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Abstract

We study the problem of fairly allocating indivisible goods to groups of agents.
Agents in the same group share the same set of goods even though they may have
different preferences. Previous work has focused on unanimous fairness, in which all
agents in each group must agree that their group’s share is fair. Under this strict
requirement, fair allocations exist only for small groups. We introduce the concept
of democratic fairness, which aims to satisfy a certain fraction of the agents in each
group. This concept is better suited to large groups such as cities or countries.
We present protocols for democratic fair allocation among two or more arbitrarily
large groups of agents with monotonic, additive, or binary valuations. Our protocols
approximate both envy-freeness and maximin-share fairness. As an example, for two
groups of agents with additive valuations, our protocol yields an allocation that is
envy-free up to one good and gives at least half of the maximin share to at least half
of the agents in each group.

1 Introduction

Fair division is the study of how to allocate resources among agents with different preferences
so that agents perceive the resulting allocation as fair. This problem occurs in a wide range
of situations, from negotiating over international interests and reaching divorce settlements
[4] to dividing household tasks and sharing apartment rent [7].

Two kinds of fairness criteria are common in the literature. The first, envy-freeness
(EF), means that each agent finds her share at least as good as the share of any other
agent. When allocating indivisible goods, envy-freeness is sometimes unattainable (consider
two agents quarreling over a single good), so it is often relaxed to envy-freeness up to one
good (EF1), which is always attainable [11, 5]. The second kind, maximin share fairness,
means that each agent finds his share at least as good as his maximin share (MMS), which
is the best share he can secure by dividing the goods into n parts and getting the worst
part, where n is the number of agents. Again, with indivisible goods MMS fairness cannot
be guaranteed, but at least a constant fraction of the MMS can [15].

Most works on fair division involve individual agents, each of whom has individual pref-
erences. But in reality, resources often have to be allocated among groups of agents, such
as families or states. A good allocated to a group is shared among the group members and
all of them derive full utility from the good. For example, when dividing real estate among
families, all members of a family enjoy their allocated house and backyard. In international
negotiations, the divided rights and settled outcomes are enjoyed by all citizens of a country.
When resources are allocated between different buildings of a university, all occupants of a
building benefit from the whiteboards and open space allocated to their building. However,
different group members may have different preferences. The same share can be perceived
as fair by one member and unfair by another member of the same group. Ideally, we would
like to find an allocation considered fair by all agents in all groups. However, two recent
works show that this “unanimous fairness” might be too strong to be practical.

(a) Suksompong [23] shows that when allocating indivisible goods among groups, there
might be no allocation that is unanimously EF1. Moreover, there might be no division that

1



gives all agents a positive fraction of their MMS. This impossibility occurs even for two
groups of three agents.

(b) Segal-Halevi and Nitzan [17] show that when allocating a divisible good (“cake”)
among groups, there might be no division that is unanimously envy-free and gives each
group a single connected piece, or even a constant number of connected pieces. In contrast,
with individual agents a connected envy-free division always exists [18].

What do groups do when they cannot attain unanimity? In democratic societies, they
use some kind of voting. The premise of voting is that it is impossible to satisfy everyone,
so we should try to satisfy as many members as possible. Based on this observation, we say
that a division is h-democratic fair, for some fairness notion and for some h ∈ [0, 1], if at
least a fraction h of the agents in each group believe it is fair. In this paper we focus on
allocating indivisible goods. We would like h, the fraction of happy agents, to be as large
as possible. We thus pose the following question:

Given a fairness notion, what is the largest h such that an h-democratic fair
allocation of indivisible goods can always be found?

We study democratic fairness under three different assumptions on the agents’ valuations.
In the most general case, the agents can have arbitrary monotonic valuations on bundles of
goods. A more common assumption in the literature is that agents’ valuations are additive
(the value of a bundle is the sum of the value of its goods). We also study a special case of
additive valuations in which agents’ valuations are binary (each agent has a set of desired
goods and her utility equals the number of desired goods allocated to her group).

1.1 Overview of our results

Initially (Section 3) we consider two groups with binary agents. We study a relaxation of
envy-freeness that we call envy-freeness up to c goods (EFc), a generalization of EF1. One
might expect to have a trade-off curve where a larger c corresponds to a larger h. However,
we find that the actual trade-off curve is degenerate: for every constant c, it is possible
to guarantee 1/2-democratic EFc and the 1/2 is tight. The same holds for MMS fairness.
Moreover, a positive fraction of the MMS can be guaranteed to at least 3/5 and at most 2/3
of the agents in both groups. To get a more flexible trade-off curve, we study a generalization
of MMS called 1-out-of-c-MMS, which is the best share an agent can secure by dividing the
goods into c subsets and receiving the worst one. We prove that for every integer c ≥ 2,
1-out-of-c MMS can be guaranteed to at least 1 − 1/2c−1 and at most 1 − 1/c22c+1 of the
agents in both groups.

