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Abstract

Given a set of conflicting arguments, there can exist multiple plausible opinions
about which arguments should be accepted, rejected, or deemed undecided. Recent
work explored some operators for deciding how multiple such judgments should be
aggregated. Here, we generalize this line of study by introducing a family of operators
called interval aggregation methods, and show that they contain existing operators
as instances. While these methods fail to output a complete labelling in general, we
show that it is possible to transform a given aggregation method into one that does
always yield collectively rational labellings. This employs the down-admissible and
up-complete constructions of Caminada and Pigozzi. For interval methods, collective
rationality is attained at the expense of a strong Independence postulate, but we
show that an interesting weakening of the Independence postulate is retained by this
transformation. Our results open up many new directions in the study of generalized
judgment aggregation in argumentation.a

aA short version of this paper appears in the proceedings of KR 2014.

1 Introduction

A conflicting knowledge base can be viewed abstractly as a set of arguments (defeasible
derivations), and a binary relation capturing conflicts among them, forming an argumen-
tation framework (AF) [11]. Given a set of conflicting arguments, there can exist multiple
plausible ways to identify (or label) which arguments should be accepted, rejected, or deemed
undecided [1]. The question we explore here is how to aggregate the judgments of multiple
agents who have different opinions about how to evaluate a given set of arguments. This is
akin to a jury who all have access to the same set of arguments presented in a legal case,
but must aggregate their different opinions to a single decision.

This problem of Judgment Aggregation (JA) has been explored extensively in classical
logic [14]. But it was only recently that JA has been applied to collective argument eval-
uation [7, 17]. Early results showed that argument-wise plurality voting cannot guarantee
that the outcome of aggregation is always rational (consistent)—thus simple voting violates
Collective Rationality [17]. On the other hand, the aggregation operators of Caminada
and Pigozzi are able to guarantee collective rationality, but do so at the expense of the
Independence property [7].

In the present paper, we embark on a broader study of JA in argumentation. We
define a general family of aggregation operators called interval methods and show that they
contain existing operators as instances. Interval methods always satisfy a strong version
of Independence, but will usually fail Collective Rationality. But despite this important
barrier, we are able to fully axiomatize interval methods in terms of a set of fundamental
postulates.

We also define a sub-family of widening interval methods, and present an axiomatization
in which it satisfies a weaker form of collective rationality. In particular, the output of
widening methods can always be completed to a labelling, over a larger argumentation
framework, that satisfies collective rationality. This finding suggests that failure to achieve
collective rationality in general is not as bad as initially thought.



More importantly, building on Caminada and Pigozzi’s down-admissible + up-complete
(DAUC) construction, we present an approach to transform any interval method into one
satisfying Collective Rationality while preserving a weaker and more reasonable form of
independence known as Directionality.

We believe our results represent valuable contributions to the state-of-the-art for the
following reasons. First, our definition of aggregation methods is very general: in contrast
to previous approaches to JA in argumentation and logic, where the AF (or the agenda)
is primarily fixed, our method allows the AF to vary. This allows us to formulate more
general postulates that constrain the output of aggregation across different AFs (such as
the Isomorphism postulate below). We believe this generalization will be immensely valuable
beyond the present paper, since it allows the derivation of results that apply more broadly.

The second valuable aspect of our contribution is the axiomatization of very broad classes
of aggregation operators, in terms of fundamental postulates that we map out precisely.
These results ensure that any future refinements of these operators ensure minimal guaratees
on their properties, and thus focus research on circumventing only the violated properties.

Finally, our approaches to transforming any interval aggregation method to one satisfying
collective rationality form a foundation for much further work on JA in argumentation. They
constitute generic procedures that can be combined with any method that can be shown to
belong to the ‘interval’ family.

2 Preliminaries

We start by assuming a countably infinite set U of argument names, from which all pos-
sible argumentation frameworks are built. We restrict ourselves to finite argumentation
frameworks.

Definition 1 An argumentation framework (AF for short) A “ pArgs,áq is a pair con-
sisting of a finite set Args Ď U of arguments and an attack relation áĎ Args ˆ Args.
Sometimes we use ArgsA and áA to denote the arguments and attack relation of A.

An AF can be visualised as a directed graph, with nodes and edges representing argu-
ments and attacks respectively.

Example 1 The AF pta1, a2, a3u, tpa1, a2q, pa2, a1q, pa2, a3qu can be pictured as follows.

a1 a2 a3

The setting for argumentation we consider in this paper is the abstract setting of [11].
Here, the notions of argument and attack are taken as primitive, with no internal structure
assumed. This allows to focus on central questions of what makes an argument acceptable
given its attacking arguments. In the argumentation literature once can find several concrete
systems that form instantiations of this abstract framework, typically defining arguments
as derivations of some claim from a set of premises (see, e.g., [3, 11, 12, 16]).

An AF is evaluated by assigning one of the labels in, out or undec to each argument
in ArgsA, standing for accepted, rejected and undecided respectively [5, 6]. For notational
convenience we define a unary “negation” operator on the set of labels by setting  in “ out,
 out “ in and  undec “ undec. Given an AF A, an A-labelling is a function L : ArgsA Ñ
tin, out, undecu. For each x P tin, out, undecu we denote by L´1pxq the inverse image of x
under L, and given A Ď ArgsA we denote by LrAs the restriction of L to A.

A major research question in abstract argumentation theory has been that of establish-
ing when a given A-labelling can be said to represent a rational evaluation of the arguments



in ArgsA. Of course such an evaluation should somehow respect the attack relation. Sev-
eral definitions, or so-called argumentation semantics, have been proposed. A fundamental
concept is that of a complete labelling.

Definition 2 Let A “ pArgs,áq be an AF and L be an A-labelling. We say L is a complete
A-labelling iff, for all a P Args:

• If Lpaq “ in then Lpbq “ out for all b P Args s.t. bá a.

