
The Shapley Value in Knapsack Budgeted

Games

Smriti Bhagat, Anthony Kim, S. Muthukrishnan and Udi Weinsberg

Abstract

We propose the study of computing the Shapley value for a new class of cooperative
games that we call budgeted games, and investigate knapsack budgeted games in
particular, a version modeled after the classical knapsack problem. In these games,
the “value” of a set S of agents is determined only by a critical subset T ⊆ S of the
agents and not the entirety of S due to a budget constraint that limits how large T
can be. We show that the Shapley value can be computed in time faster than by
the näıve exponential time algorithm when there are sufficiently many agents, and
also provide an algorithm that approximates the Shapley value within an additive
error. For a related budgeted game associated with a greedy heuristic, we show that
the Shapley value can be computed in pseudo-polynomial time. Furthermore, we
provide generalizations of our techniques that capture a broad class of cooperative
games with the property of efficient computation of the Shapley value. The main
idea is that the efficient computation can be reduced to the problem of finding an
alternative representation of the games and an associated algorithm for computing
the underlying value function with small time and space complexities in the repre-
sentation size.

1 Introduction

The Shapley value is a well-studied solution concept for fair distribution of profit among
agents in cooperative game theory. Given a coalition of agents that collectively generate
some profit, a fair distribution is important to maintain a stable coalition such that no
subgroup of agents has an incentive to unilaterally deviate and form its own coalition. While
the Shapley value is not a stability concept, it uniquely satisfies a set of desirable properties
for fair profit distribution based on individual contributions, and has been shown useful on
a wide range of cooperative games and more recently, applied beyond the game-theoretic
setting in problems related to social networks [16, 14] and computer networks [11, 15].

Efficient — (pseudo) polynomial time — computation of the Shapley value has been
studied for many classes of cooperative games. One such example is weighted voting games
that model parliamentary voting where agents are parties, the weight of each party is the
number of the same party representatives, and a coalition of parties is winning (has value
1) if its total weight is at least some quota, or losing (has value 0) otherwise. It was shown
that computing the Shapley value in the weighted majority games, where the quota is half
the total weight of all the agents, is #P-complete [5] and NP-hard [13]. Note, however, that
there is a pseudo-polynomial time algorithm using dynamic programming [12].

In another line of research, representation schemes for cooperative games have been pro-
posed in [4, 8, 9, 1]; if a given cooperative game has a small alternative representation in
one of these schemes, then the Shapley value can be computed efficiently in time polynomial
in the size of the alternative representation. For example, we can represent a given cooper-
ative game as a collection of smaller cooperative games in multi-issue representation [4], or
in terms of logic rules in marginal contribution net representation [8].

We propose a new class of cooperative games that we call budgeted games and study the
Shapley value computation in these games. In cooperative games, the value function v(S)

for a coalition S is determined by all the agents in S, but may explicitly depend on a sub-
coalition in some domains (See [2] for an example). We study value functions conditioned
on a budget B where v(S) may be totally determined by a potentially strict subset T ⊂ S
of agents. That is, budget B models a physical or budget constraint that limits the actual
value of a coalition to be less than simply the total aggregate value of all the individual
contributions, and the profit generation of a coalition is determined only by a sub-coalition
of the agents. There are many examples we can readily formulate as budgeted games to
model real-life scenarios:

• (Graph Problems) Consider a network of nodes that correspond to facilities and edges
between them that correspond to communication links. This can be modeled as a
graph G with weights on nodes. For any subset S of nodes, vB(S), the value created
by set S under budget B, may be the maximum weight of an independent set of at
most B nodes.

• (Set Problems) Let each agent be a sales agent targeting a specific set of customers.
Then vB(S) may be the maximum number of customers that can be targeted by a
subset of size at most B of sales agents from S.

• (Packing Problems) Consider creating a task force from a pool S of avaliable agents
where each agent is associated with some value and cost. Then vB(S) may be the
largest total aggregate value from a subset of the agents with total cost at most B.

For the Shapley value to be useful in value division problems modeled as budgeted games,
we cannot simply apply the formula for the Shapley value as it would lead to an exponential
time algorithm. Hence, it is important to understand its computational complexity in these
games, and we study the knapsack version (equivalently, Packing Problems) in this paper.
As far as we know, the budgeted games have not been studied previously. A related class of
games called bin-packing games [6, 10, 17] has been studied for different solution concepts
of core and ε-core. In contrast to budgeted games, both items and bins are treated as agents
and the goal is to share profit among the agents in a fair way in bin-packing games.

Our Contributions. We propose a new class of cooperative games, which we term bud-
geted games, and initiate the study of computational complexity of the Shapley value in
these games. Our contributions are as follows:

• We study the knapsack version of budgeted games and show that computing the
Shapley value in these games is NP-hard. On the other hand, we show that the
Shapley value can be computed in time faster than by the näıve exponential time
algorithm when there are sufficiently many agents.

• We provide an additive approximation scheme for the Shapley value via rounding; our
approach is novel and different from the standard sampling and normal distribution
techniques [3, 7] in estimating the Shapley value.

• We consider vB(S) obtained by a 2-approximation greedy algorithm for the classical
knapsack problem and show that for this function, the Shapley value can be computed
in pseudo-polynomial time.

• We provide generalizations that capture a broad class of cooperative games with the
property of efficient computation of the Shapley value and apply them to show a few
such classes of cooperative games as examples.

2 Preliminaries

We represent the profit distribution problem as a cooperative game (N, v) where N is the set
of agents and v : 2N → R is the characteristic function that assigns a value to each subset
of agents, with v(∅) = 0. For a subset of agents S ⊆ N , we interpret v(S) as the value
that these agents can generate collectively; v(N) is the total value that the whole group
generates.

The Shapley value [18] is a solution concept based on marginal contributions that divides
the total value v(N) into individual shares φ1, . . . , φ|N | satisfying an intuitive notion of
fairness. For i ∈ N and S ⊆ N \ {i}, we define agent i’s marginal contribution to S to be
v(S ∪{i})− v(S). The Shapley value is the unique profit distribution solution that satisfies
the following properties:

1. (Efficiency)
∑
i∈N φi(v) = v(N);

2. (Symmetry) If v(S ∪ {i}) − v(S) = v(S ∪ {j}) − v(S) for all S ⊆ N \ {i, j}, then
φi(v) = φj(v);

3. (Null Player) If v(S ∪ {i})− v(S) = 0 for all S ⊆ N \ {i}, then φi(v) = 0;

4. (Linearity) For any two cooperative games (N, v) and (N,w) and their combined game
(N, v + w), φi(v) + φi(w) = φi(v + w) for all i ∈ N .

