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Abstract

We define a family of rules for dividing m indivisible goods among agents, parameterized by a

scoring vector and a social welfare aggregation function. We assume that agents’ preferences

over sets of goods are additive, but that the input is ordinal: each agent simply ranks single

goods. Similarly to (positional) scoring rules in voting, a scoring vector s = (s1, . . . ,sm) consists

of m nonincreasing nonnegative weights, where si is the score of a good assigned to an agent

who ranks it in position i. The global score of an allocation for an agent is the sum of the scores

of the goods assigned to her. The social welfare of an allocation is the aggregation of the scores

of all agents, for some aggregation function ⋆ such as, typically, + or min. The rule associated

with s and ⋆ maps a profile to (one of) the allocation(s) maximizing social welfare. After

defining this family of rules, and focusing on some key examples, we investigate some of the

social-choice-theoretic properties of this family of rules, such as various kinds of monotonicity,

separability, envy-freeness, and Pareto efficiency. Then we focus on the computation and

approximation of winning allocations.

1 Introduction

Fair division of a divisible good has put forth an important literature about specific procedures,

either centralized [17] or decentralized [9]. Fair division of a set of indivisible goods has, perhaps

surprisingly, been mainly addressed by looking for allocations that satisfy a series of properties (such

as equity or envy-freeness) and less often by defining specific allocation rules. A notable exception is

a series of papers that assume that each agent values each good by a positive number, the utility of an

agent is the sum of the values of the goods assigned to her, and the resulting allocation maximizes

social welfare; in particular, the Santa Claus problem [2] considers egalitarian social welfare, which

maximizes the utility of the least happy agent. A problem with these rules is that they strongly rely

on the assumption that the input is numerical. Now, as widely discussed in social choice, numerical

inputs have the strong disadvantage that they suppose that interpersonal preferences are comparable.

Moreover, from a practical designer point of view, eliciting numerical preferences is not easy: in

contexts where money does not play any role, agents often feel more at ease expressing rankings than

numerical utilities.

These are the main reasons why social choice – at least its subfield focusing on voting – usually

assumes that preferences are expressed ordinally. Surprisingly, while voting rules defined from

ordinal preferences have been addressed in hundreds of research articles, we can find only a few such

papers in fair division (with the notable exception of matching, discussed below). Brams, Edelman,

and Fishburn [6] assume that agents rank single goods and have additively separable preferences;

they define a Borda-optimal allocation to be one that maximizes egalitarian social welfare, where

the utility of an agent is the sum of the Borda scores of the objects assigned to her, and where the

Borda score of object gi for agent j ranges from 1 (when gi is j’s least preferred object) to m (when

gi is j’s most preferred object). Unlike Brams et al. [6], Herreiner and Puppe [15] assume that agents

should express rankings over subsets of goods, which, in the worst case, requires agents to express an

exponentially large input, which should be avoided for obvious reasons.

One setting where it is common to use ordinal inputs is two-sided matching. But there, only one

item is assigned to each agent, making this a rather different problem. This remark allows us to see
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fair division rules defined from ordinal inputs as a one-to-many extension of matching mechanisms.

Examples of practical situations when one has to assign not a single, but several (sometimes many)

items to each agent are common, and expressing quantitative utilities is not always feasible in such

cases: composition of sport teams, divorce settlement, exploitation of Earth observation satellites

(see [9] for more examples).

We start by generalizing Borda-optimal allocations [6] to arbitrary scoring vectors and aggregation

functions. Beyond Borda, the scoring vectors we consider are k-approval (the first k objects get

score 1 and all others get 0), lexicographicity (an item ranked in position k counts more than the

sum of all objects ranked in positions k+1 to m), and quasi-indifference (for short, QI: all objects

have roughly the same score, up to small differences). As for aggregation functions, we focus on

utilitarianism (⋆=+) and egalitarianism (⋆= min, as well as ⋆= leximin, which in a strict sense is

not an aggregation function). In Section 2, we define these allocation rules (we consider both resolute

rules and irresolute rules), and focus on a few particular cases. Section 3 is devoted to axiomatic

properties. While the properties of voting rules have been studied extensively, this is much less the

case for fair allocation of indivisible goods. Perhaps the most closely related research is [12] who

study the axiomatic property of multiwinner voting rules, with a focus on positional scoring rules,

while the relationship between multiwinner rules and resource allocation is addressed in [19].

In Section 3.1, we consider separability, which, roughly, says that if we partition the set of agents

into two subsets, A1 and A2, where Ai collectively gets the set Gi of goods under an optimal allocation

π , and if we then consider the allocation problem restricted to Ai and Gi, then the agents in Ai will

get the same set Gi of goods as in π . Section 3.2 considers monotonicity: if agent i gets good g

under the optimal allocation π , and if the rank of g is raised in i’s ranking with everything else being

unchanged, will i still get g? In Section 3.3, we look at two other forms of monotonicity, named

object monotonicity (if some good is added, will the new allocation make all agents at least as happy

as before?) and duplication monotonicity (which is also related to “cloning” agents). Finally, in

Section 3.4, we consider various consistency and compatibility properties. In Section 4, we focus

on the complexity of winner determination for a few key combinations of a scoring vector and an

aggregation function, considering both decision and functional problems. In Section 5, we give

several approximation results, some of which make use of picking sequences. Section 6 discusses

some open questions for future research.