• If Lpaq “ out then Lpbq “ in for some b P Args s.t. bá a.

• If Lpaq “ undec then Lpbq ‰ in for all b P Args s.t. bá a and Lpcq “ undec for some
c P Args s.t. cá a.

We denote the set of complete A-labellings by ComppAq.

Example 2 Consider the AF from Example 1. Then there are three possible complete
labellings for this framework, which can be pictured as follows.

a1 a2L a3 a1 a2L’ a3 a1 a2L” a3 in out undec

Complete labellings form the basis of several other semantics such as grounded, preferred,
stable [11]. Due to their fundamental nature and intuitiveness, we focus mainly on complete
labellings in this paper. This is also in keeping with previous works on JA in abstract
argumentation. We will, however, also use later the concept of admissible A-labelling, which
is an A-labelling that satisfies the first two restrictions of Definition 2, but not necessarily
the third. An example of an admissible A-labelling in Example 2 would be L such that
Lpa1q “ in, Lpa2q “ out and Lpa3q “ undec.

We assume a set of agents Ag “ t1, . . . , nu (with n ě 2) is fixed. An A-profile is
a sequence L “ pL1, . . . , Lnq assigning a complete A-labelling to each i P Ag . Given
A Ď ArgsA we denote by LrAs the profile pL1rAs, . . . , LnrAsq, i.e., the restriction of L
to the arguments in A (writing Lras rather than Lrtaus for singletons). For each label
x P tin, out, undecu and a P ArgsA we denote the set of agents who voted for label x for a
by V L

a:x, i.e., V L
a:x “ ti P Ag | Lipaq “ xu.

Example 3 Suppose n “ 3 and let A be as in the previous example. Then one possible
A-profile L would be as follows:

L1 = 

in out

a1 a2 a3

1

L2 = 

2

a1 a2 a3

L3 = 

3

a1 a2 a3

Collective 

labelling?

Here we have, for example, V L
a1:in “ t1u, V

L
a3:out “ t2, 3u and V L

a2:undec “ H.

What we seek in this paper is some method that, given any AF A and any A-profile,
will return another A-labelling that represents the collective labelling of the group. Here is
the central concept in this paper.



Definition 3 An aggregation method is a function F that assigns to every AF A and
A-profile L an A-labelling FApLq.

Note that an aggregation method takes as input both an AF A as well as an accom-
panying profile of complete A-labellings. We emphasise, though, that in each particular
aggregation situation, the agents aggregate labellings over a single AF that is shared by
all agents. This contrasts with the argumentation aggregation operators of Coste-Marquis
et al [9], whose input is a profile of different AFs (without labellings), one for each agent.
Note also the above definition comes with an assumption of universal domain built in, i.e,
an aggregation method must yield a result for any given AF A and A-profile L. Finally
note that we require the output FApLq to be a single A-labelling, as opposed to a set of
A-labellings.

3 Postulates for aggregation methods

We start by writing down some postulates for a good aggregation method. Some are inspired
by postulates in [7, 17] (which in turn were inspired by postulates familiar from the JA
literature), but we modify them to account for allowing the AF to vary. Note that free
occurrences of A and L within the postulates are implicitly universally quantified.

In the definition of aggregation method the labellings of the agents are required to be
complete, but the output labelling FApLqmay be an arbitrary A-labelling. Ideally, of course,
we would like the output too to be complete.

Collective Rationality FApLq P ComppAq.

Full Collective Rationality will turn out to be beyond the reach of the the simplest
aggregation methods, including the family of interval methods in the next section. However,
if we restrict to a particularly simple class of AFs it turns out to be relatively easy to satisfy.
We call A a 2-loop AF if it consists only of two arguments that mutually attack each other,
i.e., ArgsA “ ta, bu and áA“ tpa, bq, pb, aqu for some distinct a, b P U .

Minimal Collective Rationality For any 2-loop AF A we have FApLq P
ComppAq.

Some more weakenings of Collective Rationality will be considered in Section 5.
The next three postulates will be taken as fundamental in this paper. Given an A-profile

L “ pL1, . . . , Lnq, we say the A-profile L1 is a permutation of L if L1 “ pLσp1q, . . . , Lσpnqq
for some permutation σ on Ag .

Anonymity If L1 is a permutation of L then FApLq “ FApL
1q.

Anonymity says the identity of which agent submitted which labelling does not matter when
aggregating. The next rule says that if all agents submit exactly the same labelling then
that should also be the collective labelling.

Unanimity If there is some A-labelling L such that Li “ L for all i P Ag then
FApLq “ L.

Next we come to the first of our postulates that refers to varying the AF. The idea is
that AFs that are isomorphic should be treated the same when aggregating (cf the language
independence principle of [2]). Given A1 “ pArgs1,á1q and A2 “ pArgs2,á2q, an isomor-
phism from A1 to A2 is a bijection g : Args1 Ñ Args2 such that, for all a, b P Args1 we have
aá1 b iff gpaq á2 gpbq. An isomorphism between A1 and A2 extends to a mapping between
the A1-labellings and the A2-labellings. For any A1-labelling L we define the A2-labelling



gpLq by setting, for all a P A2, rgpLqspaq “ Lpg´1paqq. The function g further extends
naturally to a mapping between A1-profiles and A2-profiles by setting, for any A1-profile
L “ pL1, . . . , Lnq, gpLq “ pgpL1q, . . . , gpLnqq.

Isomorphism Suppose A1 and A2 are connected by isomorphism g. Then, for
any A1-profile L we have gpFA1

pLqq “ FA2
pgpLqq.