Our positive results are attained by an efficient round-robin protocol where each group
in turn picks a good using weighted approval voting with carefully calculated weights. We
believe this weighted voting scheme can be interesting in its own right as a way to make fair
group decisions.

Next (Section 4) we consider two groups whose agents have arbitrary monotonic valu-
ations. We present an efficient protocol that guarantees EF1 to at least 1/2 of the agents in
each group (which is tight even for binary agents). When all agents are additive, this pro-
tocol guarantees 1/2 of the MMS to 1/2 of the agents. This is tight: one cannot guarantee
more than 1/2 of the MMS to more than 1/3 of the agents.

Finally (Section 5), we present two generalizations of our results to k ≥ 3 groups.
The first generalization has stronger fairness guarantees: when all valuations are binary, it
guarantees to 1/k of the agents in all groups both EF1 and MMS (the 1/k is tight for EF1).
When valuations are additive, it guarantees an additive approximation to EF and MMS.
However, the run-time of the protocol might be exponential. The second generalization uses
a polynomial-time protocol but has weaker guarantees: when all valuations are binary, it
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Happy h ↓ | Share q → Positive (0, 1/2] (1/2, 1]

(0, 1/3]
Yes (Cor. 3.8)

Yes (Cor. 4.2)
Bin: Yes (Thm. 3.6), Add: ?

(1/3, 1/2] Bin: Yes (↑), Add: No (↓)
(1/2, 3/5]

? Bin: ?, Add: No (Prop. 4.3)
(3/5, 2/3] ?
(2/3, 1] No (Prop. 3.1)

Happy h EFc for any constant c ≥ 1

(0, 1/2] Yes (Thm. 4.1)
(1/2, 1] No (Prop. 3.4)

Table 1: Summary of results for two groups with Binary and Additive agents. For each range of
h, q ∈ (0, 1], the table shows whether there always exists an allocation that gives at least a fraction
h of the agents in each group at least a fraction q of their maximin share. For EFc, the results hold
for monotonic valuations too. The arrows refer to the directions pointed to in the table.

guarantees MMS to 1/k of the agents, and when valuations are additive, it guarantees an
additive approximation to MMS. Some of our results and open questions are summarized
in Table 1.

1.2 Related work

The group resource allocation problem is relatively new. We already mentioned the impossi-
bility result of Suksompong [23], which is for worst-case agents’ utilities. On the other hand,
if the agents’ utilities are drawn at random from probability distributions, Manurangsi and
Suksompong [12] showed that a unanimously envy-free allocation exists with high proba-
bility as the number of agents and goods grows. In our terminology, unanimous fairness is
called 1-democratic-fairness.

The term democratic fairness already appears in [16, 17]; however, they use it in the
narrower sense that at least 1/2 of the agents in each group must be satisfied. In our
terminology this is called 1/2-democratic fairness. Hence, our democratic fairness notion
generalizes existing notions of group fairness.

A related model, in which a subset of public goods is allocated to a single group of agents
but the rest of the goods remain unallocated, has also been studied [13, 21].

MMS fairness was introduced by Budish [5] based on earlier concepts by Moulin [14].
Budish also considered its relaxation to 1-out-of-(n+ 1) MMS. The notion 1-out-of-c MMS
is a special case of l-out-of-d MMS, recently defined by Babaioff et al. [1].

Group preferences are important in matching markets, too. For example, when matching
doctors to hospitals, usually a husband and a wife want to be matched to the same hospital.
This issue poses a substantial challenge to stable-matching mechanisms [8, 9, 10].

2 Preliminaries

There is a set G = {g1, . . . , gm} of goods. A bundle is a subset of G. There is a set
A of agents. The agents are partitioned into k groups A1, . . . , Ak with n1, . . . , nk agents,
respectively. Let aij denote the jth agent in group Ai. Each agent aij has a nonnegative
utility uij(G

′) for each G′ ⊆ G. For any agent aij , denote by uij,max := maxl=1,...,m uij(gl)
the maximum utility of the agent for any single good. Denote by uij = (uij(g1), . . . , uij(gm))
the utility vector of agent aij for single goods. The agents’ utility functions are monotonic,
i.e., uij(G

′′) ≤ uij(G′) for every G′′ ⊆ G′ ⊆ G and every agent aij . A subclass of monotonic
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utilities is the class of additive utilities, i.e., for every bundle G′ ⊆ G and every agent
aij ∈ A, we have uij(G

′) =
∑
g∈G′ uij(g).