2 Scoring Allocation Rules

Let N = {1, . . . ,n} be a set of agents and G = {g1, . . . ,gm} a set of indivisible goods (we will use

the terms good, item, and object as synonyms). An allocation is a partition π = (π1, . . . ,πn), where

πi ⊆ G is the bundle of goods assigned to agent i. We say that allocation π gives gi to j if gi ∈ π j.

In the general case, to compute an optimal allocation (for some notion of optimality) we would

need, for every agent, her ranking over all subsets of G. As listing all (or a significant part of) the

subsets of G would be infeasible in practice, we now make a crucial assumption: agents rank only

single objects. This assumption is not without loss of generality, and has important consequences;

in particular, it will not be possible for agents to express preferential dependencies between objects.

Under this assumption, a singleton-based profile P = (>1, . . . ,>n) is a collection of n rankings

(i.e. linear orders) over G, and a (singleton-based) allocation rule (respectively, an allocation

correspondence) maps any profile to an allocation (respectively, a nonempty subset of allocations).

For any ranking > (respectively, profile P) over G, and any subset G′ ⊂ G, we will write >|G′

(respectively, P|G′) to denote the restriction of > (respectively, P) to G′. Similarly, we denote the

restriction of P to any subset N′ ⊂ N by P|N′ .

We now define a family of allocation rules that more or less corresponds to the family of scoring

rules in voting (see, e.g., [7]).
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Definition 1 A scoring vector is a vector s = (s1, . . . ,sm) of real numbers such that s1 ≥ ·· · ≥ sm ≥ 0

and s1 > 0. Given a preference ranking > over G and g ∈ G, let rank(g,>) ∈ {1, . . . ,m} denote the

rank of g under >. The utility function over 2G induced by the ranking > on G and the scoring vector

s is for each bundle X ⊆ G defined by u>,s(X) = ∑g∈X srank(g,>).

A strictly decreasing scoring vector s satisfies si > si+1 for each i < m. A scoring vector is only

defined for a fixed number of objects. To deal with a variable number of objects, we introduce the

notion of extended scoring vector, as a function mapping each integer m to a scoring vector s(m) of

m elements. We consider the following specific extended scoring vectors:

• Borda scoring: borda = m 7→ (m,m−1, . . . ,1),1

• lexicographic scoring: lex = m 7→ (2m−1,2m−2, . . . ,1),

• quasi-indifference for some extended scoring vector s: s-qi=m 7→ (1+s1(m)/M, . . . ,1+sm(m)/M),
with M ≫ m ·max{s1(m), . . . ,sm(m)}= m · s1(m), where M is an arbitrary and large integer.

• k-approval: k-app = m 7→ (1, . . . ,1,0, . . . ,0), where the first k entries are ones and all remaining

entries are zero.

In the following, we will often abuse notation and use scoring vectors and extended scoring vectors

interchangeably, and omit the parameter m when the context is clear.

Note that quasi-indifference makes sense for settings where all agents should get the same number

of objects (plus/minus one). An example of quasi-indifference scoring vector would be the one

proposed by Bouveret and Lang [5], namely borda-qi = (1+m/M,1+ (m−1)/M, . . . ,1+ 1/M).
For example, let G = {a,b,c} be a set of three goods and let two agents have the following

preference profile: (a >1 b >1 c, b >2 c >2 a). Let π = ({a},{b,c}). Then, for the Borda scoring

vector, agent 1’s bundle {a} has value 3 and agent 2’s bundle {b,c} has value 3+2 = 5.

It is important to note that we do not claim that these numbers actually coincide, or are even

close to, the agents’ actual utilities (although, in some specific domains, scoring vectors could be

learned from experimental data). But this is the price to pay for defining rules from an ordinal input

(see the Introduction for the benefits of ordinal inputs). This tradeoff is very common in voting

theory: the well-studied family of scoring rules in voting theory (including the Borda rule) proceeds

exactly the same way; voters rank alternatives, and the ranks are then mapped to scores; the winning

alternatives are those that maximize the sum of scores. If we aim at maximizing actual social welfare,

then we have to elicit the voters’ (numerical) utilities rather than just asking them to rank objects.

Caragiannis and Procaccia [10] analyze this ordinal-cardinal tradeoff in voting and show that the

induced distortion is generally quite low. A reviewer pointed out that this approach also can be seen

as optimizing the external perception of fairness or welfare.

The individual utilities are then aggregated using a monotonic, symmetric aggregation function

that is to be maximized. The three we will use here are among the most obvious ones: utilitarianism

(sum) and two versions of egalitarianism (min and leximin). Leximin refers to the (strict) lexicographic

preorder over utility vectors whose components have been preordered nondecreasingly. Formally,

for x = (x1, . . . ,xn), let x′ = (x′1, . . . ,x
′
n) denote some vector that results from x by rearranging the

components of x nondecreasingly, and define x <leximin y if and only if there is some i, 0 ≤ i < n,

such that x′j = y′j for all j, 1 ≤ j ≤ i, and x′i+1 < y′i+1, and x ≤leximin y means x <leximin y or x = y.