Isomorphism enforces a certain kind of neutrality over the arguments. If we add it to
Anonymity and Minimal Collective Rationality then it means that in any 2-loop AFta, bu
in which the number of in-votes and out votes for a is equal, the collective label must be
undec for both a and b.

Proposition 1 Let F be an aggregation method that satisfies Isomorphism, Anonymity
and Minimal Collective Rationality and let A “ ta, bu be a 2-loop AF. If L is such that
|V L
a:in| “ |V

L
a:out| then rFApLqspaq “ undec “ rFApLqspbq.

A standard idea in aggregation is that the group evaluation concerning some item should
depend only on the individuals’ evaluations over that item and no others. In our setting
this means that the group label rFApLqspaq attached to an argument a in an AF A should
depend only on the tuple Lras “ pLipaqqiPAg.

Independence If L1 and L2 are A-profiles and a P ArgsA then L1ras “ L2ras
implies rFApL1qspaq “ rFApL2qspaq.

Given we allow the AF to vary, we strengthen this property somewhat.

AF-Independence If L1 and L2 are profiles over A1 and A2 respectively and
a P ArgsA1

XArgsA2
then L1ras “ L2ras implies rFA1pL1qspaq “ rFA2pL2qspaq.

This postulate implies the preceding Independence (just put A1 “ A2). It roughly says that
the collective label of a depends only on Lras no matter what other arguments might be
present or absent in A. It is a very strong postulate. For example, It can be shown that any
F satisfying it is completely determined by how it behaves on 2-loop AFs. Meanwhile it is
easily seen that Unanimity becomes equivalent to its following “argument-wise” variant:

AW-Unanimity For each a P ArgsA, if there is some x P tin, out, undecu such
that Lipaq “ x for all i P Ag then rFApLqspaq “ x.

The next two postulates are monotonicity rules. in/out-Monotonicity says that if some
agents change their individual labels of some arguments in profile L so that they agree with
the collective labelling FApLq, and assuming that those collective labels are in tin, outu,
then the collective labelling does not change.

in/out-Monotonicity Let L, L1 be A-profiles such that for all a P ArgsA and
all i P Ag , (L1ipaq ‰ Lipaq implies L1ipaq “ rFApLqspaq P tin, outu). Then
FApL

1q “ FApLq.

Note we require rFApLqspaq P tin, outu, i.e., we leave open the possibility that if the collec-
tive label is undec and some agents change their labels to undec then this might cause the
collective label to change. Indeed several of our examples in the next section will exhibit
this behaviour.

A stronger version of this postulate might also be expected to hold. The intuition
behind Strong in/out-Monotonicity is that if some agents in L move their individual labels
of some arguments closer towards the collective label (and those collective labels belong to
tin, outu), then the resulting collective labelling remains unchanged. To formulate it we use
the notion of one label being between another two labels. Given x, y, z P tin, out, undecu
we say that y is between x and z iff either y “ x or y “ z or [y “ undec and x ‰ z].



Strong in/out-Monotonicity Let L, L1 be A-profiles such that for all a P
ArgsA such that rFApLqspaq P tin, outu and all i P Ag , L1ipaq is between Lipaq
and rFApLqspaq. Then FApL

1q “ FApLq.

So, for example, if the collective label of a is in and one agent who voted out for a
changes their vote to undec then we should expect the collective label to remain in.

The next postulate was a major motivation behind the operators in [7]. It says the
collective label on any argument never goes against the individual label of any agent.

Compatibility For all i P Ag and a P ArgsA we have rFApLqspaq “  Lipaq
implies rFApLqspaq “ undec.

This postulate implies that as soon as there is disagreement among the agents about the
label of some argument then that argument must be labelled collectively undec. As such, if
n is large, we are quite likely to end up with a lot of undec arguments in FApLq.

Given any n-tuple pliq of labels the in/out-winner in pliq is the label among tin, outu
which appears more frequently in pliq (if such a label exists). For example the in/out-winner
in pin, undec, out, undec, inq is in. If x is the in/out-winner in pliq then we call  x the
in/out-loser. A weaker version of Compatibility can then be formulated as follows:

in/out-Plurality If x is the in{out-loser in pLipaqqiPAg then rFApLqspaq ‰ x

This postulate says that the collective label of an argument is never set to in or out if more
agents vote for the opposite label.

Proposition 2 Let F be an aggregation method satisfying Compatibility. Then
(i). F satisfies in/out-Plurality.
(ii). If F satisfies in/out-Monotonicity then it satisfies Strong in/out-Monotonicity.

4 Interval aggregation methods

Now we describe a family of aggregation methods that we call interval methods, which will
include a number of interesting special cases. The idea is that we determine rFApLqspaq as
follows. First, we establish the in/out-winner x in pLipaqqiPAg. If no winner exists, i.e., if
in and out receive an equal number of votes, then rFApLqspaq is set to undec. Otherwise,
at this point (and in keeping with in/out-Plurality) we discard the in/out-loser  x as a
candidate to be the collective label and proceed to check whether the configuration of votes
p|V L

a: x|, |V
L
a:x|q represents a sufficiently acceptable “victory” of x over  x. If it does then we

set rFApLqspaq to x, otherwise to undec.
Formally, let Intn be the set of intervals of non-zero length in t0, 1, . . . , nu (where recall

n is the number of agents), i.e., Intn “ tpk, lq | k ă l, k, l P t0, 1, . . . , nuu. Let Y Ď Intn be
some subset of distinguished intervals in Intn . Then we define aggregation method FY by
setting, for each A, A-labelling profile L and a P ArgsA:

rFYA pLqspaq “

#

x if x P tin, outu and p|V L
a: x|, |V

L
a:x|q P Y

undec otherwise

We will soon make several requirements on the set Y , but in general the only requirement
we place (which is basically required to ensure Unanimity is satisfied) is:

pI1q p0, nq P Y

Definition 4 An interval aggregation method is an aggregation method F such that F “
FY for some Y Ď Intn satisfying (I1).
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Figure 1: Examples of different interval methods.