The Shapley value for each agent i is computed as

φi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S)). (1)

Note the Shapley value is a weighted average of agent i’s marginal contributions. Equiv-
alently, it can also be computed as φi(v) = 1

|N |!
∑
π∈Π v(P iπ ∪ {i}) − v(P iπ), where Π is the

set of all |N |! permutations of the agents and P iπ is the set of agents preceeding agent i in
the order represented by permutation π.

There are two sources of computational complexity in the Shapley value: an exponential
number of terms in the summation and individual evaluations of the characteristic function
v. Directly applying the above equations leads to a näıve algorithm with running time at
least exponential in the number of agents; furthermore, each individual evaluation of v can
be expensive.

3 Knapsack Budgeted Games

A knapsack budgeted game (N, v) is a cooperative game with an alternative representa-
tion given by a nonnegative integer tuple ({(l1, w1), . . . , (l|N |, w|N |)}, lbin) such that v(S) =
maxS′⊆S:l(S′)≤lbin

w(S′) for all S ⊆ N , where l(S′) =
∑
k∈S′ lk and w(S′) =

∑
k∈S′ wk.

Each agent i is described by (li, wi) where li and wi are the agent’s length and weight,
respectively. lbin is the bin size that restricts which set of agents can directly determine the
value function v. For a set of agents S, the value v(S) is determined by a potentially smaller
subset of S via solving an optimization problem where the total value of selected agents is
optimized subject to a budget constraint; the other unselected agents do not contribute
explicitly. Note the similarities with the classical knapsack problem in which the objective
is to find the maximum total value of items that can be packed into a fixed size bin.

As an application, we use knapsack budgeted games and the Shapley value to model
value division in a sport team. We would like to give out bonuses proportional to the

Shapley value solution. Assume each player i is associated with a skill level wi and in a
game of the sport, at most B players from each team can play. We model the value of the
team as the total aggregate skill level of its best B players, since they usually start and
play the majority of the games. Then, this is a knapsack budgeted game with skill levels
as weights, unit lengths, and lbin = B. Note the Shapley value of a player not in the top B
may be positive. Since he is still contributing to the team as a reserve player and might be
one of the top B players in a subset of the team, say available players in an event of injury,
he should be compensated accordingly.

In the following sections, we assume that the knapsack budgeted game (N, v) has a
representation with tuple ({(l1, w1), . . . , (l|N |, w|N |)}, lbin). We define wmax = maxi wi and
use shorthand notations l(S) =

∑
k∈S lk and w(S) =

∑
k∈S wk for any subset S. The set

of agents are ordered and labeled with 1, . . . , |N |. For a set of agents X and two integers a
and b, we use Xa,b to denote the subset {i ∈ X : a ≤ i ≤ b}. To avoid degenerate cases, we
further assume 0 < li ≤ lbin, for all i. We use the indicator function Id that equals to 1 if
all the input conditions hold, or 0 otherwise.

4 The Shapley Value in Knapsack Budgeted Games

We present a hardness result, an algorithm for computing the Shapley value exactly, and a
deterministic approximation scheme that approximates within an additive error. For missing
proofs, see Appendix A.

4.1 Exact Computation

From the definition of the knapsack budgeted games and hardness of the classical knapsack
problem, it follows that:

Theorem 1. The problem of computing the Shapley value in the knapsack budgeted games
is NP-hard.

While a polynomial time algorithm for computing the Shapley value may or may not
exist, the näıve exponential time algorithm is too slow especially when |N | is large. When
|N | is sufficiently larger than lbin, we show that a faster algorithm exists:

Theorem 2. In the knapsack budgeted games, the Shapley value can be computed in time
O(lbin(wmax|N |+ 1)lbin+1|N |2) for each agent.

To prove Theorem 2, we associate each subset S ⊆ N with a vector from a finite-
sized vector space that completely determines an agent’s marginal contribution to S. If
the cardinality of the vector space is small and partitions of the 2|N | subsets corresponding
to the vectors can be found efficiently, we can evaluate v once for each vector instead of
once for each subset, reducing the overall computation time. We note that the well-known
dynamic programming algorithm, call it A, for the classical knapsack problem can be used to
compute v; for a given S, the algorithm iteratively updates an integer array of length lbin +1
that holds the optimal values for the sub-problems with smaller bin sizes and returns a final
value determined by the array at termination.1 We associate with each subset S the final
state of the array when A runs on S and process the resulting partitions using a dynamic
program, different but related to A.

1Assume the agents in S are labeled 1, . . . , |S| for simplicity. For 1 ≤ j ≤ |S|, we define c(j, b) =
maxS′⊆S1,j :l(S′)≤b w(S′). It has the recurrence relation c(j, b) = max{c(j − 1, b), c(j − 1, b− lj) +wj}. We

compute c(j, b)’s and, hence, v(S) = c(|S|, lbin) in O(|S|lbin) time.

We use the following lemma to prove Theorem 2; it shows that if the set of possible
marginal contribution values for agent i is small, then we can reduce the number of evalua-
tions of v by grouping subsets of N \{i} by the marginal contribution values and evaluating
v once for each group.

Lemma 3. Assume there exist positive integers pi and partition functions Pi : 2N\{i} →
{1, . . . , pi} for i = 1, . . . , |N |. such that if Pi(S) = Pi(S

′) for two different S, S′ ⊆ N \ {i},
then v(S ∪ {i}) − v(S) = v(S′ ∪ {i}) − v(S′). Let mi(p) be agent i’s marginal contribution
to S for all S satisfying Pi(S) = p, and c(i, s, p) = #{S ⊆ N \ {i} : |S| = s, Pi(S) = p}
for i ∈ N , 0 ≤ s ≤ |N | − 1, and 1 ≤ p ≤ pi. Then, the Shapley value for agent i can be

computed as φi =
∑pi
p=1

∑|N |−1
s=0 c(i, s, p) s!(|N |−s−1)!

|N |! mi(p) in time O(pmax(t+ q)|N |), where

pmax = maxi pi, t is an upper bound on the computation time of the coefficients c, and q is
the individual evaluation time of v.

We now show how to partition subsets 2N\{i}, compute coefficients c(i, s, p), and apply
Lemma 3.