Let leximin denote the maximum on a set of utility vectors according to ≤leximin. For each scoring

vector s, define three allocation correspondences:

• Fs,+(P) = argmax
π ∑1≤i≤n u>i,s(πi),

1Note that the usual definition of the Borda scoring vector in voting is (m−1,m−2, . . . ,1,0). Here, together with [6] we

fix the score of the bottom-rank object to 1, meaning that getting it is better than nothing. For scoring voting rules, a translation

of the scoring vector has obviously no impact on the winner(s); for allocation rules, however, it does. See Example 2.
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• Fs,min(P) = argmax
π

min1≤i≤n{u>i,s(πi)}, and

• Fs,leximin(P) = argleximinπ(u>1,s(π1), . . . ,u>n,s(πn)),

where P = (>1, . . . ,>n) is a profile and π = (π1, . . . ,πn) an allocation. Whenever we write Fs,⋆, we

mean any one of Fs,+, Fs,min, and Fs,leximin.

Example 2 For n = 3 agents and m = 4 goods, G = {a,b,c,d}, let P = (c >1 b >1 a >1 d, c >2

a >2 b >2 d, b >3 d >3 c >3 a) = (cbad, cabd, bdca). Then, F(4,3,2,1),leximin(P) = {(c,ad,b)} and

F(3,2,1,0),leximin(P) = {(c,a,bd)}. (From now on, we sometimes omit stating “>i” explicitly in the

preferences, and parentheses and commas in allocations.)

Tie-breaking: Similarly as in voting theory, an allocation rule is defined as the composition of an

allocation correspondence and a tie-breaking mechanism, which breaks ties between allocations. One

particular type of deterministic tie-breaking mechanism consists in defining it from a linear order >T

over all allocations,2 or, when N and G are not both fixed, a collection of linear orders >N,G
T (which

we still denote by >T ) for all possible sets of agents and goods, N and G. We write π ≥T π
′ for

(π >T π
′ or π = π

′). As in voting theory, if the output of a correspondence F(P) is not a singleton,

then the most prioritary allocation in F(P) is selected: FT (P) = (T ◦F)(P) = max(>T ,F(P)).
We do not make any assumption as to how this tie-breaking relation is defined; our results hold

independently of that.

One may also wonder whether it is possible to define an anonymous tie-breaking mechanism,

as is common in voting. Formally, a tie-breaking mechanism >T is anonymous if and only if for

any permutation σ over N and any pair of allocations (π,π ′), we have π >T π
′ ⇔ σ(π)>T σ(π ′),

where σ(π) denotes the version of π where all shares have been permuted according to σ . In fact,

the answer is negative (we omit the easy proof): There is no deterministic anonymous tie-breaking

mechanism.

3 Axiomatic Properties

The properties we study in the paper are primarily defined for deterministic rules. Some of them

will be immediately generalizable for correspondences, and in that case we’ll also discuss whether

or not they hold for correspondences. However, others do not generalize in a straightforward way

to correspondences.3 For these properties, we will leave the study of whether they hold for scoring

resource allocation correspondences for further research.

3.1 Separability

Slightly reformulating Thomson [20], an allocation rule is consistent (we prefer to choose the

terminology “separable”) if for any allocation problem and any allocation π selected by the rule,

the allocation rule chooses the same allocation regardless of whether π is restricted to a subgroup

of agents or when reapplying the rule to a “reduced problem” obtained by imagining the departure

of any subgroup of the agents with their share. As the definition generalizes easily to allocation

correspondences, we define it for both.

2This choice comes with a loss of generality, as there are tie-breaking mechanisms that are not defined this way (we thank

a reviewer for this remark). Also, we rule out the possibility of randomly breaking ties.
3This is the case for all properties expressing that an agent prefers a set of allocations to another set of allocations (and

applies, e.g., to object monotonicity); for these properties there is not a unique way of generalizing the property, unlike in

voting where this is well-known, e.g., for strategy-proofness.
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Definition 3 Let P = (>1, . . . ,>n) be a profile over a set G of goods and consider any partition

of the set N of agents into two sets, N1 and N2, i.e., N1 ∪N2 = {1, . . . ,n} and N1 ∩N2 = /0. Let

π = (π1, . . . ,πn) and for j ∈ {1,2}, let G j =
⋃

i∈N j πi. An allocation rule F satisfies separability if

for each P and π , F(P|N1,G1) = π
1 and F(P|N2,G2) = π

2, where π
i denotes the restriction of π to Ni

and Gi. An allocation correspondence F satisfies separability if for each P and π , π ∈ F(P) if and

only if π
1 ∈ F(P|N1,G1) and π

2 ∈ F(P|N2,G2). Also, we say that a tie-breaking priority T is separable

if π
1 ≥T π

′1 and π
2 ≥T π

′2 implies π ≥T π
′.

Unfortunately, it looks like almost all our rules violate separability. We give a counterexample

that works for many choices of (s,⋆).

Example 4 Let m = 9, n = 3, ⋆ ∈ {+,min, leximin}, and s be a strictly decreasing vector. Con-

sider the preference profile P = (g1g4g3g6g8g7g2g5g9, g2g5g1g8g7g3g4g6g9, g3g6g1g2g9g4g5g7g8).
Fs,⋆(P) consists of the unique allocation π = (g1g4g8, g2g5g7, g3g6g9) for ⋆ ∈ {min, leximin},

and Fs,+(P) consists of the unique allocation π
′ = (g1g4,g2g5g7g8,g3g6g9). The restriction of

P to agents {1,2} and goods {g1,g2,g4,g5,g7,g8} is P′ = (g1g4g8g7g2g5, g2g5g1g8g7g4). For

⋆ ∈ {min, leximin}, Fs,⋆(P
′) consists of the unique allocation (g1g4g7, g2g5g8) 6= (g1g4g8, g2g5g7),

and Fs,+(P
′) consists of the unique allocation (g1g4g7g8,g2g5) 6= (g1g4,g2g5g7g8).