We remark that interval methods are closely-related to the quota rules considered in
judgment aggregation by [10]. In fact if there was no undec label then they would be
more-or-less the same.

By making different choices of Y we find interesting special instances of interval methods.

Argument-wise plurality: Take the collective label of a to be the label among tin, out, undecu
that gets the most votes. If there is a tie then take undec. This corresponds to YAWP “

tpk, lq P Intn | n´ pk ` lq ă lu. We use FAWP to denote FYAWP .

Majority: Take the collective label of a to be x if more than half of the agents voted for it,
otherwise take undec. YMaj “ tpk, lq P Intn | l ą n{2u. We use FMaj to denote FYMaj .

Sceptical initial: [7] Take the in/out winner if it is the unanimous choice among the agents,
otherwise undec. YScept “ tp0, nqu. We use F Scept to denote FYScept .

Credulous initial: [7] Take the in/out-winner x whenever no agent voted for  x, otherwise
undec. YCred “ tp0, lq P Intn | l ě 1u. We use FCred to denote FYCred .

in/out-winner: Take the in/out-winner whenever it exists.1 Yiow “ Intn. We use F iow to
denote FYiow .

Fig. 1 shows an example comparing the labellings returned by these instances for a
particular AF A and A-profile, assuming n “ 4.

We can compare different specific aggregation methods according to how committed
their output collective labellings tend to be [7]. Given any two A-labellings L1, L2 we write
L1 Ď L2 iff both L´1

1 pinq Ď L´1
2 pinq and L´1

1 poutq Ď L´1
2 poutq. In other words every

argument labelled in (resp. out) by L1 is also labelled in (resp. out) by L2. It is easy to
see Ď forms a partial order over the set of all A-labellings.

Proposition 3 If Y1 Ď Y2 Ď Intn then, for any AF A and any A-profile L, we have
FY1

A pLq Ď FY2

A pLq.

The above result means we get F Scept
A pLq Ď FYA pLq Ď F iow

A pLq for all A and A-profiles
L and all interval methods FY . So the Sceptical initial and the in/out-winner are inter-
val methods standing at opposite ends of the commitment spectrum. Among all interval
methods F Scept will always return the least committed outcome, with arguments tending
more often to be collectively labelled undec, while F iow always returns the most committed
outcome.

1This rule is sometimes known as simple majority in voting theory.



Which postulates from our previous section hold for the general family of interval meth-
ods? We obtain the following axiomatic characterisation (which can be compared to the
characterisation of quota rules in JA given in [10])

Theorem 1 Let F be an aggregation method. Then F is an interval aggregation method
iff it satisfies: Minimal Collective Rationality, Anonymity, Unanimity, Isomorphism, AF-
Independence, in/out-Plurality.

Thus we see that most of the postulates from the previous section are sound for the
interval methods. The postulates missing from Thm. 1 are the two Monotonicity postulates,
Compatibility and, most significantly, Collective Rationality. None of these will hold in
general for interval methods, at least not without placing some extra restrictions on Y
beyond only (I1). Looking first at in/out-Monotonicity we can construct counterexamples
such as the following.

Example 4 Assume n “ 4 and let Y be such that p1, 2q P Y but p0, 3q R Y . Let A be a 2-loop
AF ta, bu with the three possible complete A-labellings denoted by Lin, Lout and Lundec, where
the subscript represents the label of a. If L “ pLin, Lin, Lout, Lundecq then rFYA pLqspaq “ in,
since p1, 2q P Y . Suppose L1 “ pLin, Lin, Lin, Lundecq, i.e., agent 3 changes their labelling to
FYA pLq. If FY satisfied in/out-Monotonicity then we would get again rFYA pL

1qs “ in. But
because we assumed p0, 3q R Y we get rFYA pL

1qspaq “ undec.

Although not sound for general interval methods, one can show that all our concrete
instances of such methods satisfy in/out-Monotonicity.

Proposition 4 FAWP, FMaj, F Scept, FCred and F iow all satisfy in/out-Monotonicity.

However, not all of these methods satisfy Strong in/out-Monotonicity. Specifically, FAWP

fails it, as the following example shows:

Example 5 As in the previous example assume n “ 4 and A “ ta, bu is a 2-loop
AF and that L “ pLin, Lin, Lout, Lundecq. Then FAWP

A pLq “ Lin. Now suppose L1 “
pLin, Lin, Lundec, Lundecq, i.e., agent 3 changes their labelling from Lout to Lundec. We have
that rFAWP

A pLqspaq P tin, outu and that Lundecpaq is between Loutpaq and rFAWP
A pLqspaq

(similarly for b), hence if FAWP satisfied Strong in/out-Monotonicity we would again get
FAWP
A pL1q “ Lin. But FAWP

A pL1q “ Lundec.

We can obtain Strong in/out-Monotonicity for an interval method FY if we assume Y
satisfies an extra condition saying that Y is closed under widening intervals:

pI2q If pk, lq P Y and s ď k, l ď t then ps, tq P Y.

YAWP does not satisfy (I2). For instance if n “ 4 then p1, 2q P YAWP but p0, 2q R YAWP,
which enabled the above counterexample.

Proposition 5 Let FY be an interval method. Then FY satisfies Strong in/out-
Monotonicity iff Y satisfies (I2).

Definition 5 If Y Ď Intn satisfies both (I1) and (I2) then we say Y is widening. A widen-
ing interval method is an aggregation method F such that F “ FY for some widening Y .

We remark that widening interval methods have essentially been previously proposed in
voting theory with an alternative formulation under the name quota systems [18]. The main
difference with our work is that they only consider aggregation over a single issue (i.e., a
single argument in our setting).



