibrium can be computed in by reversing the policy
and preference orderings. Kalinowski et al. [8] extend this result to any two-agent picking
sequence, and investigate the computational complexity of computing a subgame perfect
Nash equilibrium for more than two agents. These papers give a game-theoretic study of
picking sequences: more precisely, they focus on the characterization and the computation
of subgame perfect Nash equilibria. In this paper, we use a different approach. We view
manipulation in picking sequences exactly as manipulation in voting. Voting theory, and
especially computational social choice, has devoted a lot of attention to the manipulation of
voting rules by a single deviating agent, or by a coalition of deviating agents (see [6] for a
recent survey); the assumption on both cases is that the votes of the non-manipulators are
known. This approach to manipulation in picking sequences remains essentially unexplored.

The paper is organized as follows. We introduce some background in Section 2. Then
we study manipulation by a single agent with additively separable preferences (Section 3),
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and by a coalition of agents with additively separable preferences (Section 4). In Section 5
we briefly discuss the extension to manipulators non-additive preferences. In Section 6 we
briefly study the price of manipulation in a two-agent setting, that is, the worst-case loss of
social welfare caused by one agent acting strategically. We conclude in Section 7.

2 Background and notations

N = {A,B, . . . } is a finite set of n agents and O = {1, . . . ,m} a finite set of m objects. Each
agent i is equipped with a (private) preference relation �i, which is a weak order (transitive
and complete relation) on 2O. The restriction of �i to O is denoted by Di. We will write �
(resp. B) to denote the strict part of � (resp. D). �i is (weakly) separable if for all S, S′ ⊆ O
and o, o′ ∈ O \ (S ∪ S′), we have S ∪ {o} �i S ∪ {o′} if and only if S′ ∪ {o} �i S′ ∪ {o′}. �i
is additively separable (for short, additive) if there is a function u : O → R+ such that for
all S, S′ ⊆ O, we have S �i S′ if and only if

∑
o∈S u(o) ≥

∑
o∈S′ u(o).

A policy π is a sequence of m agents. For any agent i, we write ps(π, i)1, . . . , ps(π, i)r(i)
to denote the r(i) successive picking stages of agent i. For all k, we will also denote by
PS(π, i)k the number of picking stages of agent i until stage k. A (deterministic) picking
strategy for agent i is a function σi : 2O → O, specifying which object σi(O) agent i should
take when the set of remaining objects is O (see Section 3 for more discussion about simple
picking strategies).

Given a set of agents C, a joint strategy for C is a function σC mapping each agent i ∈ C
to a given strategy σi. Given a joint strategy σ concerning all the agents, we will denote
by σ−i the joint strategy of all the agents but i, and similarly σ−C the joint strategy of
all the agents but the ones in C. Given two strategies σ and τ concerning different agents,
σ · τ will denote the joint strategy built out from σ and τ . Finally, given a joint strategy
σ concerning all the agents and a policy π, we will denote by Oi(π, σ) the set of objects
obtained by agent i in picking sequence π if every agent j follows strategy σj .

We make use of the following notation for allocations resulting form a picking sequence:
[O1| . . . |On] is the allocation where agent i has set of objects Oi. Moreover, we often omit
curly brackets for sets. For instance, if n = 3 and m = 7, [1 2 3 4 | 5 | 6 7] is the allocation
giving {1, 2, 3, 4} to the first agent, {5} to the second one and {6, 7} to the third one. Finally,
when specifying a linear order B over single items, we will sometimes omit the symbol B,
that is, we write B: 1 2 3 4 to denote 1 B 2 B 3 B 4.

3 Manipulation by a single agent with additive prefer-
ences

In this Section (and in Section 4) we assume that manipulators have additive preferences,
represented by a utility function over single items u : O → R+.

Clearly, the only strategyproof picking sequences are those where each agent acts in
a single “picking row”, without alternation, that is, if the sequence has the form σ =
am1
i1
am2
i2

. . . amk
ik

. where ai1 , . . . , aik are all different agents, and m1 + . . .+mk = m. 1

Bouveret and Lang ([2], Proposition 7) show that finding a manipulation for an n-agent
picking sequence can be polynomially reduced to finding a manipulation for a 2-agent picking
sequence. Therefore, without loss of generality, we consider in this Section that we have
only two agents {A,B}, where A will be the manipulating agent.

1Such non-alternating sequences are in fact a kind of sequential dictatorships. In settings where agents
get only one object, sequential dictatorships are the only strategyproof resource allocation mechanisms
satisfying a set of mild properties [10].
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A standard approach to manipulation in voting is to consider that the manipulating agent
has a complete knowledge about the other agents’ votes. We make a similar assumption here:
A has a complete knowledge of B’s picking strategy. We now a stronger assumption about
B’s strategy: we assume that B picks, at each stage, the best object among the remaining
ones, according to a (real or virtual) linear order B′B, that A knows. Such picking strategies
are said to be deterministic and simple.