We conjecture that (perhaps under mild conditions on s and ⋆), no positional scoring allocation

rule is separable.

3.2 Monotonocity

The monotonicity properties below state that if an agent ranks a received good higher, all else being

equal, then this agent does not lose this good (monotonicity) or still receives the same bundle (global

monotonicity).

Definition 5 An allocation rule F is monotonic if for every profile P, agent i, and good g, if F(P)
gives g to i, then for every profile P′ resulting from P by agent i ranking g higher, leaving everything

else (i.e., the relative ranks of all other objects in i’s ranking and the rankings of all other agents)

unchanged, it holds that F(P′) gives g to i. F is globally monotonic if for every profile P, agent i,

and good g, if F(P) gives g to i, then for every profile P′ resulting from P by agent i ranking g higher,

all else being equal, we have F(P′)i = F(P)i.

Clearly, global monotonicity implies monotonicity. These definitions extend to correspondences,

but not in a unique way; therefore, we do not consider these extensions in the paper.

Theorem 6 FT
s,⋆ is monotonic for every scoring vector s and aggregation function ⋆ (and tie-breaking

priority T ).

The proof of Theorem 6 does not establish global monotonicity of FT
s,⋆; indeed, π = FT

s,⋆(P) does

not imply π = FT
s,⋆(P

′) in general. We have the following result.

Proposition 7 Let T be a separable tie-breaking priority. For each m ≥ 3 and for each strictly

decreasing scoring vector s = (s1, . . . ,sm), allocation rule FT
s,+ is not globally monotonic.

In order to show that FT
s,min and FT

s,leximin do not satisfy global monotonicity, the approach of

computing a winning allocation and showing that this allocation is not optimal for the modified

profile seems to fail. This is related to the fact that winner determination for both problems is

hard and “simple” profiles with (nearly) unique winning allocations do not seem to serve well as

counterexamples. Instead, we apply a utility-bounding approach.
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Theorem 8 For each m ≥ 7 and for each strictly decreasing scoring vector s = (s1, . . . ,sm) satisfying,

s1 − s2 + s3 − s4 > sm, allocation rules FT
s,min and FT

s,leximin do not satisfy global monotonicity.

For the remaining cases we conjecture that global monotonicity is not satisfied. This may depend

on the tie-breaking mechanism.

Corollary 9 For each scoring vector s ∈ {borda, lex} for m ≥ 7 goods, allocation rules FT
s,min and

FT
s,leximin do not satisfy global monotonicity. In addition, for each extended scoring vector s satisfying

s1(m)> s2(m)> · · ·> sm(m) for even m ≥ 4, allocation rules FT
s-qi,min and FT

s-qi,leximin do not satisfy

global monotonicity either.

3.3 Object and Duplication Monotonicity and Cloning

Object monotonicity is a dynamic property where additional goods are to be distributed. This means

that when new objects are added, no agent is worse off afterwards. In order to define this notion, since

some properties need comparability of bundles of goods, we lift agent i’s linear order >i to a strict

partial order ≻i over 2G by requiring monotonicity (A ⊃ B =⇒ A ≻i B) and pairwise dominance

(for all A ⊆ Gr {x,y}, A∪{x} ≻i A∪{y} if x >i y). For strict partial orders we then follow the

approach taken by Brams and King [8], Brams, Edelman, and Fishburn [6], and Bouveret, Endriss,

and Lang [3]: We distinguish between properties holding possibly (i.e., for some completion of the

partial preferences) and necessarily (i.e., for all completions).

Definition 10 Let ≻ be a strict partial order over 2G. We say A is possibly preferred to B, A ≻pos B,

if there exists a linear order ≻∗ refining ≻ such that A ≻∗ B. Analogously, A is necessarily preferred

to B, A ≻nec B, if for all linear orders ≻∗ refining ≻ we have A ≻∗ B. Allowing indifference, we

extend ≻pos to �pos and ≻nec to �nec.

Now, we are ready to define possible and necessary object monotonicity. These properties are

defined for deterministic rules only.

Definition 11 Let P = (>1, . . . ,>n) be a profile over the set G of goods and let P′ = (>′
1, . . . ,>

′
n) be

a profile that is obtained by adding one more good g to the set of goods, and such that the restriction

of P′ to G is P. An allocation rule F satisfies possible (respectively, necessary) object monotonicity if

for all P over G, P′ such that P is the restriction of P′ over G, and all i, we have F(P′)i �
pos
i F(P)i

(respectively, F(P′)i �
nec
i F(P)i).

Proposition 12 For all tie-breaking priorities T , FT
s,+ satisfies possible object monotonicity for all

scoring vectors s for n = 2 agents, yet does not do so for all n ≥ 3 and strictly decreasing scoring

vectors s.

Necessary object monotonicity might not be true even with only two agents for FT
+,s for some

tie-breaking mechanism T . This can be shown by a counterexample (omitted due to lack of space).