Proof. (of Theorem 2) We compute the Shapley value for some fixed agent i. We de-
fine VA,b = maxS′⊆A:l(S′)≤b w(S′), for A ⊆ N and 0 ≤ b ≤ lbin, and vector VS =

(VS,0, . . . , VS,lbin
), for subsets S ⊆ N . Let V be the finite vector space {0, . . . , wmax|N |}lbin+1

that vectors VS are contained in. We use the 0-based index to indicate coordinates
of a vector in V; so, v(S) = VS,lbin = VS(lbin) for all S. Given VS , agent i’s
marginal contribution to S can be computed in constant time as v(S ∪ {i}) − v(S) =
max{VS(lbin − li) + wi − VS(lbin), 0}. Let this expression be defined more generally as
mi(v) = max{v(lbin − li) + wi − v(lbin), 0} for v ∈ V.

We partition 2N\{i} by the pair (|S|,VS) so that for each possible (s,v) pair, all subsets
S satisfying |S| = s and VS = v are grouped together. Clearly, the marginal contribution
of agent i is the same within each partition. To compute the cardinality of each partition,
we use dynamic programming. Let N ′ = N \ {i}, ordered and relabeled 1, . . . , |N | − 1. For
0 ≤ j ≤ |N |−1, 0 ≤ s ≤ j, and v ∈ V, we define ĉ(j, s,v) = #

{
S ⊆ N ′1,j : |S| = s,VS = v

}
.

ĉ has the recurrence relation ĉ(j, s,v) = ĉ(j−1, s,v)+
∑

u:UPDATE(u,l′j ,w
′
j)=v ĉ(j−1, s−1,u)

with the base case ĉ(0, 0,0) = 1, where l′j and w′j correspond to the j-th agent in order in N ′

and UPDATE is an O(lbin) algorithm that updates u with the additional agent: 1) Initialize
v = u; 2) For j = l′j , . . . , lbin, v(j) = max{v(j),u(j − l′j) + w′j}; and 3) Return v.

Using the recurrence relation, we compute ĉ(j, s,v) for all j, s, and v in

time O(lbin(wmax|N | + 1)lbin+1|N |2). By Lemma 3, φi =
∑

v∈V
∑|N |−1
s=0 ĉ(|N | −

1, s,v) s!(|N |−s−1)!
|N |! mi(v), and the Shapley value can be calculated in time O((wmax|N | +

1)lbin+1|N |) using the precomputed values of ĉ. The computation of ĉ dominates the ap-
plication of the Shapley value equation, and the overall running time is O(lbin(wmax|N | +
1)lbin+1|N |2) per agent.

Our algorithm does not run in pseudo-polynomial time. The hardness result does not
preclude the existence of a polynomial time algorithm for the Shapley value computation in
the restricted case of |N | � lbin, in which case, the dynamic programming time algorithm
for the classical knapsack problem becomes a polynomial time algorithm.2 We leave it
as an open problem to determine whether or not there exists a (pseudo) polynomial time
algorithm.

2The pseudo-polynomial time O(|N |lbin) algorithm in Footnote 1 becomes an O(|N |2) algorithm, and
the classical knapsack problem can be solve in polynomial time.

4.2 Additive Approximation

Following the fully polynomial time approximation scheme for the classical knapsack prob-
lem (see [19]), we show an approximation scheme for the Shapley value by rounding down
the weights wi’s and computing the Shapley value of the cooperative game (N, v′) where v′

is an approximation of v. Our technique of computing the Shapley value by approximating
the characteristic function v is deterministic and does not require concentration inequali-
ties like the standard statistical methods of sampling and normal distribution techniques in
[3, 7].

The following lemma formalizes how an approximation of the characteristic function v
leads to an additive error in the Shapley value computation:

Lemma 4. If v′ is an α-additive approximation of v, i.e., v′(S) ≤ v(S) ≤ v′(S) + α for all
S ⊆ N , then the Shapley value φ′i computed with respect to v′ is within an α-additive error
of the Shapley value φi computed with respect to v, for all i.

When wmax is sufficiently larger than |N |, the approximation scheme’s running time is
faster than that of the exact algorithm of Theorem 2:

Theorem 5. In the knapsack budgeted games, the Shapley value can be computed within an
εwmax-additive error in O(lbin(|N |2/ε+ 1)lbin+1|N |2) for each agent, where ε > 0.3

Proof. We construct an approximate characteristic function v′ of v as follows. Let ε > 0
and k = εwmax/|N |. Note that when |N |2/ε < wmax|N |, k > 1. For each agent i, let the
rounded weight w′i be bwi

k c. The lengths do not change. To compute v′(S), we compute
the optimal set S′ ⊆ S, using dynamic programming, with respect to the rounded weights
w′1, . . . , w

′
|N | and let v′(S) = k

∑
i∈S′ w

′
i. In other words, v′(S) = k ·maxS′⊆S:l(S′)≤lbin w

′(S)

for all S ⊆ N , where we use the shorthand notation w′(S) =
∑
k∈S w

′
k.

We show v(S) ≥ v′(S) ≥ v(S)− εwmax, for all S ⊆ N . Let S be a subset and TO, T
′ ⊆ S

be the optimal subsets using original and rounded weights, respectively, such that v(S) =
w(TO) and v′(S) = k · w′(T ′). Because of rounding down, wi − kw′i ≤ k and

∑
j∈TO

wj −
k
∑
j∈TO

w′j ≤ k|N |. Since T ′ is optimal with respect to the rounded weights,
∑
j∈T ′ w

′
j ≥∑

j∈TO
w′j . Then, v′(S) = k

∑
j∈T ′ w

′
j ≥ k

∑
j∈TO

w′j ≥
∑
j∈TO

wj − k|N | = v(S) − εwmax.
Since wi ≥ kw′i for all i, v(S) = w(TO) ≥ w(T ′) ≥ kw′(T ′) = v′(S). Hence, v′ is an εwmax-
additive approximation of v. Then, the Shapley value computed with respect to v′ is within
εwmax of the original Shapley value by Lemma 4.