Sometimes we will study a special case of additive utilities in which utilities are binary,
i.e., each agent either approves or disapproves each good. Since we will not engage in
interpersonal comparison of utilities, we may assume without loss of generality that in this
case uij(g) ∈ {0, 1} for each i, j, g.

We allocate a bundle Gi ⊆ G to each group Ai. All goods should be allocated. The
goods are treated as public goods within each group, i.e., for every group i, the utility of
every agent aij is uij(Gi). We refer to a setting with agents partitioned into groups, goods
and utility functions as an instance.

We now define the fairness notions considered in this paper. We start by defining what
it means for an allocation to be fair for a specific agent. We start with envy-freeness.

Definition 2.1. Given an agent aij and an integer c ≥ 0, an allocation is called envy-free
up to c goods (EFc) for aij if for every i′ there is a set Ci′ ⊆ Gi′ with |Ci′ | ≤ c such that

uij(Gi) ≥ uij(Gi′\Ci′).

In other words, one can remove the envy of aij toward group i′ by removing at most c goods
from the group’s bundle.

An EF0 allocation is also known as envy-free.

Next, we define the maximin share concepts.

Definition 2.2. Given an agent aij and an integer c ≥ 2, the 1-out-of-c maximin share
(MMS) of aij is defined as the maximum, over all partitions of G into c sets, of the minimum
of the agent’s utilities for the sets in the partition:

MMScij(G) := max
G′

1,...,G
′
c

min(uij(G
′
1), . . . , uij(G

′
c)),

where the maximum ranges over all partitions (G′1, . . . , G
′
c) of G. When c = k (the number of

groups), the 1-out-of-k MMS of an agent is simply called his MMS and denoted MMSij(G).
An allocation (G1, . . . , Gk) is said to be:

• 1-out-of-c MMS-fair for aij , if uij(Gi) ≥ MMScij(G).

• MMS-fair for aij , if uij(Gi) ≥ MMSij(G).

• q-MMS-fair for aij , for some fraction q ∈ (0, 1), if uij(Gi) ≥ q ·MMSij(G).

• positive-MMS-fair if every agent with positive MMS gets positive value: MMSij(G) >
0→ uij(Gi) > 0.

Note that MMS-fairness implies q-MMS-fairness (for any q), which implies positive-
MMS-fairness. The next lemma shows an interesting link between EF1 and MMS-fairness;
the proof can be found in the appendix.

Lemma 2.3. If an allocation is EF1 for an agent with an additive utility function, then (a)
it is also 1/k-MMS-fair for that agent—the 1/k is tight; (b) if the agent’s utility function is
binary, then the allocation is also MMS-fair for that agent.

Now we are ready to define our main group fairness notion:

Definition 2.4. For any given fairness notion, an allocation (G1, . . . , Gk) is said to be
h-democratic fair if it is fair for at least h · ni agents in group Ai, for all i ∈ {1, . . . , k}.
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3 Two Groups with Binary Valuations

This section considers the special case in which there are two groups, and each agent either
desires a good (in which case her utility for the good is 1) or does not desire it (in which
case her utility is 0). Even in this special case, some fairness guarantees are unattainable.

Proposition 3.1. For any h > 2/3, there is a binary instance in which no allocation is
h-democratic positive-MMS-fair.

Proof. Consider an instance with three goods where in each group, each of the three agents
desires a unique subset of two goods. Each agent has a positive MMS (1), but no allocation
gives all agents a positive utility.

We next leverage a combinatorial construction of Erdős to show the limitations of 1-out-
of-c MMS-fairness.

Lemma 3.2. For any integer c ≥ 2, there is an instance with two groups consisting of
c22c+1 agents with binary valuations in each group, such that each agent desires c goods but
no allocation gives all agents a positive utility.

Proof. Erdős [6] proved that for any positive integer c, there exists a collection C of c22c+1

subsets of size c of a base set G that does not have “property B”.1 This means that, no
matter how we partition G into two subsets G1 and G2, some subset in C has an empty
intersection with G1 or G2.

Take the elements of G to be our goods. Each group consists of c22c+1 agents, each
of whom desires a unique subset of goods in C. Then every agent desires c goods, but no
allocation gives all agents a positive utility.

Proposition 3.3. For any integer c ≥ 2 and h > 1 − 1/c22c+1, there is a binary instance
with two groups in which no allocation is h-democratic 1-out-of-c MMS-fair.

Proof. Consider the instance from Lemma 3.2. The 1-out-of-c MMS of an agent who desires
c goods is positive (1), but no allocation gives all agents a positive utility.

If we change the fairness requirement to EF1, then we can satisfy no more than half of
the agents in each group.