Monotonicity in agents has a natural translation in terms of voting power: to give more voting

power to a voter, one can just allow her to vote twice (or more). In other words: duplicating a voter

will give more weight to her ballot, and give her a higher chance to be heard. For weighted voting

games, the related issue of merging and splitting players (a.k.a. false-name manipulation) has been

studied [1, 18]. This property has a natural translation to the resource allocation context: informally,

two agents having the same preferences will get a better share together than if they were only one

participating in the allocation process. More formally:

Definition 13 Let P = (>1, . . . ,>n) be a profile over G and P′ = (>1, . . . ,>n,>n+1) be its extension

to n+1 agents, where >n+1=>n. An allocation rule F satisfies possible duplication monotonicity

if F(P′)n ∪F(P′)n+1 �
pos
i F(P)n; and it satisfies necessary duplication monotonicity if F(P′)n ∪

F(P′)n+1 �
nec
i F(P)n.
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It turns out that several scoring allocation rules satisfy at least possible duplication, provided

that we use “duplication-compatible” tie-breaking rules, namely, rules T that satisfy the following

property: let π and π
′ be two allocations on (>1, . . . ,>n,>n+1) (n and n+1 being a duplicated agent

as above); then π >n+1
T π

′ ⇒ (π1, . . . ,πn ∪πn+1)>
n
T (π ′

1, . . . ,π
′
n ∪π

′
n+1). For such tie-breaking rules

we have:

Theorem 14 For each scoring vector s, Fs,+ satisfies possible and necessary duplication monotonic-

ity, and Fs-qi,leximin and Flex,leximin both satisfy possible duplication monotonicity.

False-name manipulation has been studied in voting [11, 22], cooperative game theory [1, 18],

pseudonymous bidding in combinatorial auctions [23], and, somewhat relatedly, cloning has been

studied in voting [21, 13]. Applying this setting to resource allocation, we now assume that agents

can participate with multiple identities at the same time. Each of an agent’s clones will have the same

preferences as this agent. As they are from the point of view of the agents, we assume that each agent

knows its own linear order over 2G.

Definition 15 Let P = (>1, . . . ,>n) be a profile of linear orders over G and ≻i agent i’s linear order

over 2G extending >i. An allocation rule F is susceptible to cloning of agents at P by agent i with

≻i if there exists a nonempty set Ci of clones of i (each with the same linear order >i) such that
⋃

j∈Ci∪{i} π
′
j ≻i πi, where π = (π1, . . . ,πn) = F(P), P′ is the extension of P to the clones in Ci, and

π
′ = (π ′

1, . . . ,π
′
n+‖Ci‖

) = F(P′).

Proposition 16 If m ≥ 4 and m > n, then for each strictly decreasing scoring vector s = (s1, . . . ,sm),
allocation rules FT

s,min and FT
s,leximin are susceptible to cloning.

3.4 Consistency and Compatibility

Our scoring allocation rules are based on the maximization of a collective utility defined as the

aggregation of individual utilities. An orthogonal classical approach is to find an allocation that

satisfies a given (Boolean) criterion. Among the classical criteria, envy-freeness states that no agent

would be better off with the share of another agent than it is with its own share, and a Pareto-efficient

allocation cannot be strictly improved for at least one agent without making another agent worse-off.

A natural question is to determine to which extent the scoring allocation rules are compatible

with these criteria. More formally:

Definition 17 Let P be a profile and let X be a property on allocations. An allocation correspondence

F is X-consistent (respectively, X-compatible) if it holds that if there exists an allocation satisfying X

for P, then all allocations in F(P) satisfy X (respectively, there is an allocation in F(P) that satisfies

X).

The interpretation is as follows: if F is X-consistent, then no matter which tie-breaking rule is

used, an allocation satisfying X will always be found by the allocation rule if such an allocation

exists. If F is X-compatible, it means that a tie-breaking rule which is consistent with X (that is: if

π � X and π
′ 6� X then π >T π

′) is needed to find for sure an allocation satisfying X when there is

one. Obviously, any X-consistent rule is also X-compatible.

We will now investigate the compatibility and consistency of the scoring rules for Pareto efficiency

and envy-freeness. However, these two criteria, which are initially defined for complete preorders

on 2G, need to be adapted to deal with incomplete preferences.4 For that, we borrow the following

adaptation from [4]. First, given a linear order ≻ on G, we say that a mapping w : G → R+ is

compatible with ≻ if for all g,g′ ∈ G, we have g ≻ g′ if and only of w(g) > w(g′); next, given

A,B ⊆ G, we say that A �pos B if ∑g∈A w(g)≥ ∑g∈B w(g) for some w compatible with ≻, and that

A �nec B if ∑g∈A w(g)≥ ∑g∈B w(g) for all w compatible with ≻. Then:

4Recall that we only know the preferences on singletons of objects, which have to be lifted to 2G for the raw criteria to be

directly applicable.
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Definition 18 Let (≻1, . . . ,≻n) be a profile of strict partial orders over 2G and let π,π ′ be two

allocations. We say (1) π
′ possibly Pareto-dominates π if π

′
i �

pos
i πi for all i and π

′
j ≻

pos
j π j for some

j; (2) π
′ necessarily Pareto-dominates π if for all π

′
i �

nec
i πi for all i and π

′
j ≻

nec
j π j for some j; (3) π

is possibly Pareto-efficient (PPE) if there is no allocation π
′ that necessarily Pareto-dominates π;

(4) π is necessarily Pareto-efficient (NPE) if there is no allocation π
′ that possibly Pareto-dominates

π; (5) π is possibly envy-free (PEF) if for every i and j, πi �
pos
i π j; (6) π is necessarily envy-free

(NEF) if for every i and j, πi �
nec
i π j.