Assuming that B’s strategy is deterministic, simple, and known to A, implies a loss of
generality that we discuss now.

First, even ifB is sincere, assuming that he follows a deterministic strategy is not obvious,
and it could make sense to assume he acts according to a mixed strategy: (i) �B can be
non-separable, and (ii) even if it �B is separable, B can be indifferent between two (or more)
given objects, and in this case, it is not clear (even to him) which of the two it will pick
first. (A similar phenomenon occurs in voting: nonmanipulators may be indifferent between
some candidates, yet the manipulator is assumed to know how they will rank them.)

Second, if B has nonseparable preferences, he may pick items in a perfectly rational way
according to a complex choice function not rationalizable by a weak order over objects: for
instance, if B is interested in getting 1 and 2 together, but not interested in getting only one
of them, then he could pick 1 if he has two more picking stages and the remaining objects
are {1, 2, 3, 4} but 3 if the remaining objects are {1, 3, 4}. Thus, in general, a deterministic
picking strategy for B would be an arbitrary function from 2O to O.2

While it would make sense to study manipulation with such mixed and/or complex
strategies of B, we leave them for further research and assume here that

(Hyp) A knows B’s picking strategy σB , and this strategy is a deterministic,
simple picking strategy.

where a deterministic, simple strategy σB is represented by a ranking B′B over O, such
that B always picks the preferred object, with respect to B′B , among those that remain
available. From now on we will simply say “picking strategy” for “deterministic, simple
picking strategy”. It must be noted that σB is not necessarily sincere, and it does not need
to be: B′B can be but is not necessarily related to agent B’s true preference relation �B .
However, to avoid overloading notation, and since we will not deal at all with agent B’s true
preferences, B′B will simply be denoted by BB . In the following, we will denote by σB the
sincere picking strategy defined (unambiguously) from B.

Because A has a complete knowledge of B’s strategy, it is enough for her to choose a
simple deterministic strategy as well, which amounts to choosing among the possible sets of
objects that she can achieve to get.

Now we discuss various assumptions about A’s preferences. In the simplest case, we
assume that A’s preferences are additive with no ties on single objects. This means that A’s
preferences can be represented succinctly by a utility function over single goods uA : G →
R+. However, we shall see in Subsection 3.1 that A’s optimal strategy does not depend
on the values of u but only on the corresponding ranking BA on objects – just as what we
need to know for the sincere strategy. In Subsection 3.2 we assume that A’s preferences are
additive with possible ties on single objects; again, we will show that in this case A’s optimal
strategy depends only on her weak order DA on single objects. The case of manipulators
with possibly non-separable preferences will be relegated to Section 5.

2Even modelling a deterministic strategy for B as a function from 2O to O could be a loss of generality:
in some contexts, B’s strategy could also depend in the order in which A has picked her objects.
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3.1 The manipulator has additive preferences without indifferences
between single objects

Here, a two-agent picking sequence manipulation problem for manipulator A is a quadruple
〈O, uA,BB , π〉 where:

• O is a set of m objects;

• uA : O → R+ is A’s utility function over single objects, verifying u(o) 6= u(o′) if o 6= o′.

• BB is a ranking over O (succinct representation of B’s simple deterministic picking
strategy);

• π ∈ {A,B}m is a picking sequence.

Let BA be the ranking over O induced by uA, that is, o BA o′ if and only if uA(o) >
uA(o′). If BA is induced by uA we also say that uA is compatible with BA.

Let P = 〈BA,BB〉. Without loss of generality we assume that 1 BA 2 BA . . . BA m.
σP will be the joint sincere strategy σBA · σBB and π(σP , π) will denote the allocation
resulting from the sincere picking of agents A and B according to P and π, that is,
〈OA(σP , π),OB(σP , π)〉.

We now formally define manipulation. We say that O ⊆ O is achievable for A if there is
a strategy σ such that O ⊆ OA(σ ·σBB , π). In other words, A can obtain all the objects from
O by playing according to σ, if B plays sincerely. A manipulation strategy σ is successful if
OA(σ · σBB , π) �A OA(σP , π) (in other words, A obtains a better set by playing according
to σ than if it had played sincerely).

We already know from Proposition 7 in [2] that it can be checked in polynomial time
whether a given set O is achievable. An important problem is to determine whether there
is a successful strategy. It turns out that not only can we solve this problem in polynomial
time, but we are also able to find the strategy giving the best achievable subset in polynomial
time as well, using Algorithm 1. Recall that r(A) is the number of picking stages of A, and
that BA is 1 B . . . B m.

Algorithm 1: Best achievable subset.

input : A policy π, a ranking BB .
output: The best achievable subset for agent A.