Proposition 3.4. For any constant integer c ≥ 1 and h > 1/2, there is an instance with
two groups with binary agents in which no allocation is h-democratic EFc.

Proof. Consider an instance with m = 4l goods and
(
4l
2l

)
agents in each group, for some

l ≥ 1. Each agent desires a unique subset of 2l goods. An allocation is EFc for an agent iff
her group receives at least l − bc/2c of her 2l desired goods.

The symmetry between the groups implies that the best fairness guarantee can be at-
tained by giving exactly 2l goods to each group; the symmetry between the goods implies
that it does not matter which 2l goods are given to which group. In each such allocation,

the number of a group’s members who receive exactly j desired goods is
(
2l
j

)
·
(
4l−2l
2l−j

)
=
(
2l
j

)2
.

Therefore, the number of a group’s members who receive at least l − bc/2c desired goods

is:
∑2l
j=l−bc/2c

(
2l
j

)2
=
∑l−1
j=l−bc/2c

(
2l
j

)2
+ 1

2

(
2l
l

)2
+ 1

2

(
4l
2l

)
, where the equality follows from

expanding the central binomial coefficient
(
4l
2l

)
. The fraction of a group’s members who

think the division is EFc is attained by dividing this expression by
(
4l
2l

)
. This fraction is:

1

2
+

1

2
·
(
2l
l

)2(
4l
2l

) +

∑l−1
j=l−bc/2c

(
2l
j

)2(
4l
2l

) ≤ 1

2

(
1 + (c+ 1)

(
2l
l

)2(
4l
2l

) ) .
1We are grateful to Fedor Petrov for suggesting the connection with Property B.
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Using Stirling’s approximation, we find that
(
2l
l

)
∼ 4l√

πl
, so

(
2l
l

)2(
4l
2l

) ∼ 42l

πl
42l√
2πl

=

√
2

πl
.

As l → ∞, the fraction of agents in each group who think that the allocation is EFc
approaches 1/2, as claimed.

We now move on to some positive results. These are attained with a protocol we call
Round-robin with Weighted Approval Voting (RWAV). Both groups take turn picking a
single good until all goods are taken. Each group picks its good using the following weighted-
approval-voting scheme:

(a) Initially, each member pays to the “group account” some amount (to be calculated
later) of fiat money.
(b) Whenever it is the group’s turn to pick, each member is assigned a positive weight
(to be calculated later).
(c) For each good, the total weight is calculated as the sum of the weights of the members
who desire this good. The group picks a good with a maximal total weight (breaking
ties arbitrarily).
(d) Every member whose desired good was picked by the group pays his weight to the
group account.
(e) When it is the other group’s turn to pick, each member whose desired good was
picked by the other group receives his weight from the group account. This rule has
one exception: it is not executed for the second group in the first turn of the first group
(so that each execution of step (e) is preceded by an execution of step (d)).

We now calculate the weights such that, when the protocol ends, the net payment paid
by each happy agent is 1 and by each unhappy agent is 0 (i.e., each unhappy agent got all
his money back). An agent’s weight will be a function of the number r of his desired goods
that remain untaken, and the number s of desired goods that he is missing to be happy.
Both r and s of an agent weakly decrease as the protocol runs. An agent becomes happy
when s = 0 and unhappy when r < s. Let w(r, s) be the weight of such an agent and B(r, s)
the net amount paid by such an agent. Then, ∀r ≥ s > 0:

(∗) B(r, s) + w(r, s) = B(r − 1, s− 1) by step (d)

B(r, s)− w(r, s) = B(r − 1, s) by step (e)

This implies the following recurrence relation for B(r, s):

∀r ≥ s > 0 : B(r, s) =
B(r − 1, s) + B(r − 1, s− 1)

2

∀r ≥ 0 : B(r, 0) = 1 (happy agents)

∀r < s : B(r, s) = 0 (unhappy agents)

Its solution is (**): ∀r ≥ s ≥ 0 : B(r, s) =
1

2r

r∑
i=s

(
r

i

)
and (***): w(r, s) = B(r, s)−B(r − 1, s)
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We make several observations. First, when r is fixed, B(r, s) decreases when s increases,
since the sum in (**) has fewer elements. Second, when s is fixed, B(r, s) increases when
r increases, since B(r, s) is an average of B(r − 1, s) with the larger term B(r − 1, s − 1).
Now, (***) implies that all weights are positive, as required by the protocol.