5

An important question is, given a profile P, whether or not there exist a scoring vector s and an

aggregation function ⋆ such that the allocation correspondence Fs,⋆ is X-consistent or X-compatible,

where X ∈ {NEF, NPE}. While this question is not answered yet in general, we can first observe

that Fs,+ is not NEF-consistent for strictly decreasing scoring vectors. We can also prove that these

properties cannot be guaranteed for some of the specific scoring vectors considered here with min or

leximin aggregation. Note that if Fs,⋆ is not X-compatible then it is not X-consistent, but the converse

is not always true.

Proposition 19 Let ⋆ ∈ {min, leximin}. (1) Flex,⋆ is neither NEF-compatible nor NPE-compatible.

(2) Fs,⋆ is neither NEF-consistent nor NPE-compatible for s ∈ {borda,borda-qi}. (3) Fk-app,⋆ is

neither NEF-consistent nor NPE-consistent.

Proposition 20 If n = m, for each scoring vector s, Fs,min and Fs,leximin are NEF-compatible (and

even NEF-consistent for strictly decreasing s) and NPE-compatible.

4 Winner Determination

In this section, we study the question: What is the complexity of determining an optimal allocation

for a given scoring vector and a given aggregation function? For a given scoring vector s and a given

aggregation function Fs,⋆, where ⋆ ∈ {+,min, leximin}, define the following problem concerning

winner determination.

Fs,⋆-OPTIMAL-ALLOCATION (Fs,⋆-OA)

Given: A profile P of n agents’ rankings on a set G of indivisible goods and an allocation

π of G.

Question: Is π in Fs,⋆(P)?

It is easy to see that Fs,+-OA is in P and both Fs,min-OA and Fs,leximin-OA are in coNP for every

scoring vector s.

The search problem Fs,⋆-FIND-OPTIMAL-ALLOCATION (Fs,⋆-FOA) seeks to actually find an

optimal allocation. Clearly, Fs,+-FOA is solvable in polynomial time for any scoring vector s: every

good is simply given to an agent who ranks it best. Fs,min-FOA and Fs,leximin-FOA are much less

easy in general.6 We have the following easy polynomial-time upper bounds for restricted variants.

Proposition 21 (1) For each k, Fk-app,min-FOA is solvable in polynomial time. (2) Fs,min-FOA and

Fs,leximin-FOA are solvable in polynomial time for every scoring vector s if there are a constant

number of goods.

5For i 6= j, πi �
pos
i π j and πi ≻

pos
i π j (πi �

nec
i π j and πi ≻

nec
i π j) are equivalent, as the bundles to be compared are always

disjoint.
6Clearly, if the scoring vector s is part of the input then the problem Fs,⋆-FOA is (weakly) NP-hard, even for two agents

having the same preferences, by a direct reduction from PARTITION.
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FT
s,+ FT

s,min FT
s,leximin

separability ✗1 ✗1 ✗1

monotonicity ✓ ✓ ✓

global monotonicity ✗1,2 ✗1,3 ✗1,3

pos. object mon. ✓(n = 2), ✗(n ≥ 3)

nes. object mon. ✗4

pos. duplication mon. ✓5 ✓5

nes. duplication mon. ✓5

susceptible to cloning ✓1 (m > n) ✓1 (m > n)

PEF

-compatible ✓(m = n) ✓(m = n)

-consistent ✓1 (m = n) ✓1 (m = n)

NEF

-compatible ✗8, ✓(m = n) ✗8, ✓(m = n)

-consistent ✗1 ✗6,✗7,✗8, ✓1 (m = n) ✗6,✗7,✗8, ✓1 (m = n)

PPE-

-compatible ✓(m = n) ✓(m = n)

-consistent

NPE

-compatible ✗6,✗8, ✓(m = n) ✗6,✗8, ✓(m = n)

-consistent ✗6,✗7,✗8 ✗6,✗7,✗8

1for strictly decreasing scoring vector
2for separable tie-breaking T

3additional restrictions on the scoring vector
4depends on the tie-breaking T

5for duplication-compatible tie-breaking T
6for s ∈ {borda,borda-qi}

7for s = k-app
8for s = lex

Table 1: Overview of axiomatic results

(1) is a special case of the problem of maximizing egalitarian social welfare with a {0,1}-additive

function, known to be solvable in polynomial time by applying a network flow algorithm [14]. In

addition, we will study the following decision problem associated with the value of an optimal

allocation.

Fs,+-OPTIMAL-ALLOCATION-VALUE (Fs,+-OAV)

Given: A profile P = (>1, . . . ,>n) of n agents’ rankings on a set G of indivisible goods

and k ∈ N.

Question: Is there an allocation π = (π1, . . . ,πn) such that ∑1≤i≤n u>i,s(πi)≥ k?

Analogously, we define Fs,min-OAV by asking whether or not min1≤i≤n u>i,s(πi)≥ k, and Fs,leximin-

OAV where the bound is an ordered list (k1, . . . ,kn) of nonnegative integers and we ask whether

(u>1,s(π1), . . . ,u>n,s(πn))≥leximin (k1, . . . ,kn). Table 2 summarizes our complexity results.