We now compute the Shapley value with respect to v′. For A ⊆ N , 0 ≤ b ≤ lbin,
we define V ′A,b = maxS′⊆A:l(S′)≤b w

′(S′). For a subset S ⊆ N , we define vector V′S =

(V ′S,0, . . . , V
′
S,lbin

). Note that w′i = bwi

k c ≤ b
wmax

k c = b |N |ε c. Then, we can upper bound

w′(S) ≤ |N |b |N |ε c, for all S. Let V ′ = {0, . . . , |N |b |N |ε c}
lbin+1 that vectors V′S are contained

in. Note v′(S) = k ·V′S(lbin) for all S. From vector V′S , we can compute agent i’s marginal
contribution to S with respect to v′ in constant time: v′(S∪{i})−v′(S) = k ·max{V′S(lbin−
li) + w′i −V′S(lbin), 0}.

From here, we follow the proof of Theorem 2. We compute the analogue of ĉ in
O(lbin(|N |2/ε+ 1)lbin+1|N |2), and this is the dominating term in the Shapley value compu-
tation with respect to v′.

Note the running time of our approximation scheme is not polynomial in the input size
and 1/ε. We leave it as an open problem to determine whether or not there exists a fully
polynomial time approximation scheme.

3For agent i, its Shapley value φi is clearly in [0, wmax]. Using the approximation scheme, we can compute
φi within 1

7
wmax for instance. As long as ε > |N |/wmax, the approximation scheme has a faster running

time than the exact algorithm in Theorem 2; this observation about ε is also true for the fully polynomial
time approximation scheme for the classical knapsack problem (see [19]).

5 Greedy Knapsack Budgeted Games

Motivated by the approximation scheme in Theorem 5, we investigate greedy knapsack bud-
geted games, a variant of knapsack budgeted games. A greedy knapsack budgeted game has
the same representation as the knapsack budgeted games, but its characteristic function is
computed by a 2-approximation heuristic for the classical knapsack problem. We show the
Shapley value in greedy knapsack budgeted games can be computed in pseudo-polynomial
time. However, we do not know if there exists a polynomial time algorithm that computes
the Shapley value nor how to extend our result to get an efficient, say pseudo-polynomial
time, approximation scheme that computes the Shapley value within an additive error. For
missing proofs, see Appendix B.

Theorem 6. In the greedy knapsack budgeted games (N, v) with v(S) = A′(S, lbin) for all
S, the Shapley value can be computed in O(lbin

5wmax
5|N |13) for each agent, where the greedy

heuristic A′(S, b) is computed as follows:

1: Let a = argmaxk∈S wk.
2: Select agents in S in the decreasing order of wi

li
and stop when the next agent does not

fit into the bin of size b; let S′ be the selected agents.
3: Return S′ if w(S′) ≥ wa, or {a} otherwise.

The following lemma is used in the proof of Theorem 6. Note that in the simple co-
operative game (N, v) where the agents have weights w1, . . . , w|N | and the characteristic
function v is additive, i.e., v(S) =

∑
k∈S wk, the Shapley value φi is exactly wi for all i. We

generalize this observation:

Lemma 7. Assume that the cooperative game (N, v) has a representation (M,w,A) where
M is a set, w : M → R is a weight function, and A : 2N → 2M is a mapping, such
that v(S) =

∑
e∈A(S) w(e), ∀S ⊆ N . Let c+(i, s, e) = #{S ⊆ N \ {i} : |S| = s, e ∈

A(S ∪ {i})} and c−(i, s, e) = #{S ⊆ N \ {i} : |S| = s, e ∈ A(S)}, for i ∈ N , e ∈ M ,
and 0 ≤ s ≤ |N | − 1. Then, the Shapley value for agent i can be computed as φi =∑
e∈M

∑|N |−1
s=0 (c+(i, s, e) − c−(i, s, e)) s!(|N |−s−1)!

|N |! w(e). in time O(t|M ||N |) where t is an

upper bound on the computation time of the coefficients c+ and c−.

6 Generalizations

We present generalizations that capture a broad class of cooperative games in which com-
puting the Shapley value is tractable; this includes many known classes of cooperative games
in [5, 12, 14] and those with concise representations using schemes in [4, 8, 1]. The main idea
is that if a cooperative game (N, v) is described in terms of an alternative representation
I and an algorithm A with low time and space complexities that computes v, formalized
in terms of decomposition, then we can compute the Shapley value efficiently. For each
generalization, we consider two cases: the order-agnostic case in which A processes agents
in an arbitrary order, and the order-specific case in which A processes in a specific order,
like the greedy heuristic in Theorem 6. We apply generalizations to give examples of coop-
erative games in which the Shapley value can be computed efficiently. For missing proofs,
see Appendix C.

Definition 8. Assume a cooperative game (N, v) has an alternative representation I and
a deterministic algorithm A such that v(S) = A(I, S) for all S ⊆ N . Algorithm A has a
decomposition (Asetup, Aupdate, Afinal) if A(I, S) can be computed as follows:

1: Asetup(I) outputs I ′, x
2: for i ∈ S do

3: x = Aupdate(I ′, i,x)
4: end for
5: Return Afinal(I

′,x)

We denote the the running times of the sub-algorithms of the decomposition tsetup, tupdate,
and tfinal, respectively.

Note x = (x1, x2, . . .) is a vector of variables that is initialized to the some values
independent of subset S and determines algorithm A’s final return value. I ′ is an auxiliary
data structure or states that only depend on the representation I and is used in subsequent
steps for ease of computation; I ′ can be simply I if no such preprocessing is necessary. We
generalize Theorem 2:

Theorem 9. Assume a cooperative game (N, v) has an alternative representation I and a
deterministic algorithm A that computes v. If A has a decomposition (Asetup, Aupdate, Afinal)
such that at most n(I) variables x are used with each taking at most m(I) possible
values as S ranges over all subsets of N , then the Shapley value can be computed in
O(tsetup + tupdatem

n|N |2 + tfinalm
n|N |) for each agent. In order-specific cases, for Steps

2-4 of Definition 8, the running time is O(tsetup + tupdatem
2n|N |2 + tfinalm

2n|N |). Note that
n and m are representation-dependent numbers and the argument I has been omitted.