1 O ← ∅;
2 j ← 1;
3 for k ← 1 to r(A) do
4 find the smallest i ≥ j such that O ∪ {i} is achievable;
5 O := O ∪ {i};
6 j := i;

7 return O;

Because it can be checked in polynomial time whether a given set is achievable, Algo-
rithm 1 works in polynomial time. Before proving that it indeed returns an optimal strategy,
we give some examples.

Example 1 m = 12; π = ABABABABABABAB;

BA: 1 2 3 4 5 6 7 8 9 10 11 12
BB : 3 2 6 5 4 10 8 11 1 9 7 12

The sincere picking strategy for A (and B) leads to A getting 124789. Now, let us apply
Algorithm 1.
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• 1 is achievable; S = 1;

• 1 2 is achievable; S = 1 2;

• 1 2 3 is not achievable; S = 1 2;

• 1 2 4 is achievable; S = 1 2 4;

• 1 2 4 5 is achievable; S = 1 2 4 5;

• 1 2 4 5 6 is not achievable; S = 1 2 4 5;

• 1 2 4 5 6 7 is achievable; S = 1 2 4 5 7;

• 1 2 4 5 6 7 8 is achievable; S = 1 2 4 5 7 8; stop and return S.

We will soon prove that this is indeed the best achievable set of objects for A, irrespective
of the choice of the utility function satisfying the requirement of this Subsection (namely,
that A has an additive utility function with all weights on single objects being different).

For any s, we denote B’s sth preferred object by µ(s): µ is the permutation of {1, . . . ,m}
such that µ(1) BB . . . BB µ(m). Moreover, let B(s) = {µ(1), . . . , µ(s)} be the set of B’s
s most preferred items. Finally, for any X ⊆ O, let Cl(s,X) = B(s) ∩X. We know from
Proposition 8 in [2] that there exists a successful picking strategy σ for X ⊆ O if and only
if for every picking stage s, PS(π,A)s ≥ |Cl(s,X)|. Also, we know (again Proposition 7 in
[2]) that if O is achievable, then the standard picking strategy, in which A picks items in O
according to their increasing ranking in BB , is successful. Such a strategy will be denoted
by σst(O).

Example 2 (Example 1, continued)

• µ(1) = 3;µ(2) = 2; etc.

• B(1) = {3}; B(2) = {3, 2}; etc.

• Let us check that 1245 is achievable:

– Cl(1, 1 2 4 5) = ∅; PS(π,A)1 = 1;

– Cl(2, 1 2 4 5) = {2}; PS(π,A)2 = 1;

– Cl(3, 1 2 4 5) = {2}; PS(π,A)3 = 2;

– Cl(4, 1 2 4 5) = {2, 5}; PS(π,A)4 = 2;

– Cl(5, 1 2 4 5) = {2, 5, 4}; PS(π,A)5 = 3;

– Cl(6, 1 2 4 5) = {2, 5, 4}; PS(π,A)6 = 3;

– Cl(7, 1 2 4 5) = {2, 5, 4}; PS(π,A)7 = 4;

– Cl(8, 1 2 4 5) = {2, 5, 4}; PS(π,A)8 = 4;

– Cl(9, 1 2 4 5) = {1, 2, 5, 4}; PS(π,A)9 = 5; etc.

• Let us check that 123 is not achievable: Cl(2, 1 2 3) = {2, 3}, but PS(π,A)2 = 1.

• The standard picking strategy for 1 2 4 5 is σ(1) = 2;σ(2) = 5;σ(3) = 4;σ(1) = 1,
which we abbreviate in 〈2, 5, 4, 1〉. For 1 2 4 5 7 8 it is 〈2, 5, 4, 8, 1, 7〉.

Lemma 1 Assume that O and O′ 6= O are achievable. Let i = min((O′ \ O) ∪ (O \ O′))
and assume that i ∈ O′. Let j be B’s most preferred item in O \ O′. Then O[i ↔ j] =
(O ∪ {i}) \ {j} is achievable.

Proof: In the following proof, we will refer to Proposition 7 in [2] as (P). We consider
two cases, according to B’s preference between i and j:

Case 1: j BB i. Because j BB i, we have that, for every picking stage s, Cl(s,O[i↔ j]) ⊆
Cl(s,O). Therefore, by (P), O[i↔ j] is achievable.3

3Even if we don’t need it for the proof, the picking strategy obtained from the standard picking strategy
σst(O) by replacing j by i is successful – note that it does not necessarily correspond to the standard picking
strategy for O[i↔ j].
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Case 2: i BB j. Assume O[i↔ j] is not achievable. Then, by (P), there is a picking stage
s such that

PS(π,A)s < |Cl(s,O[i↔ j])|. (1)

Let s∗ be such that µ(s∗) = j. We consider two cases.