Clearly, Fs,+-OAV is in P. Since the value of a given allocation for min and leximin can be

computed in polynomial time, Fs,min-OAV and Fs,leximin-OAV are in NP for each scoring rule s. For

lexicographic scoring and quasi-indifference, these bounds are tight.
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OA OAV FOA

Fs,+ in P in P pol. time

Fs,min coNP-comp∗ NP-comp∗ NP-hard∗

k-app or m ∈ O(1) in P in P pol. time

lex or e-qi coNP-comp# NP-comp# NP-hard#

borda coNP-comp NP-comp

lex or borda or
in P in P pol. time

e-qi, if n ∈ O(1)

Fs,leximin coNP-comp∗ NP-comp∗ NP-hard∗

lex or e-qi in coNP NP-comp# NP-hard#

borda in coNP NP-comp

lex or borda or
in P in P pol. time

e-qi, if n ∈ O(1)

∗if s is part of the input (even for two agents with same preferences)

# where e is a strictly decreasing scoring vector

Table 2: Overview of complexity results (gray: partial results)

Theorem 22 Flex,min-OAV and Flex,leximin-OAV both are NP-complete.

Theorem 23 For each fixed and strictly decreasing scoring vector e, Fe-qi,min-OAV and Fe-qi,leximin-

OAV both are NP-complete.

An anonymous reviewer of a previous draft of this paper obtained the following result.

Theorem 24 Fborda,min-OAV and Fborda,leximin-OAV both are NP-complete.

Using a slight adaptation of the proofs of Theorems 22, 23 and 24, we can show that Flex,min-OA,

Fε-qi,min-OA and Fborda,min-OA are coNP-complete. These proofs, however, do not directly extend to

the problems Flex,leximin-OA, Fε-qi,leximin-OA nor Fborda,leximin-OA.

Proposition 25 For each fixed and strictly decreasing scoring vector e, for each s∈ {borda, lex,e-qi},

Fs,min-OA is coNP-complete.

For a constant number of agents, we provide efficient algorithms for many of our problems via

dynamic programming.

Theorem 26 For each scoring vector e with polynomial (in m) bounded entries, for each s ∈
{borda, lex,e-qi} and for each ⋆∈ {min, leximin}, Fs,⋆-OA and Fs,⋆-FOA are solvable in polynomial

time if the number of agents is constant.

5 Approximation

Flex,min-OAV is NP-complete by Theorem 22. This raises the issue of whether there exists a

polynomial-time approximation algorithm for the search variant of this rule; this turns out to be the

case.

Proposition 27 There exists a (1/2)-approximation algorithm for Flex,min-FOA.

We now turn to a different kind of approximation: picking sequences, whose advantage is that

they avoid preference elicitation. We investigate the price to pay for that: in Section 5.1 (respectively,

Section 5.2), we focus on the ratio (respectively, the difference) between the value of the optimal

allocation and the value of the allocation obtained by applying a picking sequence.
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5.1 Multiplicative Price of Elicitation-Freeness

Simple protocols for allocating indivisible resources without eliciting the agents’ preferences first,

as discussed in [9, 5, 16], consist in asking agents to pick objects one after the other, following a

predefined sequence. An interesting question is whether using such protocols (without elicitation), or

simulating them from the known preferences (after full elicitation of the agents’ rankings) gives a

good approximation of our scoring rules: what is the loss incurred by the application (simulated or

not) of the picking sequence with respect to an optimal allocation? We give here two results for Borda

scoring: one for egalitarianism, one for utilitarianism. One may wonder why we should look for

such a result in the case of utilitarianism, given that there is a straightforward greedy algorithm that

outputs an optimal allocation. The reason is that picking sequences (when actually used, as opposed

to simulated ones) do better on one criterion: they are very cheap in communication, as agents only

reveal part of their preferences by picking objects, as opposed to revealing their full preferences in

the case of a centralized protocol.

Formally, a (picking) policy is a sequence σ = σ1 · · ·σm ∈ {1, . . . ,n}m, where at each step, agent

σi picks her most preferred object among those remaining (where we assume agents to use only their

sincere picking strategies). For instance, if m = 4 and n = 2, 1221 is the sequence where 1 picks

an object first, then 2 picks two objects, and 1 takes the last object. The precise definition of an

allocation induced by a picking sequence and a profile, assuming that agents act according to their

true preferences, is in [5]. Sequential allocation rules are appealing because they require even less

input from the agents than singleton-based allocation rules; however, this gain in communication

comes with a loss of social welfare. To quantify this loss, we define the following measure.

Definition 28 Given a policy σ (for n agents and m objects), a scoring vector s, and an aggregation

function ⋆ ∈ {+,min}, the multiplicative price of elicitation-freeness of σ , which we denote by

MPEFs,⋆(σ), is the worst-case ratio in social welfare between an optimal allocation for Fs,⋆ and the

sequential allocation, among all profiles with m goods.

Since we focus on s = borda only, we from now on simply write MPEF⋆(σ) to mean

MPEFborda,⋆(σ). We now give results about the quality of the outcome of balanced picking se-

quences (12 · · ·n)
m
n , assuming that m is a multiple of n. For instance, if m = 6 and n = 3, σ = 123123

is balanced.