Proof. Given the alternative representation I, we compute the Shapley value of agent i.
We associate v(S) with the final values, xS,final, of n(I) variables x in A(I, S), for all
S ⊆ N \ {i}. We partition 2N\{i} by the pair (|S|,xS,final) into at most mn|N | partitions,
omitting the argument I from n and m. Let X be the set of all possible final values of
the variables x; note that its cardinality is at most mn. We compute the cardinalites
of the partitions using dynamic programming. Let N ′ = N \ {i}, ordered and relabeled
1, . . . , |N | − 1 and i = |N |. For 0 ≤ j ≤ |N | − 1, 0 ≤ s ≤ j, and v ∈ X , we define
ĉ(j, s,v) = #

{
S ⊆ N ′1,j : |S| = s,xS,final = v

}
. ĉ has the recurrence relation ĉ(j, s,v) =

ĉ(j − 1, s,v) +
∑

u:Aupdate(I′,j,u)=v ĉ(j − 1, s − 1,u) with the base case ĉ(0, 0, s) = 1, where

s is the initial states of variables x. Using Asetup, we compute I ′ and the inital values s
in O(tsetup). Using the recurrence relation and Aupdate, we compute ĉ(j, s,v) for all j, s,
and v in time O(tupdatem

n|N |2). Note that for a subset S ⊆ N \ {i}, we can compute
agent i’s marginal contribution to S, v(S ∪ {i}) − v(S), in O(tupdate + tfinal) from the
final values of x associated with the partition that S belongs to, i.e., xS,final; let mi(v)
be the agent i’s marginal contribution to subsets associated with v ∈ X . By Lemma 3,

φi =
∑

v∈X
∑|N |−1
s=0 ĉ(|N |−1, s,v) s!(|N |−s−1)!

|N |! mi(v), and the Shapley value can be calculated

in time O((tupdate + tfinal)m
n|N |) using the precomputed values of ĉ. The overall running

time is O(tsetup + tupdatem
n|N |2 + (tupdate + tfinal)m

n|N |).
Now assume that the agents have to be processed in a specific order determined by rep-

resentation I. For a given S and its final values xS,final, we cannot compute xS∪{i},final as
Aupdate(I ′, i,xS,final) and compute agent i’s marginal contribution to S, because it would
violate the order if some agents in S have to be processed after i. Instead, we asso-
ciate S with the final values xS,final and xS∪{i},final and partition 2N\{i} by the tuple
(|S|,xS,final,xS∪{i},final) into at most m2n|N | partitions, omitting the argument I. Fol-
lowing the same argument as before, we get the running time O(tsetup + tupdatem

2n|N |2 +
tfinalm

2n|N |).

The following definition and theorem generalize Theorem 6 and can also be considered
a specialization of Theorem 9.

Definition 10. Assume a cooperative game (N, v) has an alternative representation
(M,w,A) as described in Lemma 7 and such that v(S) =

∑
e∈A(S) w(e), for all S ⊆ N .

Algorithm A has a per-element decomposition (Aesetup, A
e
update, A

e
final) for all e ∈M if A(S)

can be computed as follows:

1: Initialize S′ = ∅
2: for e ∈M do
3: Aesetup(M,w) outputs I ′, x
4: For i ∈ S: x = Aeupdate(I ′, i,x)
5: If Afinal(I

′,x) = 1, then S′ = S′ ∪ {e}
6: end for
7: Return S′

We denote the upper bounds, over all e ∈M , on running times of the sub-algorithms of the
per-element decomposition tsetup, tupdate, and tfinal, respectively.

Theorem 11. Assume a cooperative game (N, v) has an alternative representa-
tion (M,w,A), as given in Lemma 7. If A has a per-element decomposition
(Aesetup, A

e
update, A

e
final) for all e ∈ M such that at most n(M,w) variables x are used with

each taking at most m(M,w) possible values as S ranges over all subsets of N and e over
M , the Shapley value can be computed in O((tsetup + tupdatem

n|N |2 + tfinalm
n|N |)|M |)

for each agent. In order-specific cases, for Step 4 of Definition 10, the running time is
O((tsetup + tupdatem

2n|N |2 + tfinalm
2n|N |)|M |). Note that n and m are representation-

dependent numbers, and the argument (M,w) has been omitted.

Using the generalizations, we prove previous results (and a new one) on efficient com-
putation of the Shapley value up to a (pseudo) polynomial factor in the running time. The
slightly slower running times can be attributed to our generalizations’ inability to derive
closed form expressions on a game-by-game basis.4 As generalizations apply in a black-box
manner, we believe the loss in running time is reasonable for (pseudo) polynomial time
computation:

Corollary 12. (Weighted Majority Games) Assume a cooperative game (N, v) has a rep-
resentation given by |N | + 1 nonnegative integers q, w1, . . . , w|N | such that v(S) is 1 if∑
i∈S wi ≥ q, or 0 otherwise. Then, the Shapley value can be computed in a pseudo-

polynomial time O(q|N |2) for each agent. (Identical to [12])

Corollary 13. (MC-net Representation) Assume a cooperative game (N, v) has a marginal-
contribution (MC) net representation with boolean rules R = {r1, . . . , rm} with each rule ri
having value vi and the form (p1∧. . .∧pa∧¬n1∧. . .∧¬nb) such that v(S) =

∑
ri:Ssatisfies ri

vi
for all S ⊆ N .5 Then, the Shapley value can be computed in O(m|N |2(maxi |ri|)2) for each
agent, where |r| is the number of literals in rule r. (Compare to O(mmaxi |ri|), a linear
time in representation size, in [8])

Corollary 14. (Multi-Issue Representation) Assume a cooperative game (N, v) has a multi-
issue representation with subsets C1, . . . , Ct ⊆ N and characteristic functions vi : 2Ci → R
for all i such that v(S) =

∑t
i=1 vi(S ∩ Ci) for all S ⊆ N . Then, the Shapley value can be

computed in O(t2maxi |Ci||N |2 maxi |Ci|) for each agent. (Compare to O(t2maxi |Ci|) in [4])

Corollary 15. (Top-k Problem) Assume a cooperative game (N, v) has a representation
given by |N |+1 nonnegative integers k,w1, . . . , w|N | such that v(S) = maxS′⊆S:|S′|≤k w(S′).
Then, the Shapley value can be computed in a polynomial time O(|N |3) for each agent. (This
is our own problem.)

4For instance, evaluating the sum
∑n

i=1 i in O(n) instead of using the identity
n(n+1)

2
=

∑n
i=1 i in O(1).

5If r = (1 ∧ 2 ∧ ¬3), then S = {1, 2} satisfies r, but S = {1, 3} does not.

7 Conclusion

We have introduced a class of cooperative games called budgeted games and investigated the
knapsack version. We presented exact and approximate algorithms, mainly via finding an
efficient algorithm with low time and space complexities that computes the value function.
We proved generalizations to demonstrate our techniques apply more broadly and provided
examples. We believe our techniques can have applications beyond the games considered in
this paper and to other concepts such as the Banzhaf index.