Case 2.a: s ≤ s∗. Since j is B’s most preferred item in O \ O′, it holds that every
item l ∈ O such that l BB j also belongs to O′. Obviously, that also holds for
every item l ∈ O[i↔ j] such that l BB j. Hence B(t) ∩O[i↔ j] ⊆ B(t) ∩O′ for
all t < s∗. This equation can also be extended to t = s∗ by using the fact that
µ(s∗) = j and that j neither belongs to O′ nor to O[i↔ j]. This in turn can be
rewritten as Cl(t, O[i ↔ j]) ⊆ Cl(t, O′) for all t ≤ s∗. Using this equation for
t = s together with Equation (1) leads to PS(π,A)s < |Cl(s,O′)|, which proves,
using (P), that O′ is not achievable. Contradiction.

Case 2.b: s > s∗. Since µ(s∗) = j, j belongs to B(s∗) and hence to B(s). Since
i BB j, i also belongs to B(s∗) and hence to B(s). Therefore, B(s)∩O = B(s)∩
O[i ↔ j], which, once again, can be rewritten as Cl(s,O) = Cl(s,O[i ↔ j]).
Hence, by Equation (1), it holds that PS(π,A)s < |Cl(s,O)|, which proves,
using (P), that O is not achievable. Contradiction. �

Example 3 (Example 1, continued) O = 1 2 4 7 8 9; O′ = 1 2 4 5; i = 5; O \ O′ = 7 8 9;
j = 8. O[5↔ 8] = 1 2 4 5 7 9. Lemma 1 says that 1 2 4 5 7 9 is achievable. We are in the case
i BB j.

Proposition 1 Algorithm 1 returns the best achievable subset for A.

Proof: Assume not. Let O′ be an optimal achievable subset, and O the subset returned
by the algorithm. Let i = min((O′ \ O) ∪ (O \ O′)). By construction of O, we must have
i ∈ O. Now, by Lemma 1, there exists j ∈ O′, j > i, such that (O′ ∪{i}) \ {j} is achievable.
Now, i BA j, i.e., uA(i) > uA(j), therefore, uA(O′ ∪{i}) \ {j}) > uA(O′), which contradicts
the optimality of O′. �

Corollary 1 An optimal manipulation for (O, uA,BB , π), where uA verifies uA(o) 6= uA(o′)
if o 6= o′, can be computed in polynomial time.

Another consequence of Proposition 1 is the uniqueness of the best achievable subset for
A. Thus, even if there may be several optimal manipulations, they are equivalent in the
sense that the outcome for A is the same for all.

Importantly, note that the proof of Proposition 1 does not depend on the values of uA
(provided, as assumed at the beginning of the Subsection, that o 6= o′ implies uA(o) 6=
uA(o′)) but only on the order BA. We state this as a formal result:

Proposition 2 The optimal manipulations for A are the same for any utility function uA
compatible with BA.

3.2 The manipulator has additive preferences with possible indif-
ferences between single objects

Now, a two-agent picking sequence manipulation problem for manipulator A is a quadruple
〈O, uA,BB , π〉 where:

• O is a set of m objects;

• uA : O → R+ is A’s utility function over single objects.
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• BB is a ranking over O;

• π ∈ {A,B}m is a picking sequence.

Now, the preference relation over single objects induced from uA is a weak order DA
over O, defined by o DA o′ if and only if uA(o) ≥ uA(o′). Let ∼A (respectively, BA) be the
indifference (resp. strict preference) relation associated with DA, defined by o ∼A o′ if and
only if o DA o′ and o′ DA o (respectively, o DA o′ and not (o′ DA o)).

Now let B′A be the linear order on O refining DA and defined by: o B′A o
′ iff o BA o′ or

(o ∼A o′ and o BB o′) For example, if 1 BA 2 ∼A 3 ∼A 4 BA 5 and 3 BB 4 BB 1 BBBB
5 BB 2, then 1 B′A 3 B′A 4 B′A 2 B′A 5. Let u′A be a utility function on O compatible with
B′A. We claim that an optimal achievable set of objects for A can be computed as follows.

Proposition 3 The (unique) optimal achievable subset for (O, u′A,BB , π) is a (non neces-
sarily unique) optimal achievable subset for (O, uA,BB , π).

Proof: Let Y be the optimal achievable set of objects for the manipulation problem for
(O, u′A,BB , π). Assume that Y is not optimal for (O, uA,BB , π): then there is an achievable
set Z such that uA(Z) > uA(Y ). Let δ be such that 0 < δ ≤ |uA(O)−uA(O′)| for all subsets
O,O′ ⊆ O such that u(O) 6= u(O′), and let ε < δ