To complete the specification of the protocol, we have to calculate the initial payments
in step (a). We define a generalized fairness criterion called f(d)-fairness, where f is some
integer function. An allocation is f(d)-fair for agent j if the agent’s group receives at least
f(dj) desired goods whenever the agent has dj desired goods. Note that EF1 and MMS-
fairness are both equivalent to bd2c-fairness. Suppose we are interested in f(d)-fairness for
some function f . Then, in the first group, an agent with d desired goods has initially r = d
and s = f(d). Hence his initial payment should be B(d, f(d)). In the second group, such
an agent might have lost a desired good in the first turn of the first group, so r = d− 1 and
the initial payment is only B(d− 1, f(d)), which by (*) is smaller than B(d, f(d)). We are
now ready to state the main lemma:

Lemma 3.5. For every integer function f(d), it is possible to select weights such that the
RWAV protocol attains h-democratic f(d)-fairness, where:

h = inf
d=1,2,...

B(d− 1, f(d)) = inf
d=1,2,...

1

2d−1

d−1∑
i=f(d)

(
d− 1

i

)

Proof. In step (a), each agent pays at least h. Therefore, the initial balance of group i is at
least h ·ni. In step (e) the group pays the total weight of a good, while in step (d) the group
receives the total weight of another good. Since the good picked in step (c) has a maximal
total weight, the balance of the group weakly increases, so its final balance is at least h · ni.
By (*), the final balance of each unhappy agent is 0 and of each happy agent −1. Since the
total balance of the group plus the agents is 0, there are at least h · ni happy agents.

Lemma 3.5 implies the following positive result.

Theorem 3.6. For every integer c ≥ 2, it is possible to select weights such that RWAV
attains (1− 1/2c−1)-democratic 1-out-of-c MMS-fairness.

Proof. Suppose an agent wants d = l · c + l′ goods, for some integers l ≥ 1 and l′ < c. So
her 1-out-of-c-MMS is l. We can arbitrarily ignore l′ of her desired goods and aim to give
her a utility of l. Applying Lemma 3.5 with f(lc) = l gives h = inf l=1,2,...B(lc − 1, l). It
remains to prove that for every l, B(lc− 1, l) ≥ B(c− 1, 1) = 1− 1/2c−1. That is:

1

2lc−1

lc−1∑
i=l

(
lc− 1

i

)
≥ 1− 1

2c−1

⇐⇒ 1

2lc−1

l−1∑
i=0

(
lc− 1

i

)
≤ 1

2c−1

⇐⇒
l−1∑
i=0

(
lc− 1

i

)
≤ 2lc−c

We prove the latter inequality using combinatorial arguments.2 Consider a row of lc − c
light-bulbs, each of which can be either on or off. The bulbs are divided to c groups with
l− 1 bulbs in each group. There are lc− 1 switches. Of these, lc− c are “normal” switches,

2We are grateful to Y. Forman for suggesting these arguments in https://math.stackexchange.com/a/
2598269/29780.
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each of which toggles a single distinct bulb. The remaining c − 1 are “special” switches:
special switch number i toggles all the bulbs in groups i and c. Initially all lights are off.
We are allowed to push at most l − 1 switches. How many light patterns can we make?

Clearly, the left-hand side is the number of choices of at most l − 1 switches, and the
right-hand side is the number of different light patterns. Therefore, to prove the inequality
it is sufficient to prove that any two distinct switch choices generate different light patterns.

Consider two distinct switch choices and let S1, S2 be their set of special switches. If
S1 = S2 then the two choices must contain different sets of normal switches and therefore
generate different light patterns. Suppose S1 6= S2. Any set of special switches leaves an
even number of groups of lights on, so the light patterns resulting only from the special
switches differ in at least two groups, i.e., 2l − 2 positions. However, both choices must
contain at most l−1 switches overall, and at least one of them already contains at least one
special switch so only l − 2 normal switches remain. Therefore the total number of normal
switches in both groups is at most 2l − 3. The difference cannot be canceled using normal
switches, so the patterns must be different.

Our results raise the following open question: what is the maximum fraction of agents
that can be guaranteed 1-out-of-c-fairness? By Theorem 3.6 it is at least 1 − 1/2c−1; by
Proposition 3.3 it is at most 1− 1/c22c+1.

An interesting special case of Theorem 3.6 is when c = 2, since with two groups 1-
out-of-2 MMS-fairness is equivalent to MMS-fairness, and with binary agents this is also
equivalent to EF1. Hence Theorem 3.6 implies that 1/2-democratic EF1 and MMS-fairness
are attainable. The fraction 1/2 exactly matches the upper bound in Proposition 3.4.

Note that the guarantee in Theorem 3.6 (as in Lemma 3.5) is for the second group; the
guarantee for the first group is even higher—it is 1− 1/2c. In particular, in the first group
at least 3/4 of all agents are guaranteed EF1 and MMS.