Acknowledgements. We would like to thank Vasilis Gkatzelis for his helpful comments.

References

[1] K. V. Aadithya, T. P. Michalak, and N. R. Jennings. Representation of coalitional
games with algebraic decision diagrams. AAMAS’11.

[2] Y. Bachrach, O. Lev, S. Lovett, J. S. Rosenschein, and M. Zadimoghaddam. Coopera-
tive weakest link games. AAMAS’14. To Appear.

[3] Y. Bachrach, E. Markakis, E. Resnick, A. D. Procaccia, J. S. Rosenschein, and
A. Saberi. Approximating power indices: Theoretical and empirical analysis. Au-
tonomous Agents and Multi-Agent Systems, Mar. 2010.

[4] V. Conitzer and T. Sandholm. Computing shapley values, manipulating value division
schemes, and checking core membership in multi-issue domains. AAAI’04.

[5] X. Deng and C. H. Papadimitriou. On the complexity of cooperative solution concepts.
Mathematics of Operations Research, 19(2), 1994.

[6] U. Faigle and W. Kern. On some approximately balanced combinatorial cooperative
games. Zeitschrift fr Operations Research, 38(2), 1993.

[7] S. S. Fatima, M. Wooldridge, and N. R. Jennings. A linear approximation method for
the shapley value. Artificial Intelligence, 172(14), 2008.

[8] S. Ieong and Y. Shoham. Marginal contribution nets: A compact representation scheme
for coalitional games. EC ’05.

[9] S. Ieong and Y. Shoham. Multi-attribute coalitional games. EC ’06.

[10] J. Kuipers. Bin packing games. Mathematical Methods of Operations Research, 47(3),
1998.

[11] R. T. Ma, D. Chiu, J. C. Lui, V. Misra, and D. Rubenstein. Internet economics: The
use of shapley value for isp settlement. CoNEXT’07.

[12] T. Matsui and Y. Matsui. A survey of algorithms for calculating power indices of
weighted majority games. J. Oper. Res. Soc. Japan, 2000.

[13] Y. Matsui and T. Matsui. Np-completeness for calculating power indices of weighted
majority games. Theoretical Computer Science, 2001.

[14] T. P. Michalak, K. V. Aadithya, P. L. Szczepanski, B. Ravindran, and N. R. Jennings.
Efficient computation of the shapley value for game-theoretic network centrality. J.
Artif. Int. Res., Jan. 2013.

[15] V. Misra, S. Ioannidis, A. Chaintreau, and L. Massoulié. Incentivizing peer-assisted
services: A fluid shapley value approach. SIGMETRICS ’10.

[16] R. Narayanam and Y. Narahari. A shapley value-based approach to discover influential
nodes in social networks. IEEE Transactions on Automation Science and Engineering,
8(1):130–147, Jan 2011.

[17] X. Qiu. Bin packing games. Master’s thesis, University of Twente, 2010.

[18] L. S. Shapley. A value for n-person games. Contributions to the theory of games,
2:307–317, 1953.

[19] V. V. Vazirani. Approximation Algorithms. Springer-Verlag New York, Inc., New York,
NY, USA, 2001.

A Missing Proofs from Section 4

Proof. (Theorem 1) We reduce the decision version of the classical knapsack problem, which
is NP-complete, to the problem of computing the Shapley value. If there is a polynomial
time algorithm for the Shapley value computation, we use it to compute the Shapley value
of the agents, φ1, . . . , φ|N |. By the efficiency property, φ1 + · · · + φ|N | = v(N), which is
exactly the solution of the optimization version of the classical knapsack problem. Then,
we can solve the decision version.

Proof. (Lemma 3) We start from (1):

φi =
∑

S⊆N\{i}

f(|S|)(v(S ∪ {i})− v(S))

=
∑

S⊆N\{i}

pi∑
p=1

|N |−1∑
s=0

f(s)mi(p) Id(|S| = s, Pi(S) = p)

=

pi∑
p=1

|N |−1∑
s=0

f(s)mi(p)

 ∑
S⊆N\{i}

Id(|S| = s, Pi(S) = p)


=

pi∑
p=1

|N |−1∑
s=0

c(i, p, s)
s!(N − s− 1)!

N !
mi(p),

where f(x) = x!(|N |−x−1)!
|N |! for a nonnegative integer x. Given the Shapley value equation,

the running time is straightforward to obtain.

Proof. (Lemma 4) We bound the agent i’s marginal contribution to S with respect to v′:
v′(S∪{i})−v′(S) ≤ v(S∪{i})−(v(S)−α) = v(S∪{i})−v(S)+α, and v′(S∪{i})−v′(S) ≥
v(S ∪ {i})− v(S)−α. Then, marginal contributions computed with respect to v and v′ are

within α of each other. Using the Shapley value equation φi = 1
|N |!

∑
π∈Π v(P iπ∪{i})−v(P iπ),

|φi − φ′i| =

∣∣∣∣∣ 1

|N |!
∑
π∈Π

(v(P iπ ∪ {i})− v(P iπ))− 1

|N |!
∑
π∈Π

(v′(P iπ ∪ {i})− v′(P iπ))

∣∣∣∣∣
≤ 1

|N |!
∑
π∈Π

∣∣(v(P iπ ∪ {i})− v(P iπ)
)
−
(
v′(P iπ ∪ {i})− v′(P iπ)

)∣∣
≤ 1

|N |!
∑
π∈Π

α

= α.

B Missing Proofs from Section 5

Proof. (Lemma 7) The proof is nearly identical to that of Lemma 3. We start from (1):

φi =
∑

S⊆N\{i}

f(|S|)(v(S ∪ {i})− v(S))

=
∑

S⊆N\{i}

f(|S|)

 ∑
e∈A(S∪{i})

w(e)−
∑

e∈A(S)

w(e)


=

∑
S⊆N\{i}

∑
e∈M

|N |−1∑
s=0

f(s)w(e) (Id(Cs, e ∈ A(S ∪ {i}))− Id(Cs, e ∈ A(S)))

=
∑
e∈M

|N |−1∑
s=0

f(s)w(e)

 ∑
S⊆N\{i}

Id(Cs, e ∈ A(S ∪ {i}))−
∑

S⊆N\{i}

Id(Cs, e ∈ A(S))


=
∑
e∈M

|N |−1∑
s=0

(c+(i, e, s)− c−(i, e, s))
s!(|N | − s− 1)!

|N |!
w(e),

where f(x) = x!(|N |−x−1)!
|N |! for a nonnegative integer x and Cs is the clause |S| = s.