m . Now, let u′′A be the following utility
function: ∀i ∈ O, u′′A(i) = uA(i) + εq(i), where q(i) = |{j | i ∼A j and i BB j}|. The
following facts hold: (i) u′′A is compatible with B′A, and (ii) u′′A(Z) > u′′A(Y ). To prove (i),
let i and j be two objects. We consider two cases. (a) i ∼A j: then u′′A(i) > u′′A(j) iff
q(i) > q(j) iff i BB j iff i B′A j. (b) i 6∼A j (assume wlog i BA j): then u′′A(i) − u′′A(j) =
uA(i)−uA(j) + (q(i)− q(j))ε > uA(i)−uA(j)−mε ≥ uA(i)−uA(j)− δ > 0. Now we prove
(ii): u′′A(Z)−u′′A(Y ) ≥ uA(Z)−uA(Y )−mε > uA(Z)−uA(Y )− δ > 0. (i) and (ii) together
prove that Y cannot be the optimal achievable set of objects for (O, u′′A,BB , π), and also
for (O, u′A,BB , π), since u′A and u′′A are both compatible with DA: contradiction. �

From Corollary 1 and Proposition 3 we get:

Corollary 2 An optimal manipulation for (O, uA,BB , π) can be computed in polynomial
time.

Also, We also have a result analogous to Proposition 2: the optimal achievable subset,
and the picking strategy, is optimal irrespective of the choice of the utility function uA
extending DA.

4 Coalitional manipulation with additive preferences

Voting theory not only focuses on single-agent manipulation but also on joint (or coalitional)
manipulation, where a group of voters collude to get a better outcome for themselves. The
assumption is that they can fully communicate and that they have full knowledge of the
others’ votes.

However, there is a significant difference with voting: the outcome of a vote is the same
for all agents, whereas in fair division agents get different shares and are thus allowed to
make trades after the allocation has been made. We thus consider three different notions
of manipulation. The first two do not need any particular assumption about voters’ prefer-
ences. The first one says that a manipulation is a combination of picking strategies whose
outcome Pareto-dominates (for the manipulating coalition) the outcome of the sincere pick-
ing strategy; it does not allow any posterior trading nor compensation. The second one is
also based on Pareto-dominance but allows agents to trade items after the allocation has
been done. The third one assumes that the manipulators’ preferences are represented by
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transferable utilites, and allows both trading and monetary transfers after the allocation
has been done. Before giving the formal definition we give a few examples. In all cases, we
have three agents A,B,C, and the manipulation coalition consists of A and B.

Example 4 π = ABCABC. No post-allocation trade is allowed.

BA: 1 2 5 4 3 6; BB : 1 3 5 2 4 6; BC : 2 3 4 1 5 6

Sincere picking leads to [15|34|26]. A and B manipulating alone cannot do better: their
best responses to the other two players’ sincere strategies is their sincere strategy. However,
if they cooperate, they both can do better: A starts by picking 2, then B picks 3, C picks
4, A picks 1, B picks 5 and finally C picks 6. The final allocation is [1 2 | 3 5 | 4 6], which
(strongly) Pareto-dominates [1 5 | 3 4 | 2 6]. Note that it is crucial that A and B communicate
beforehand and trust each other, for after A has picked 2, B can betray A and pick 1 instead
of 5, resulting in the allocation [2 5 | 1 4 | 3 6]: it may be better for B than the joint strategy
agreed upon if he values {1, 4} more than {3, 5}, but it is worth than the sincere allocation
for A.

Example 5 π = ABCABCABC. Post-allocation exchange of goods is allowed. Monetary
transfers are not allowed.

BA: 1 2 3 4 5 6 7 8 9; BB : 8 9 3 4 5 6 7 1 2; BC : 1 2 3 8 9 7 4 5 6

Sincere picking leads to [1 3 4 | 5 8 9 | 2 6 7]. A and B manipulating alone cannot do better.
They also cannot do better if they are not allowed to exchange goods (we will see later how
to check this). However, if they cooperate and are allowed to exchange goods, then A can
start by picking 1, then B picks 2, C picks 3, A picks 8, B picks 9, C picks 7, A picks 4, B
picks 5 and C picks 6, leading to [1 4 8 | 2 5 9 | 3 6 7|. then A and B exchange 2 and 8, leading
to [1 2 4 | 5 8 9 | 3 6 7|, which Pareto-dominates [1 3 4 | 5 8 9 | 3 6 7| for {A,B}.

Example 6 π = ABCABCABC. Post-allocation exchange of goods is allowed. Monetary
transfers are not allowed.

BA: 1 2 3 4 5 6 7 8 9; BB : 3 4 5 9 1 6 7 8 2; BC : 1 2 3 8 9 7 4 5 9

Assume that B prefers to have 459 than 358 (if preferences are additive, this means that
uB(4) + uB(9) > uB(3) + uB(8)). Sincere picking leads to [1 4 7 | 3 5 8 | 2 6 9]. If A and B
cooperate they can get [1 4 7 | 2 5 9 | 3 6 8], then swap 2 and 4, leading to [1 2 7 | 4 5 9 | 3 6 8]:
both agents are better off. This, of course, depends on some extra information, that is, the
manipulators’ preferences over the full power set.