Putting Thm. 1 and Prop. 5 together we can see that the class of widening interval
methods is characterised by the six postulates of Thm. 1 plus Strong in/out-Monotonicity.

It can be checked that each of our previous examples of interval methods, apart from
YAWP, are widening and so yield interval methods that satisfy Strong in/out-Monotonicity.
However not all of them yield a method that satisfies Compatibility. This can be seen already
in the example in Fig. 1, where we have, e.g., rF iow

A pLqspb1q “ out but L2pb1q “ in. If we
want Compatibility to hold then we need to place a further restriction on Y :

pI3q If pk, lq P Y then k “ 0.

Proposition 6 Let FY be an interval method. Then FY satisfies Compatibility iff Y sat-
isfies (I3).

Clearly, among our examples, YScept and YCred are the only Y that satisfy (I3), which
means that F Scept and FCred are the only interval methods among our examples that satisfy
Compatibility. Looking more generally, combining the previous proposition with Thm. 1 and
Prop. 5 (and recalling the facts about Compatibility in Prop. 2) gives us the following result.

Theorem 2 Let F be an aggregation method. Then the following are equivalent:
(i). F “ FY for some Y of the form tp0, tq | t ě lu for some 1 ď l ď n.
(ii). F satisfies the following postulates: Minimal Collective Rationality, Anonymity, Una-
nimity, Isomorphism, AF-Independence, Compatibility, in/out-Monotonicity.

Regarding Collective Rationality, we know already from [7, 17] that our examples of
interval methods above fail to satisfy it. Is there any requirement we can place on Y to
ensure it? The answer is no, as the following impossibility result (whose proof has a flavour
of similar impossibility results commonly seen in JA, e.g., Thm. 1 of [13]) shows.

Theorem 3 There is no aggregation method (for any n ą 1) satisfying all of Isomorphism,
Anonymity, Unanimity, AF-Independence and Collective Rationality.

The above result says that, given the basic requirements Isomorphism, Anonymity and
Unanimity, there is no hope to obtain both of AF-Independence and Collective Rationality.
We have to weaken one of them. Next we’ll look at some weakenings of Collective Rationality,
and after that we’ll look at relaxing AF-Independence.

5 Weakening Collective Rationality

We have already met one weakening of Collective Rationality, namely Minimal Collective
Rationality. In this section we look at a couple of others which, rather than look for re-
stricted classes of AF for which fully rational outcomes are guaranteed, as Minimal Collective
Rationality does, look at relaxing the requirement of completeness of the collective labelling
(see Definition 2).

Our first weakening says merely that the group never ends up collectively accepting two
arguments that are directly conflicting:

Conflict-freeness If rFApLqspaq “ in and aáA b then rFApLqspbq ‰ in

Thankfully every interval method already satisfies this basic requirement. This follows from
the next proposition.

Proposition 7 Every aggregation method F that satisfies in/out-Plurality also satisfies
Conflict-freeness.



A way to strengthen Conflict-freeness is to require that if the group collectively accepts
an argument a, then the group also explicitly rejects every argument attacked by a:

out-semi-legal If rFApLqspaq “ in and aáA b then rFApLqspbq “ out

Similarly a should be collectively accepted only if every attacker of a is collectively rejected.

in-semi-legal If rFApLqspaq “ in and báA a then rFApLqspbq “ out

(Note this corresponds to the first item in the definition of complete labelling (Definition
2.)) It turns out that, for interval methods FY , the satisfaction of both these postulates is
intimately bound with the requirement that Y is widening.

Proposition 8 Let FY be an interval method. Then the following are equivalent: (i). Y is
widening, (ii). FY satisfies out-semi-legal, (iii). FY satisfies in-semi-legal.

From this proposition we see that we could replace Strong in/out-Monotonicity in the
characterisation of widening interval methods by either out-semi-legal or in-semi-legal.

An arbitrary A-labelling L that simultaneously satisfies both of the conditions expressed
in out-semi-legal and in-semi-legal is called subcomplete in [4].

Definition 6 ([4]) Let A be an AF and L an A-labelling. If, for all a, b P ArgsA, it holds
that if Lpaq “ in and [a áA b or b áA a] then Lpbq “ out, then we call L a subcomplete
A-labelling.

This class of subcomplete labellings is of special interest because, as is shown in [4], they are
precisely the labellings that may be embedded as part of a complete labelling over a larger
framework A1. We introduce some notation.

Definition 7 Let A1 “ pA1,á1q and A2 “ pA2,á2q be two AFs. We say A1 is a sub-
framework of A2, written A1 Ďf A2, iff A1 Ď A2 and á1“á2 XpA1 ˆA1q.

Proposition 9 ([4]) Let A be an AF and L be an A-labelling. Then L is a subcomplete
A-labelling iff there exists A1 and L1 P ComppA1q s.t. A Ďf A1 and L “ L1rArgsAs.

This result means the conjunction of out-semi-legal and in-semi-legal is equivalent to:

Collective Embeddibility There exists A1 and L1 P ComppA1q s.t. A Ďf A1
and FApLq “ L1rArgsAs.

Collective Embeddibility relaxes Collective Rationality by saying that, although the collective
labelling might not be a complete A-labelling, it is always possible to recover completeness
by adding some more arguments to A.

Example 6 Consider the AF A with three arguments ta, b, cu and the two complete A-
labellings L,L1 depicted on the left below.

c

b

a in

out

undecb

a

L L’
b

b

c d

b

a

c c

Assume we have an even number of agents and an A-profile L in which half the agents
submit L and half submit L1. Every interval method will yield the collective labelling FY pLq
in which a and b are undec and c is out. This FY pLq is not complete for A, but if we now
expand A to A1 by adding a new argument d such that d attacks c as pictured on the right
then we do get that FY pLq can be extended to a complete A1-labelling, namely the one in
which additionally d is in.