What happens if we are only interested in positive-MMS-fairness? The upper bound on
h in Proposition 3.1 is 2/3, but the RWAV protocol only guarantees 1/2. This is because
each agent with two desired goods must be given at least one good, and B(2− 1, 1) = 1/2.
However, a variant of RWAV can do better even for additive valuations. We say that an
allocation is one-of-best-two for an agent with additive valuations if he receives at least
one of his two most valuable goods. The proof of the following result can be found in the
appendix.

Theorem 3.7. For two groups with additive agents, there exists a 3/5-democratic one-of-
best-two allocation.

Corollary 3.8. For two groups with additive agents, there exists a 3/5-democratic positive-
MMS allocation.

4 Two Groups with General Valuations

In this section we assume that there are two groups and each agent can have an arbitrary
monotonic utility function.

We start with a positive result: it is always possible to efficiently allocate goods so that
at least half of the agents in each group believe the division is EF1. Despite the simplicity
of the protocol, we find the result important since, unlike previous results in this setting
[12, 23], our result holds for worst-case instances with any number of agents in the groups
and very general utility functions.

Theorem 4.1. For two groups with agents with monotonic valuations, 1/2-democratic EF1
is attainable.
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Proof. We arrange the goods in a line and process them from left to right. Starting from
an empty block, we add one good at a time until the current block is EF1 for at least half
of the agents in at least one group. We allocate the current block to one such group, and
the remaining goods to the other group.

Since the whole set of goods is EF1 for both groups, the protocol terminates. Assume
without loss of generality that the left block G1 is allocated to the first group A1, and the
right block G2 to the second group A2. By the description of the protocol, the allocation is
EF1 for at least half of the agents in A1, so it remains to show that the same holds for A2.
Let g be the last good added to the left block. More than half of the agents in A2 think
that G1\{g} is not EF1, so for these agents, G1\{g} is worth less than G2 ∪ {g}\{g′} for
any g′ ∈ G2 ∪{g}. Taking g′ = g, we find that these agents value G1\{g} less than G2. But
this implies that the agents find G2 to be EF1, completing the proof.

Theorem 4.1 shows that if the goods lie on a line, we can find a 1/2-democratic EF1
allocation that moreover gives each group a contiguous block on the line. This may be
important, for example, if the goods are houses on a street and each group wants to have
all its houses in a contiguous block [3, 22].

If agents have additive valuations, Lemma 2.3 implies:

Corollary 4.2. For two groups with additive agents, 1/2-democratic 1/2-MMS-fairness is
attainable.

For EF1, the factor 1/2 in Theorem 4.1 is tight even for binary valuations, as shown in
Proposition 3.4. For 1/2-MMS-fairness, the factor 1/2 in Corollary 4.2 is “almost” tight:

Proposition 4.3. For any h > 1/3 and q > 1/2, there is an additive instance with two
groups in which no allocation is h-democratic q-MMS-fair.

Proof. Consider an instance with m = 3 goods and n1 = n2 = 3 agents in each group, with
utility vectors: ui1 = (2, 1, 1), ui2 = (1, 2, 1), and ui3 = (1, 1, 2) for i = 1, 2. The MMS of
every agent is 2. In any allocation, one group receives at most one good, so at most one of
its three agents receives utility more than 1. So in that group, at most 1/3 of the agents
receive more than 1/2 of their MMS.

A corollary of Proposition 4.3 is that, for every h ∈ (1/3, 1/2], the maximum fraction q
such that there always exists an h-democratic q-MMS-fair allocation is q = 1/2.

5 Three or More Groups

In this section we study the most general setting where we allocate goods among any num-
ber of groups. When there are two groups, the protocol in Theorem 4.1 is efficient and
yields an allocation that is both approximately envy-free and approximately MMS-fair. We
present two ways of generalizing the result to multiple groups: one keeps the approximate
envy-freeness guarantee but loses computational efficiency, while the other keeps only the
approximate MMS-fairness guarantee but also retains compuational efficiency.

5.1 Approximate envy-freeness

The main theorem in this subsection is:

Theorem 5.1. When all agents have binary valuations, there exists an allocation that is
1/k-democratic EF1 and 1/k-democratic MMS-fair. The factor 1/k is tight for EF1.
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To establish this theorem, we prove two lemmas that may be of independent interest—
one on cake-cutting and the other on group allocation for agents with additive valuations.

The result on cake-cutting generalizes the theorems of Stromquist [18] and Su [20], who
prove the existence of contiguous envy-free cake allocations for individual agents. Since
these results are well-known, we present the model and proof quite briefly, focusing on the
changes required to generalize from individuals to groups.

We consider a “cake” modeled as the interval [0, 1]. Each agent aij has a value-density
function vij : [0, 1]→ R≥0. The value of an agent for a piece X is Vij(X) =

∫
x∈X vij(x)dx.