Example 7 π = ABCABCABC. Post-allocation exchange of goods is allowed. Monetary
transfers are allowed.

BA: 1 2 3 4 5 6 7 8 9; BB : 9 8 7 6 5 4 3 2 1; BC : 1 2 3 8 9 7 4 5 9

Assume that A and B have additive preferences, that correspond to the amount of money
they are willing to pay to get the items, and that

• uA(1) = 14; uA(2) = 13; uA(3) = 12; uA(4) = 11; uA(5) = 10; uA(6), uA(7)... ≤ 5;

• uB(9) = 10; uB(8) = 9; uB(7) = 8; uB(6) = 7; uB(5) = 6; the rest does not matter.

Sincere picking leads to [1 2 5 | 7 8 9 | 3 4 6]. If A and B cooperate they can get
[1 4 7 | 2 5 9 | 3 6 8], then B gives 2 and 5 to A, A gives 7 to B together with some amount of
money. Both are strictly better off. This needs transferable utilities.
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The difficulty with the definition of successful joint manipulation is to define what makes
a coalition better off. It naturally leads to different definitions.

Definition 1 Let N be a set of agents, π be a sequence, and C ⊂ N be a coalition of agents.
Moreover, let σC and σ′C be two joint strategies for C. We will say that :

• σC Pareto-dominates σ′C (written σC > σ′C) if:

– ∀i ∈ C, Oi(π, σC · σ∗−C) �i Oi(π, σ′C · σ∗−C);

– ∃i ∈ C, O(π, σC · σ∗−C)i �i Oi(π, σ′C · σ∗−C).

• σC Pareto-dominates with transfers σ′C (written σC >T σ′C) if there is a function
F :

⋃
i∈C Oi(π, σC · σ∗−C)→ C such that:

– ∀i ∈ C, {k ∈ O | F (k) = i} �i Oi(π, σ′C · σ∗−C);

– ∃i ∈ C, {k ∈ O | F (k) = i} �i Oi(π, σ′C · σ∗−C).

Finally, if we assume that each agent i (at least those from C) is equipped with a valuation
function vi : 2O → R, compatible with Bi, we will say that:

• σC Pareto-dominates with transfers and side-payments σ′C (written σC >TP σ′C) if
there is a function F :

⋃
i∈C Oi(π, σC · σ∗−C)→ C, and a function p : C → R s.t.:

–
∑
i∈C pi = 0;

– ∀i ∈ C, vi({k ∈ O | F (k) = i}) + p(i) ≥ vi(Oi(π, σ′C · σ∗−C));

– ∃i ∈ C, vi({k ∈ O | F (k) = i}) + p(i) > vi(Oi(π, σ′C · σ∗−C)).

These definitions lead to the definition of three kinds of successful strategies, namely:
(i) σC is a successful strategy if σC > σ∗C ; (ii) σC is a successful strategy with transfers if
σC >T σ

∗
C ; (iii) σC is a successful strategy with transfers and side-payments if σC >TP σ

∗
C .

In the following, we will focus on the following problem:

CM-Simple

Given: A set of agents N , a sequence π, a coalition C ⊂ N with their preference
relations �i and a joint strategy σC

Question: Is there a strategy σ′
C such that σ′

C > σC?

We will also investigate the variant with transfers (σ′C >T σC) and transfer with side-
payments (σ′C >TP σC – in this case, we need to add the coalition members’ valuation
functions vi to the problem input), which we will respectively call CM-Transfers and
CM-TransfersWithPayments.

Note that if we want to know whether a successful strategy exists for a given setting, we
just need to solve the latter problem with σC being the sincere strategy σ∗C .

In this Section we continue assuming that the manipulators have additive preferences,
represented bu utility functions over single objects.

Proposition 4 An optimal manipulation for a coalition of agents with additive preferences,
with side payments and exchange of objects, can be found in polynomial time.

Proof: The possibility of side payments and exchanges imply that (a) in the optimal
final allocation (after the exchanges), each object will be assigned to the agent who gives
it the highest utility (or one of the agents who gives it the highest utility, in case there are
several), and (b) the optimal joint picking strategy is the one that maximizes the utilitarian
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social welfare of the group of manipulators
∑
i∈M ui(Si). (a) and (b) together imply that

the optimal set S of objects for the group maximizes
∑
o∈S maxi∈M ui(o). This is equivalent

to solving a manipulation problem for a single manipulator with a weak order over objects
o D o′ iff maxi∈M ui(o) ≥ maxi∈M ui(o

′). Proposition 3 then guarantees that such an
optimal manipulation can be found in polynomial time. �

We now consider coalitional manipulation without object trading nor monetary transfers.
Interestingly, finding a successful manipulation is NP-hard, but this hardness has in fact little
do with picking sequences: it comes from the fact that finding a Pareto-improving exchange
of items between two agents with additive preferences is already hard4.