Given the Shapley value equation, the running time is straightforward to obtain.

Proof. (Theorem 6) We compute the Shapley value φi for some fixed agent i. In what
follows, we assume that the agents are sorted and reindexed so that w1

l1
≥ . . . ≥ w|N|

l|N|
.

If there are multiple agents with the same maximum weight for the argmax operator, we
choose the one with the lowest index.

For ease of exposition, we use A′′ to denote Step 2 of the greedy heuristic so that A′′(S, b)
is exactly the set S′ in A′(S, b). We also drop the bin size b when it is equal to lbin. Note
v(S) =

∑
k∈A′(S) wk = w(A′(S)) for all S ⊆ N . In order to use Lemma 7, we choose

the alternative representation (M,w,A) where M = N , the weight function w is such that
w(e) = we,∀e, and A is the greedy heuristic A′. We consider three cases: e = i, e > i, and
e < i.

Case 1) e = i: For c−(i, s, i), we count subsets S ⊆ N \ {i} such that i ∈ A′(S). Clearly,
c−(i, s, i) = 0. For c+(i, s, i), we count subsets S ⊆ N \ {i} such that i ∈ A′(S ∪ {i}). Note
i ∈ A′(S ∪ {i}) if 1) agent i is included in S′ in Step 2 of A′ and S′ is finally returned in
Step 3, or 2) agent i is not included in S′, but is selected in Step 1 and finally returned

in Step 3. To each subset S ⊆ N \ {i}, we divide the set S into two parts, S1,i−1 and

Si+1,|N |, and associate tuple (s1, l̂, ŵ1, a1, s2, ŵ2, a2) where |S1,i−1| = s1, l(A′′(S1,i−1)) = l̂,
w(A′′(S1,i−1)) = ŵ1, argmaxk∈S1,i−1

wk = a1, |Si+1,|N || = s2, w(A′′(Si+1,|N |)) = ŵ2, and
argmaxk∈Si+1,|N|

wk = a2. Note the tuple has enough information to reconstruct the steps
of the greedy heuristic and check aforementioned conditions. Since the total number of
possible tuples is bounded, we count the number of sets S ⊆ N \ {i} for each tuple and sum
up to determine c+(i, s, i). We further decouple steps of A′ on S1,i−1 and Si+1,|N | by using
intermediate bin sizes, the parameter b in the coefficient ĉ2b below, and consider each part

independently using smaller tuples (s1, l̂, ŵ1, a1) and (s2, ŵ2, a2), respectively.

We define ĉ1(j, s1, l̂, ŵ1, a1) = #{S ⊆ N1,j : |S| = s1, l(A′′(S)) = l̂, w(A′′(S)) =
ŵ1, argmaxk∈S wk = a1}, for 1 ≤ j ≤ i − 1, and ĉ2b(j, s2, ŵ2, a2) = #{S ⊆ Ni+1,j : |S| =
s2, w(A′′(S, b)) = ŵ2, argmaxk∈S wk = a2}, for i+ 1 ≤ j ≤ |N | and 0 ≤ b ≤ lbin. Then, the

number of subsets S ⊆ N \{i} with tuple (s1, l̂, ŵ1, a1, s2, ŵ2, a2) with i is contained in S′ in

Step 2 of A′(S) is the product of the number of subsets S1 ⊆ N1,i−1 with tuple (s1, l̂, ŵ1, a1)
and the number of subsets S2 ⊆ Ni+1,|N | with tuple (s2, ŵ2, a2), where the effective bin size

for S2 is lbin−l̂−li. These sets satisfy the first set of conditions for i ∈ A′(S∪{i}) if and only if

Id(l̂ ≤ lbin−li, ŵ1 +ŵ2 +wi ≥ max{wa1 , wa2}) = 1. We reason similarly for the second set of

conditions and get c+(i, s, i) =
∑(

ĉ1 · ĉ2
lbin−l̂−li

· Id(C1, C2) + ĉ1 · ĉ2
lbin−l̂

· Id(C3, C4, C5)
)

,

where the summation is over s1 + s2 = s, 1 ≤ a1 < a2 ≤ |N |, 0 ≤ l̂ ≤ lbin,

0 ≤ ŵ1, ŵ2 ≤ wmax|N |; ĉ1’s have argument (i − 1, s1, l̂, ŵ1, a1) and ĉ2’s have argument

(|N |, s2, ŵ2, a2); the conditions are C1 = (l̂ ≤ lbin−li), C2 = (ŵ1+ŵ2+wi ≥ max{wa1 , wa2}),
C3 = (l̂ > lbin − li), C4 = (i = argmaxk∈{a1,a2,i} wk), and C5 = (wi > ŵ1 + ŵ2). Using

dynamic programming, ĉ1 can be computed in O(lbinwmax|N |4) and ĉ2b for all 0 ≤ b ≤ lbin

can be computed in O(lbinwmax|N |4). Hence, each coefficient c+(i, s, i) can be computed in
O(lbinwmax

2|N |6) using precomputed values of ĉ1 and ĉ2b .
The analyses for the other cases are similar. We divide the set N at i and e into

three parts and associate each subset satisfying e ∈ A′(S ∪ {i}) or e ∈ A′(S) a tuple that
summarizes the steps of the greedy heuristic over these parts. Then, we proceed as before
and compute each coefficient, c+(i, s, e) and c−(i, s, e), in O(lbin

5wmax
5|N |11).

Putting all the cases together, we can compute the necessary coefficients c(i, e, s) in time
O(lbin

5wmax
5|N |11) per coefficient. By Lemma 7, we can compute the Shapley value in

pseudo-polynomial time of O(lbin
5wmax

5|N |13).