Computing the price of elication-freeness is challenging. We focus on the regular policy σ
n
R =

(1 · · ·n)∗, but our results are very similar to those for other fair policies such as (1 · · ·nn · · ·1)∗.

5.1.1 Lower Bounds

A naive algorithm for computing the additive or multiplicative PEF for a given value m is simply to

generate all possible profiles and for each of them to compute an optimal allocation from which it is

possible to deduce the loss incurred by the sequential allocation. However, the number of profiles

grows exponentially in m, and computing an optimal allocation might be intractable. Still, it is

possible to lower-bound the PEF for a given m by computing the incurred loss for a subset of all

possible profiles. The conclusions that can be drawn from computational experiments is that for

⋆=+, in the worst case the loss seems to be in the order of m (which is good), whereas in the average

case the loss seems to grow also linearly with m. The conclusions for ⋆= min are somewhat similar,

but they are less firm, as we have not been able to go as far in the number of objects as for ⋆=+. We

now provide a formal lower bound for MPEF for ⋆=+, and the regular policy.

Proposition 29 For m = kn objects, MPEF+(σ
n
R) ≥ 1 + mn−m−n2+n

m2+mn
, and thus we have

MPEF+(σ
n
R)≥ 1+ n−1

m
+Θ(1/m2) when m tends to +∞ with n being held constant.

11



5.1.2 Upper Bounds

We now also provide formal upper bounds for MPEF for ⋆=+ and ⋆= min, and the regular policy.

Proposition 30 For m = kn objects, MPEF+(σ
n
R) ≤ 2− m−n

mn+n
, and thus MPEF+(σ

n
R) ≤ 2− 1

n
+

Θ(1/m) when m tends to +∞ with n being held constant.

Corollary 31 If n = 2 and m = 2k, 1+ m−2
m(m+2) ≤ MPEF+(σ

2
R)≤

3
2
+ 3

2m+2
.

Proposition 32 For m = kn objects, MPEFmin(σ
n
R) ≤

2mn−m+n
mn+2n−n2 , and thus MPEF+(σ

n
R) ≤ 2− 1

n
+

Θ(1/m) when m tends to +∞ with n being held constant.

Corollary 33 If n = 2 and m = 2k, MPEFmin(σ
2
R)≤

3
2
+ 5

m+4
.

5.2 Additive Price of Elicitation-Freeness

Definition 34 Given a policy σ (for n agents and m objects), a scoring vector s, and an aggregation

function ⋆ ∈ {+,min}, the additive price of elicitation-freeness of σ , denoted by APEFs,⋆(σ), is the

worst-case difference in social welfare between the sequential allocation and an optimal allocation

for Fs,⋆ among all profiles with m goods.

Since we focus on s = borda only, we simply write APEF⋆(σ) to mean APEFborda,⋆(σ).
We now provide a formal lower bound linear in m for ⋆=+, with a fixed number of agents n and

the regular policy.

Proposition 35 For m = kn objects, APEF+(σ
n
R)≥

(n−1)(m−n)
2

.

We now also provide a formal upper bound quadratic in m with a fixed number of agents n, for

⋆=+ and ⋆= min, and the regular policy.

Proposition 36 For m = kn objects, APEF+(σ
n
R)≤

(m−n)(mn−m+n2+n)
2n

.

Corollary 37 For n = 2 and m = 2k, m
2
−1 ≤ APEF+(σ

2
R)≤

m2

4
+m−3.

Proposition 38 For m = kn objects, APEFmin(σ
n
R)≤

m2n−mn−m2+mn2

2n2 .

This upper bound is asymptotically better (by a factor of n) than the upper bound for APEF+(σ
n
R).

In particular, for two agents, it is in the order of m2/8 (to be compared with m2/4 for ⋆ = + in

Corollary 37).

6 Concluding Remarks

Generalizing earlier work [8, 6], we have defined a family of rules for the allocation of indivisible

goods to agents that are parameterized by a scoring vector and an aggregation function. We have

discussed a few key properties, and for each of them we have given some positive as well as some

negative results about their satisfaction by scoring allocation rules. The relatively high number of

negative results should be balanced against the satisfaction of several important properties (including

monotonicity) together with the simplicity of these rules. And anyway, defining allocation rules

of indivisible goods from ordinal inputs on other principles does not look easy at all. Our results

on axiomatic properties are far from being complete: for many properties we do not have an

exact characterization of the scoring allocation rules that satisfy them, and obtaining such exact

characterizations is left for further research.
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In addition, focusing on four important scoring vectors and three central aggregation functions,

we have determined the complexity of computing an optimal allocation for almost all rules considered

here (see Table 2 for the list of results, and the problems whose precise complexity remains unknown).

We have also given some approximation results, some of which make use of picking sequences whose

main purpose it is to avoid preference elicitation.

Even if winner determination is computationally difficult for many choices of s and ⋆ (except for

the trivial case of ⋆=+), these rather negative results should be tempered by the fact that in most

practical settings the number of agents and items is sufficiently small for the optimal allocation to

be computed, even when its determination is NP-hard. Moreover, the results of Section 5 show that

good approximations of optimal allocations can often be determined with a very low communication

cost. An issue that we did not consider here is manipulability. Almost all of our rules seem to be

manipulable; characterizing exactly the family of allocation rules that are manipulable and measuring

the extent to which our rules are computationally resistant to manipulation is clearly an interesting

topic for further research.
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