Proposition 5 Deciding if there exists a successful manipulation without object trading nor
monetary transfer is NP-complete, even for two manipulators with additive preferences and
no non-manipulator.

Proof sketch: We will only sketch the proof by giving the reduction used. Let us
consider the following instance of the partition problem: S = {s1, . . . , sp} with

∑
i si =

2K, and w.l.o.g. s1 ≥ . . . ≥ sp. With this instance we associate the following instance of
manipulation without object trading and without monetary transfer:
• 2p+ 1 objects {g+, g1, . . . , gp, g−1 , . . . , g−p }.
• A’s utility function: uA(g+) = K − ε; uA(gi) = si for all i; uA(g−i ) = 0 for all i.
• B’s utility function: uA(g+) = K + ε; uA(gi) = si for all i; uA(g−i ) = 0 for all i.
• π = ABpAp. �

Finally, coalitional manipulation with object trading and without monetary transfers.

Proposition 6 Deciding if there exists a successful manipulation with object trading and
without monetary transfer is NP-complete, even for two manipulators with additive prefer-
ences.

Proof sketch: Once again, we only give the reduction used to prove NP-hardness.
Let us consider the following instance of the partition problem: S = {s1, . . . , sp} with∑
i si = 2K, and wlog s1 ≥ . . . ≥ sp. We also assume that for each si ∈ S we have

s1 ≤ K − 1; partition obviously remains NP-hard under this restriction (if s1 = K then it
is a trivially positive instance, and if s1 > K then it is a trivially negative instance). With
this instance we associate the following instance of manipulation with object trading and
without monetary transfer:
• p+ 2 objects {x, y, g1, . . . , gp}.
• A’s utility function: uA(x) = K − ε; uA(gi) = si for all i; uA(y) = 0.
• B’s utility function: uA(y) = K + ε; uA(gi) = si for all i; uA(x) = 0.
• C’s preferences: y � x � s1 � . . . � sp.
• π = ACBp.

�

5 Manipulators with non-additive preferences

Now we (more briefly) consider manipulators who have possibly non-separable preferences.
There, several compact representation are possible, and we will show that under a very sim-
ple and reasonable succinct representation, the manipulation problem is computationally
hard. Consider a two-agent problem with one manipulator A with non-additive preferences.
One of the simplest forms of non-additive preferences are (unrestricted) dichotomous mono-
tonic preferences: there is a set of objects GoodA ⊆ O such that (a) GoodA is upward closed,

4We suspect this result is already known.
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that is, if S ⊆ S′ and S ∈ GoodA then S′ ∈ GoodA, and (b) A equally likes all subsets in A
and equally dislikes all subsets in 2O\GoodA, that is, S DA S′ if and only if (S′ ∈ GoodA im-
plies S ∈ GoodA). We know (see for instance [1]) that a dichotomous monotonic preference
relation can be represented succinctly by a positive (negation-free) propositional formula
ϕA of the language LO constructed from a set of propositional symbols isomorphic to O.
For instance, o1 ∨ (o2 ∧ o3) means that any set containing o1 or both o2 and o3 is good for
A: {o1, o2, o3} ∼A {o1, o2} ∼A {o1, o3} ∼A {o1} ∼A {o2, o3} BA∼A {o2} ∼A {o3} ∼A ∅.

Thus, a two-agent picking sequence manipulation problem for manipulator A with di-
chotomous monotonic preferences is a triple 〈O, ϕA,BB , π〉 where O, BB and π are as usual,
and ϕA is a positive propositional formula of LO.

Let us say that a picking strategy for A is successful if it gives her a set of objects
in GoodA. Since all sets of objects in GoodA are equally good, optimal picking strategies
coincide with successful strategies provided that there exists at least one (and with all
strategies otherwise).

Proposition 7 Deciding whether a manipulation problem 〈O, ϕA,BB , π〉 has a successful
picking strategy is NP-complete, even if π is the alternating sequence.

Proof: Membership is obvious (guess the picking strategy and apply it). Hardness follows by
reduction from sat. Let α = c1 ∧ . . . ∧ ck be a propositional formula under conjunctive normal
form over a set of propositional symbols {x1, . . . , xp}. Define the following instance of manipulation
〈O, ϕA,BB , π〉:
• O = {o1, o′1, . . . , op, o′p};
• for every clause ci of α, let c′i be the clause obtained by replacing every positive literal xi by
oi and negative literal ¬xi by o′i; let α′ be the conjunction of all clauses c′i and finally, let
ϕA = α′ ∧

∧p
i=1(oi ∨ o′i) ;

• π = (AB)p

• BB= o1 B o′1 B o2 B o
′
2 B . . . B op B o

′
p.