C Missing Proofs from Section 6

Proof. (Theorem 11) Given the alternative representation (M,w), we compute the Shap-
ley value of agent i using Lemma 7. We show how to compute the quantity φi,e =∑|N |−1
s=0 (c+(i, s, e) − c−(i, s, e)) s!(|N |−s−1)!

|N |! for some arbitrary e ∈ M . We associate v(S)

with the final states, xS,final, of n(M,w) variables x in A for all S ⊆ N \ {i}. We parti-
tion 2N\{i} by the pair (|S|,xS,final) into at most mn|N | partitions, omitting the argument
(M,w) from n and m.Let X be the set of all final values of the variables x in A. We
compute the cardinalities of the partitions using dynamic programming. Let N ′ = N \ {i},
ordered and relabeled 1, . . . , |N | − 1 and i = |N |. For 0 ≤ j ≤ |N | − 1, 0 ≤ s ≤ j, and
v ∈ X , we define ĉ(j, s,v) = #

{
S ⊆ N ′1,j : |S| = s,xS,final = v

}
. ĉ has the recurrence re-

lation ĉ(j, s,v) = ĉ(j − 1, s,v) +
∑

u:Ae
update(I′,j,u)=v ĉ(j − 1, s − 1,u) with the base case

ĉ(0, 0, s) = 1, where s is the initial states of variables x. Using Aesetup, we compute I ′ and
the inital values s in O(tsetup). Using the recurrence relation and Aeupdate, we compute

ĉ(j, s,v) for all j, s, and v in time O(tupdatem
n|N |2). Note that for a subset S ⊆ N \ {i},

we can compute if e ∈ A(S) and if e ∈ A(S ∪ {i}) in O(tfinal) using the information as-
sociated with the partition that S belongs to. Then, we can compute the quantity φi,e in
O(tfinalm

n|N |) using precomputed values of ĉ, and the Shapley value φi =
∑
e∈M φi,e in

O((tsetup + tupdatem
n|N |2 + tfinalm

n|N |)|M |) overall.
For the order-specific case, we follow the same line of reasoning as in Theorem 9.

Proof. (Corollary 12) We use the order-agnostic version of Theorem 9 with representation
I = (q, w1, . . . , w|N |). We construct algorithm A with decomposition (Asetup, Aupdate, Afinal)
as follows. As variables x, we use an indicator variable taking values 0, . . . , q to represent
that total weight of subset of agents, capped at q. In Asetup, we initialize x to 0. In Aupdate,
for given i ∈ S, we update the indicator variable by adding wi to its value while capping the
total at q, In Afinal, we return 1 if x = q, or 0 otherwise. Therefore, n(I) = 1, m(I) = q+ 1,
tsetup = O(1), tupdate = O(1), and tfinal = O(1). This leads to an O(q|N |2) algorithm for
computing the Shapley value for each agent.

Proof. (Corollary 13) We use the order-agnostic version of Theorem 11 with repre-
sentation (M,w,A) where M = {er : r ∈ R}, w(er) = vr for each rule r, and
A(S) = {er : S satisfies r}. For each er ∈ M , we construct a per-element decompo-
sition (Asetup, Aupdate, Afinal) for A, omitting the superscript e. Assume the rule r is
(p1 ∧ . . . ∧ pa ∧ ¬n1 ∧ . . . ∧ ¬nb) where each literal represents an agent. In Asetup, we
create a 0/± 1 array of length |N | with +1’s in the positions corresponding to agents with
positive literals in r, −1’s in the positions corresponding to agents with negative literals,
and 0’s elsewhere. As variables x, we use two counters: x1 that is initialized to 0 and incre-
mented by 1 for each occurrence of positive literal agent in S, and x2 that is initialized to b
and decremented by 1 for each occurrence of negative literal agent in S. In words, x1 is equal
to the number of positive literal agents in S and b− x2 is equal to the number of negative
literal agents in S. In Aupdate, for given i ∈ S, we check the agent’s value in the array and
update the variables accordingly. In Afinal, we output 1 if x1 = a and x2 = b, or 0 other-
wise. Therefore, n(M,w) = 2, m(M,w) = maxi|ri|, tsetup = O(|N |), tupdate = O(1), and
tfinal = O(1). This leads to an O(m|N |2(maxi |ri|)2) algorithm for computing the Shapley
value for each agent.

Proof. (Corollary 14) We use the order-agnostic version of Theorem 11 with representation
(M,w,A) where M = {eiC : 1 ≤ i ≤ t, C ⊆ Ci}, w(eiC) = vi(C) for all i and C ⊆ Ci,
and A(S) = {e1,S∩C1

, . . . , et,S∩Ct
} for all S ⊆ N . Note |M | =

∑
i 2|Ci|. We construct per-

element decomposition (Asetup, Aupdate, Afinal) for each e ∈ M for A, omitting superscript
e. Assume eiC ∈ M . As variable x, we use a counter for the number of elements of S,
to be given as an input, in C. In Asetup, we initialize a 0/1 array of length |N | with 1’s
in the positions corresponding to elements in C and 0’s elsewhere. In Aupdate, for given
i ∈ S, we increment x if i ∈ C. In Afinal, we check that x = |C|. Therefore, n(M,w) = 1,
m(M,w) = maxi |Ci|, tsetup = O(|N |), tupdate = O(1), and tfinal = O(1). This leads to an
O(t2maxi |Ci||N |2 maxi |Ci|) algorithm for computing the Shapley value for each agent.

Proof. (Corollary 15) We use the order-agnostic version of Theorem 11 with representation
(M,w,A) where M = N , w(i) = wi for all i, and
A(S) = {at most k top agents by weight in S}. For simplicity, we assume the weights are
all different; otherwise, we break ties consistenetly. For each e ∈ M , we construct a per-
element decomposition (Asetup, Aupdate, Afinal), omitting the superscript e. As variables x,
we use a counter that counts the number of agents with weight greater than agent e’s,
capped at k. In Asetup, we initialize the counter x to 0. In Aupdate, for given i ∈ S, we
increment the counter if wi > we, capping the counter at k. In Afinal, we output 1 if x < k,
or 0 otherwise. Therefore, n(M,w) = 1, m(M,w) = k + 1, tsetup = O(1), tupdate = O(1),

and tfinal = O(1). This leads to an O(k|N |2) algorithm for computing the Shapley value for
each agent.

If k ≥ |N |, then v(S) =
∑
i∈S wi for all S and the Shapley value of agent i is simply wi.

So, we can compute the Shapley value in O(1) for each agent after reading the representation.
If k < |N |, then the above algorithm suffices and its running time reduces to O(|N |3). In
either case, we get a polynomial time algorithm.

Smriti Bhagat
Technicolor Research
Palo Alto, USA
Email: smriti.bhagat@technicolor.com

Anthony Kim
Computer Science Department
Stanford University
Stanford, USA
Email: tonyekim@stanford.edu

S. Muthukrishnan
Computer Science Department
Rutgers University
New Brunswick, USA
Email: muthu@cs.rutgers.edu

Udi Weinsberg
Technicolor Research
Palo Alto, USA
Email: udi.weinsberg@technicolor.com