Denoting by Xi the allocation to group i, an allocation is envy-free for an agent aij if
Vij(Xi) ≥ Vij(Xi′) for every group i′. A contiguous allocation is an allocation of the cake
in which each group gets a contiguous interval.

Lemma 5.2. There always exists a contiguous cake allocation that is 1/k-democratic envy-
free. The factor 1/k is tight.

Proof. The space of all contiguous partitions corresponds to the standard simplex in Rk.
Triangulate that simplex and assign each vertex of the triangulation to one of the groups.
In each vertex, ask the group owning that vertex to select one of the k pieces using plurality
voting among its members, breaking ties arbitrarily. Label that vertex with the group’s
selection. The resulting labeling satisfies the conditions of Sperner’s lemma (see [20]).
Therefore, the triangulation has a Sperner subsimplex—a subsimplex all of whose labels
are different. We can repeat this process with finer and finer triangulations. This gives
an infinite sequence of smaller and smaller Sperner subsimplices. This sequence has a
subsequence that converges to a single point. By the continuity of preferences, this limit
point corresponds to a partition in which each group selects a different piece. Since the
selection is by plurality, at least 1/k of the agents in each group prefer their group’s piece
over all other pieces.

The tightness of the 1/k factor follows from Lemma 6 of Segal-Halevi and Nitzan [17]. It
shows an example with k groups and n′ agents in each group with the property that in order
to give a positive value to q out of n′ agents in each group, we need to cut the cake into at
least k(kq − n′)/(k − 1) intervals. In a contiguous partition there are exactly k intervals.
Therefore, the fraction of agents in each group that can be guaranteed a positive value is
q/n′ ≤ 1/k + 1/n′ − 1/kn′. Since n′ can be arbitrarily large, the largest fraction that can
be guaranteed is 1/k.

The next lemma presents a reduction from approximate envy-free allocation of indivisible
goods to envy-free cake-cutting. We call this approximation “EF-minus-2”. An allocation is
EF-minus-2 for agent aij if for every group i′, uij(Gi) > uij(Gi′)− 2uij,max. The reduction
generalizes Theorem 5 of Suksompong [22]; a similar reduction was used in Theorem 3 of
Barrera et al. [2].

Lemma 5.3. When agents have additive valuations, there always exists a contiguous allo-
cation of indivisible goods that is 1/k-democratic EF-minus-2.

Proof. We create an instance of the cake-cutting problem in the following way. Given an
instance of indivisible goods allocation, we create a cake-cutting instance where the cake is
the half-open interval (0,m]. The value-density functions are piecewise constant: for every
l ∈ {1, . . . ,m}, the value-density vij in the half-open interval (l − 1, l] equals uij(gl).

By Lemma 5.2, there exists a contiguous cake allocation that is envy-free for at least
1/k of the agents in each group. From this allocation we construct an allocation of goods as
follows. If point g of the cake is in the interior of a piece, then good g is given to the group
owning that piece. Else, point g is at the boundary between two pieces, and good g is given
to the group owning the piece to its left. A group gets good g only if it owns a positive
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fraction of the interval (g−1, g]. Hence, in the allocation, each group loses strictly less than
the value of a good and gains strictly less than the value of a good (relative to its value
in the cake division). This means that every agent who believes that the cake allocation is
envy-free also believes that the goods allocation is EF-minus-2.

Proof of Theorem 5.1. Suppose an allocation is EF-minus-2 for some agent. This means that
the agent’s envy towards any other group is less than 2umax. Since the agent has binary
valuations, the envy is at most 1, meaning that the allocation is EF1 for that agent. Hence
any 1/k-democratic EF-minus-2 allocation, which is guaranteed to exist by Lemma 5.3, is
also 1/k-democratic EF1. By Lemma 2.3 it is also 1/k-democratic MMS-fair.

We next show that the factor 1/k is tight. Assume that there are m = km′ goods for
some large positive integer m′. Each group consists of 2m agents, each of whom values a
distinct combination of the goods. Consider first an allocation that gives exactly m′ goods
to each group, and fix a group. We claim that the fraction of the agents in the group whose
utilities for some two bundles differ by at most 1 converges to 0 for large m′. Indeed, this
follows from the central limit theorem: Fix two bundles and consider a random agent from
the group; let X be the random variable denoting the (possibly negative) difference between
the agent’s utilities for the two bundles. Then X is a sum of m′ independent and identically
distributed random variables with mean 0. The central limit theorem implies that for any
fixed ε > 0, there exists a constant c such that Pr[|X| ≤ 1] ≤ Pr[|X| ≤ c

√
m′] ≤ ε for any

sufficiently large m′. Taking the union bound over all pairs of bundles, we find that the
fraction of agents in the group who value some two bundles within 1 of each other approaches
0 as m′ goes to infinity. This means that all but a negligible fraction of the agents find only
one bundle to be EF1. By symmetry, 1/k of these agents find the bundle allocated to the
group to be EF1. It follows that the fraction of agents in the group for whom the allocation
is EF1 converges to 1/k.