If ϕ is satisfiable then let ω |= ϕ; consider the picking strategy in which, at her ith picking
stage A picks oi if ω assigns xi to true and o′i if ω assigns xi to false (and then B will pick
o′i if A has picked oi, and oi if A has picked o′i). The resulting set of objects will be exactly
S = {oi|ω |= xi} ∪ {o′i|ω |= ¬xi}, and since ω |= α, we have that S satisfies α′; moreover, clearly S
satisfies oi ∨ o′i for each i, therefore, S satisfies ϕA.

Conversely, assume that A has a picking strategy that leads to a set of objects S satisfying ϕA.

Because S contains one of oi and o′i for each i, and because |S| = p, S contains exactly one of oi
and o′i for each i. Let ω be the interpretation over {x1, . . . , xp} defined by ω |= xi if oi ∈ S and

ω |= ¬xi if oi /∈ S. Because S satisfies α′, we have that ω |= α, that is, α is satisfiable. �

Obviously, NP-hardness, carries on to all three types of coalitional manipulation.

6 Price of manipulation

The results of Sections 3 and 4 can be seen as an argument against using picking sequences.
However, we continue thinking that, in spite of this, picking sequences is one of the best
protocol for allocating objects without prior elicitation, because of its simplicity. Moreover,
we now temper the results about the easiness of manipulation by showing that, at least in
some simple cases, the worst-case price of manipulation (that is, the loss of social welfare
caused by one agent manipulating) is not significantly high. Note that, to define the price of
manipulation properly, we need to deal with numerical preferences. A classical technique to
translate ordinal preferences into utility functions is to use scoring functions, as in voting.
Formally, a scoring function g is a non-decreasing function from {1, . . . ,m} to R. g(j) is
the utility an agent i receives for an object ranked at position j Bi. For each agent i, ui is
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computed by summing the utilities g(j) for each object i receives, using the same scoring
function g.

Definition 2 Let P = 〈BA,BB , . . . 〉 be a preference profile, π be a sequence, and g be a
scoring function. Let σA be a successful manipulating strategy for agent A. The price of
manipulation for σA given (P, π, g) is the ratio:

PMP,π,g(σA) =

∑
i∈N (ui(O(π, σA · σ∗−A)))∑

i∈N (ui(O(π, σ∗N )))
.

In other words, the price of manipulation is the ratio between the collective utility if
all agents play sincerely and the collective utility if agent A plays strategically and all the
other ones play sincerely. In the following, we will focus on the two agents case and Borda
scoring function [3, 2], where the utility of the ith best object for an agent is m− i+ 1.

Proposition 8 For each (BA,BB), π, we have:

PMP,π,gBorda
(σA) ≥ 1−

2
∑
s∈{ps(π,B)1,... } PS(s)− 2

m2 +m− 2PS(m)2 + 2mPS(m) + 2PS(m)
,

where PS(s) is the number of picking stages of agent A until step s.

Proof: Let σA be a successful strategy for A, and uA, uB (resp. u′A, u′B) be the
utilities obtained by A and B if they play sincerely (resp. A plays according to σA and
B plays sincerely). At its ith picking stage ps(π,B)i, B can obtain in the best case its ith

object, and obtains in the worst case its (i + PS(ps(π,B)i)
th object. Hence u′B ≥ uB −∑

s∈{ps(π,B)1,... } PS(s). Moreover, since σA is successful, u′A ≥ uA + 1. And finally, since in

the best case, each agent receives his most preferred objects, we have uA+uB ≤
∑PS(m)
k=1 (m−

k+1)+
∑m−PS(m)
k=1 (m−k+1) = 1/2×(m2 +m−2PS(m)2 +2mPS(m)+2PS(m)). Hence:

u′A + u′B
uA + uB

≥ 1−
∑
s∈{ps(π,B)1,... } PS(s)− 1

uA + uB
.

Replacing uA + uB by its upper bound completes the result. �

Corollary 3 If π is the alternating sequence (for an even number of objects),

PM(BA,BB),ABABAB...,gBorda
(σA) ≥ 1− m2 +m− 4

3m2 + 4m
.

Thus, at least in this simple case, manipulation by a single agent does not have a dramatic
effect on the social welfare, as it will cause only approximately 33% loss of utility in the
worst case. (We also have results about the additive price of manipulation, that is, the
worst-case difference between social welfare when A plays a sincere strategy and the social
welfare when A plays strategically; due to the lack of space, we omit them.)

7 Conclusion

We have studied the computational issues of manipulating picking sequences. In the case of a
single manipulator, we have found that for any number of non-manipulators and any picking
sequence, finding an optimal manipulation is easy. This result carries over to coalitional
manipulation when transfers of objects and side payments are allowed. These results are
somehow tempered, first by the NP-hardness results about coalitional manipulation without
monetary transfers, and by the fact that, at least in simple cases, the price of manipulation
is not significantly high.
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