Given Props. 7 and 9, we can use Collective Embeddibility to obtain yet another alter-
native characterisation of the widening interval methods.

Theorem 4 Let F be an aggregation method. Then F is a widening interval aggregation
method iff it satisfies: Minimal Collective Rationality, Anonymity, Unanimity, Isomor-
phism, in/out-Plurality, AF-Independence, Collective Embeddibility.

6 Weakening AF-Independence

We have seen that it is possible to define aggregation methods that satisfy AF-Independence
while holding on to some interesting weakenings of Collective Rationality. Now we explore
the possibility of satisfying Collective Rationality at the expense of AF-Independence. One
might argue anyway that AF-Independence is too strong. Indeed how can it be expected
to hold when part of the input to the aggregation explicitly contains information (in the
form of the attack relation áA) regarding dependencies between arguments? Instead we
might expect the following weaker version, inspired by the work of Baroni and Giacomin
[2], who proposed a similar postulate for argumentation semantics. The idea is that if we
have a set of arguments in A that is unattacked (that is, no argument in the set is attacked
by any argument outside the set) then we can aggregate just that part without looking
at the arguments outside the set. In this way the collective label of an argument a might
be influenced by what happens “upstream” from a (i.e., what labels are assigned to the
attackers of a and, in turn, their attackers) but not “downstream”.

Directionality Suppose A Ďf A1 and suppose ArgsA is unattacked in A1. Then
for any A1-profile L and a P ArgsA we have rFA1pLqspaq “ rFApLrArgsAsqspaq.

Proposition 10 Every aggregation method F that satisfies AF-Independence also satisfies
Directionality.

The question is: by weakening AF-Independence to Directionality do we obtain a possi-
bility result? That is, can we construct an aggregation method that satisfies Directionality,
Collective Rationality and some of our other nice postulates? We show the answer is yes,
using the down-admissible and up-complete constructions of [7].

6.1 Down-admissible and up-complete

We begin with the down-admissible construction, which uses the definition of the ‘commit-
tedness’ relation Ď that was introduced for Prop. 3.

Definition 8 ([7]) Given an A-labelling L, the down-admissible labelling of L, denoted by
çL, is the (unique) greatest element (under Ď) of the set of all admissible A-labellings M
such that M Ď L.

A constructive definition of çL is given in [7]. It can be arrived at by just iteratively
relabelling every argument that is illegally in or illegally out with undec until no illegal in
or out labels remain. The end result is a labelling that is admissible.

Example 7 Consider the sequence of the 3 leftmost labellings of the AF A shown in Fig.
2. The initial labelling L is on the far left. The only argument illegally labelled in or out

in L is c (because it is out but none of its attackers is in), so its label is changed to undec

(2nd labelling). This change in turn causes d to become illegally in, so then d’s label is also
changed to undec. At this point there are no illegally in or out arguments left and so the
procedure stops with çL as the 3rd labelling.
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Figure 2: Example showing down-admissible and up-complete procedures.

As the example illustrates, ç L might not be a complete labelling. To ensure a complete
labelling we need an additional step which applies the up-complete operator.

Definition 9 ([7]) Given an admissible A-labelling L, the up-complete labelling of L, de-
noted by äL, is the (unique) smallest element (under Ď) of the set of all complete A-labellings
M such that L Ď M .

There is also a constructive definition of äL in [7]. Just iteratively change every illegally
undec argument to in or out as appropriate, until no illegally labelled arguments remain.

Example 8 Consider the sequence of the 3 rightmost labellings in Fig. 2, which starts with
L1 “çL from the previous example. There is one illegally undec argument, namely c. Since
both attackers a, b are labelled out, we change c’s label to in. At this point d becomes illegally
undec because it now has an attacker c which is in. Hence we change d’s label to out. Now
there are no illegally undec arguments and so the process stops and returns the rightmost
labelling as äL1.

We denote by êL the composite operation of performing the down-admissible followed
by the up-complete procedures on L. Since ê L is guaranteed to return a complete A-
labelling by construction, this opens up a way to transform any aggregation method F into
one that satisfies Collective Rationality.

Definition 10 Given any aggregation method F , the DAUC version of F is the aggregation
method pF defined by setting, for any AF A and A-labelling profile L, pFApLq “ êpFApLqq.

In other words, to aggregate using pF , first aggregate using F and then perform the down-
admissible followed by the up-complete on the result.

Example 9 Consider again the AF A and A-profile L from Example 6. We saw there
that every interval method yields the non-complete A-labelling FApLq in which a, b are both
labelled undec and c is labelled out. Then applying the DAUC procedure yields the labelling
pFYA pLq, which labels all of a, b, c with undec.

For the special cases of interval methods F Scept and FCred this procedure was studied
in detail in [7]. Their DAUC versions were called the sceptical and super-credulous aggre-
gation methods respectively there.2 Which postulates, apart from Collective Rationality,
are satisfied by the DAUC versions of the general family of interval methods? We lose AF-
Independence (and indeed plain Independence), as expected. This can be seen in the above

Example 9 where we get r pFYA pLqspcq “ undec but r pFYA pL
1qspcq “ out if every agent in L1

submits the same labelling L such that Lpcq “ out, despite the fact that Lrcs “ L1rcs. But

some postulates satisfied by the initial method F can be inherited by pF .
2Note there is also a third operator in [7] called the credulousmethod, which applies just the DA procedure

(without UC) to FCred. However, as noted there, this doesn’t always yield a complete labelling.



Proposition 11 Let F be any aggregation method. For each of the following postulates, if F
satisfies that postulate then so does pF : Anonymity, Unanimity, Isomorphism, Directionality,
Compatibility.

For the case when the initial F is an interval method the above result gives the following:

Corollary 1 Let F be an interval method. Then pF satisfies Collective Rationality,
Anonymity, Unanimity, Isomorphism and Directionality.

Hence we have established that, for every interval method F , pF satisfies four of the
six postulates that characterised the interval methods in Thm. 1, plus a weaker version
(Directionality) of a fifth (AF-Independence). What about the remaining postulate from
there, i.e., in/out-Plurality? From Prop. 11 above we know that if Y satisfies (I3) then
pFY will satisfy Compatibility and hence in/out-Plurality. Thus (I3) is sufficient to obtain
in/out-Plurality. Surprisingly, it turns out this condition is also necessary.

Proposition 12 Let FY be an interval method. The pFY satisfies in/out-Plurality iff Y
satisfies (I3).

One last question concerns the circumstances under which pFY will satisfy (Strong)
in/out-Monotonicity. Since for interval methods we have that Strong in/out-Monotonicity
holds iff Y is widening, it might be expected that an analogous equivalence is preserved for
the class of DAUC versions of the interval methods. However we have so far been unable to
prove or disprove this, so it remains open for now.

7 Conclusion

We introduced a framework for exploring labelling aggregation operators in abstract ar-
gumentation, with the central concept being that of aggregation method that takes as in-
put both an AF together with a profile of complete A-labellings and returns a collective
A-labelling. We formulated some postulates for aggregation methods and axiomatically
characterised the family of interval aggregation methods, which don’t satisfy the desirable
postulate of Collective Rationality, but do satisfy the strong postulate of AF-Independence.
We showed that nevertheless some interesting weakenings of Collective Rationality do hold.
We also showed that using the down-admissible plus up-complete construction of Caminada
and Pigozzi allows a way to turn any aggregation method into one satisfying Collective
Rationality while preserving a weaker and more reasonable form of independence known as
Directionality, and we identified some postulates that are sound for (certain subclasses of)
the DAUC versions of the interval methods. Table 1 summarises which of our postulates
are satisfied by the various classes of aggregation methods we have looked at in this paper.

There are several avenues for future work. As well as answering the open question
concerning the satisfaction or otherwise of (Strong) in/out-Monotonicity for the DAUC
versions of the interval methods, we would like to find a complete axiomatisation of such
methods (and their widening subclass). Another plan concerns investigation of dialogue
games in the context of aggregating argument labellings. Such games are commonly used
in abstract argumentation as a way of formulating argumentation semantics [15]. It would
be interesting in particular to devise a dialogue game for the DAUC procedure. This would
likely give insights into how a group might form a collective labelling via discussion. Finally
we would like to look at questions involving manipulation of the aggregation process. The
problems of agenda manipulation has been already studied in JA [8]. In our particular
setting this would involve questions such as “which argument(s) could be added to the AF
in order to achieve a particular collective outcome”?



Postulates
(I1) (I1) + (I2) (I1)+(I2)

+(I3)

FY pFY FY pFY FY pFY

Independence 3 7 3 7 3 7

Anonymity 3 3 3 3 3 3

Unanimity 3 3 3 3 3 3

Isomorphism 3 3 3 3 3 3

AF-Independence 3 7 3 7 3 7

Directionality 3 3 3 3 3 3

Collective Rationality 7 3 7 3 7 3

Minimal
Collective Rationality 3 3 3 3 3 3

Collective
Embeddibility 7 3 3 3 3 3

in-semi-legal 7 3 3 3 3 3

out-semi-legal 7 3 3 3 3 3

Conflict-freeness 3 3 3 3 3 3

Strong
in{out-Monotonicity 7 7 3 ? 3 ?

in{out-Plurality 3 7 3 7 3 3

Compatibility 7 7 7 7 3 3

Table 1: The postulates that are satisfied/violated by interval methods satisfying (I1), (I2),
and (I3).
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Appendix: Selected Proof Outlines

Theorem 1 Let F be an aggregation method. Then F is an interval aggregation method
iff it satisfies: Minimal Collective Rationality, Anonymity, Unanimity, Isomorphism, AF-
Independence, in/out-Plurality.

Proof: Soundness is relatively straightforward. For completeness we first show how to con-
struct, from any given aggregation method F , a subset Y pF q Ď Intn : Let A0 “ pArgs0,á0q

be a 2-loop AF such that Args0 “ ta0, b0u. There are three complete labellings for A0,
which we denote by Lin, Lout and Lundec, where the subscript represents the label of a0



(with the label of b0 of course being always  Lpa0q). Then we define Y pF q by setting
Y pF q “ tpk, lq P Intn | rFA0pLk,lqspa0q “ inu, where Lk,l is any A0-profile such that
precisely k agents provide labelling Lout and l agents provide Lin. Note by Anonymity that
the precise distribution of labellings among Lk,l doesn’t matter. Y pF q is well-defined, i.e.,
it doesn’t matter which 2-loop AF we take to define it (by Isomorphism) and Y pF q satisfies
(I1) (by Unanimity). One can then show that F and FY pF q agree on the 2-loop AF A0, i.e.,

that for every A0-profile L we have FA0
pLq “ F

Y pF q
A0

pLq. This part depends on Anonymity,
Isomorphism, Minimal Collective Rationality and in/out-Plurality. Then finally we extend
this to hold for any argumentation frameworkA using AF-Independence and Isomorphism.

Theorem 3 There is no aggregation method (for any n ą 1) satisfying all of Isomorphism,
Anonymity, Unanimity, AF-Independence and Collective Rationality.

Proof: Assume for contradiction that F is an aggregation method satisfying the named
postulates. Consider the following four complete labellings of an AF consisting of five
arguments a, b, c, d, e.

in

out

undecb

a

L3
d

c

e

a

b L4

c

d

e

L2

c

d

e

a

b
L1

e

c
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Case n is even. Choose any profile L for this AF such that half the agents submit L3

and half submit L4. Then there is no in/out-winner for any of a, b, c, d and so they will
be collectively labelled undec by FApLq by Prop. 1 and AF-Independence. By Collective
Rationality this implies e is also collectively labelled undec. But AF-Independence and
Unanimity together say that e must be collectively labelled out - contradiction.
Case n is odd. Define profile L1 by setting L11 “ L1, L12 “ L2 and L1i “ L3 if i ě 3 and i is
odd, L1i “ L4 if i ě 3 and i is even. Then again there is no in/out-winner for any of a, b, c, d
and we can repeat the same reasoning as in the previous case to obtain a contradiction.

Proposition 8 Let FY be an interval method. Then the following are equivalent: (i). Y
is widening, (ii). FY satisfies out-semi-legal, (iii). FY satisfies in-semi-legal.

Proof: (i) ñ (ii). Suppose Y is widening, rFYA pLqspaq “ in and a áA b. We must show

rFYA pLqspbq “ out. Since rFYA pLqspaq “ in we know p|V L
a:out|, |V

L
a:in|q P Y . By the definition

of complete A-labelling we know |V L
b:in| ď |V

L
a:out| and |V L

a:in| ď |V
L
b:out|. Hence, since Y is

widening, p|V L
b:in|, |V

L
b:out|q P Y and so rFYA pLqspbq “ out as required.

(ii) ñ (i). Suppose Y is not widening, i.e., there exist pk, lq P Y , ps, tq R Y such that

s ď k, l ď t. We construct A and A-profile L such that a áA b, rFYA pLqspaq “ in but
rFYA pLqspbq ‰ out. Define A as follows:

a’ a b b’

We construct L via a preliminary profile L1 defined as follows: (1) assume l agents
provide labelling tpa1, outq, pa, inq, pb, outq, pb1, inqu, (2) k agents provide labelling
tpa1, inq, pa, outq, pb, inq, pb1, outqu, (3) n ´ pk ` lq agents provide the all undec la-
belling. Note that in L1 we have p|Vb:in|, |Vb:out|q “ pk, lq. Now transform L1 into
L as follows: (4) change the labellings of k ´ s agents from group (2) above to
tpa1, inq, pa, outq, pb, undecq, pb1, undecqu (so that now p|Vb:in|, |Vb:out|q “ ps, lq), (5) change
the labellings of t ´ l agents from groups (3) and (4) to tpa1, inq, pa, outq, pb, outq, pb1, inqu
(if agent is from group (4)) or tpa1, undecq, pa, undecq, pb, outq, pb1, inqu (if agent is from



group (3)). We now have p|V L
a:out|, |V

L
a:in|q “ pk, lq P Y and p|V L

b:in|, |V
L
b:out|q “ ps, tq R Y .

Thus rFYA pLqspaq “ in but rFYA pLqspbq “ undec ‰ out as required.
(i) ñ (iii) and (iii) ñ (i). Proved along similar lines as the above.

Proposition 11 Let F be any aggregation method. For each of the following postulates, if F
satisfies that postulate then so does pF : Anonymity, Unanimity, Isomorphism, Directionality,
Compatibility.

Proof: The proofs that Anonymity and Unanimity are preserved are straightforward. The
preservation of the other postulates can be seen by considering the constructive definitions
of ç and äfrom [7] (i.e., iteratively relabelling illegally in or out arguments to undec in the
case of ç , and then iteratively relabelling illegally undec arguments to in or out in the case
of ä).

The preservation of Isomorphism comes mainly from the fact that, given A1 and A2

connected by isomorphism g and A1-labelling L, then a P ArgsA1
is illegally labelled in L

iff gpaq is illegally labelled in gpLq.
The preservation of Directionality follows from the properties that ç pLrAsq “ pçLqrAs

and äpLrAsq “ päLqrAs for any A-labelling L and any unattacked set A Ď ArgsA. These
two properties hold since the relabelling of an argument a in the down-admissible and up-
complete procedures depends only on the labels of the attackers of a.

Finally Compatibility is preserved since if for no a do we have rFApLqspaq “  Lipaq and
rFApLqspaq ‰ undec then clearly the same will hold true for çFApLq (since ç only relabels
arguments to undec). The fact that the same also holds true in turn for êFApLq essentially
follows from Lemma 7 of [7].

Proposition 12 Let FY be an interval method. Then pFY satisfies in/out-Plurality iff Y
satisfies (I3).

Proof: Suppose Y does not satisfy (I3) and so pk, lq P Y for some k ą 0. We construct an

AF A, an A-profile L and a P ArgsA such that r pFYA pLqspaq is the in/out-loser for a in L.
We use the following AF:

b’1 b1

a

b’2 b2

b’(l-k)+1 b(l-k)+1

.

.

.

We define L by setting, for each i P Ag and j “ 1, . . . , l ´ k ` 1:

Lipbjq “

$

’

’

&

’

’

%

out if i ă j
in if j ď i ď k ` j ´ 1
out if k ` j ´ 1 ă i ď k ` l
undec otherwise.

Lipaq “

$

&

%

out if 1 ď i ď l
in if l ă i ď k ` l
undec otherwise

Lipb
1
jq “  Lipbjq

We have Li P ComppAq for each i P Ag . We also have |V L
bj :out

| “ |V L
b1
j
:in| “ |V L

a:out| “ l

and |V L
bj :in

| “ |V L
b1
j
:out| “ |V L

a:in| “ k. Thus, since pk, lq P Y we have

rFYA pLqspbjq “ rFYA pLqspaq “ out and rFYA pLqspb
1
jq “ in. Hencer pFYA pLqspaq “ in,



i.e., pFYA pLq yields the in/out-loser for a.
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