It remains to consider the case where the allocation does not give the same number of
goods to all groups. In this case, let G denote the set of bundles with the smallest number
of goods, which must be strictly smaller than m′ goods. If we move goods from bundles
with more than m′ goods to bundles in G in such a way that the number of goods in each
bundle in G increases by exactly one, the fraction of agents in an arbitrary group that
receives a bundle in G who finds the allocation to be EF1 can only increase. We can repeat
this process, at each step possibly adding bundles to G, until all bundles contain the same
number of goods, which is the case we have already handled. Since the fraction of agents for
whom the allocation is EF1 is bounded above by 1/k for large m′ in the latter allocation,
and this fraction only increases during our process of moving goods, the same is true for the
original allocation.

The cake-cutting protocol of Lemma 5.2 might take infinitely many steps to converge. In
fact, there is no finite protocol for contiguous envy-free cake-cutting even for individuals [19].
However, the division guaranteed by Lemma 5.3 and Theorem 5.1 can be found in finite
time (exponential in the input size) by checking all possible allocations. It is interesting
whether a faster algorithm exists.

5.2 Approximate MMS

In this subsection, we show that if we weaken our fairness requirement to approximate MMS,
it is possible to compute a fair allocation in time polynomial in the input size.

Lemma 5.4. When agents have additive valuations, there always exists an allocation such
that at least 1/k of the agents aij in each group j receive utility at least 1

k · uij(G) − k−1
k ·

uij,max, and such an allocation can be computed efficiently.
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This lemma generalizes the corresponding result for the setting with one agent per group
by Suksompong [22]. The factor (k − 1)/k is tight even for individual agents.

Proof. We arrange the goods in a line and process them from left to right. Starting from
an empty block, we add one good at a time until the current block yields utility at least
1
k ·uij(G)− k−1

k ·uij,max for at least 1/k of the agents in at least one group. We allocate the
current block to one such group and repeat the process with the remaining k− 1 groups. It
is clear that this algorithm can be implemented efficiently. Any group that receives a block
from the algorithm meets the requirement, so it suffices to show that the algorithm allocates
a block to every group. We claim that if l groups are yet to receive a block, at least l/k of
the agents aij in each of these groups have utility at least l

k · uij(G)− k−l
k · uij,max for the

remaining goods. This would imply the desired result because for the last group, at least
1/k of the agents have utility 1

k · uij(G)− k−1
k · uij,max, which is exactly our requirement.

To show the claim, we proceed by backward induction on l. The claim trivially holds
when l = k. Suppose that the statement holds when there are l+1 groups left, and consider
a group j that is not the next one to receive a block. At least (l+ 1)/k of the agents aij in
the group have utility at least l+1

k · uij(G)− k−l−1
k · uij,max for the remaining goods. Since

the group does not receive the next block, less than 1/k of the agents in the group have
utility at least 1

k · uij(G) − k−1
k · uij,max for the block excluding the last good. Hence, less

than 1/k of the agents have utility at least 1
k · uij(G) + 1

k · uij,max for the whole block. This

means that at least l/k of the agents have utility at least
(
l+1
k · uij(G)− k−l−1

k · uij,max

)
−(

1
k · uij(G) + 1

k · uij,max

)
= l

k · uij(G)− k−l
k · uij,max, completing the induction.

It is clear by definition that the MMS of any agent aij is at most 1
k · uij(G). Lemma 5.4

therefore implies the following:

Theorem 5.5. When agents have additive valuations, there always exists an allocation such
that at least 1/k of the agents aij in each group j receive utility at least MMSij(G)− k−1

k ·
uij,max, and such an allocation can be computed efficiently.

For binary valuations, if we change the stopping condition in Lemma 5.4 to be when the
current block yields the MMS for at least 1/k of the agents in some group, we get:

Theorem 5.6. When agents have binary valuations, there always exists a 1/k-democratic
MMS-fair allocation, and such an allocation can be computed efficiently.

6 Conclusion and Future Work

For two groups, we have a rather comprehensive understanding of possible democratic-
fairness guarantees. We have a complete characterization of possible envy-freeness approx-
imations, and upper and lower bounds for maximin-share-fairness approximations. Some
remaining gaps are shown in Table 1; closing them raises interesting combinatorial chal-
lenges.

For k ≥ 3 groups, the challenges are much greater. Currently all our fairness guarantees
are to 1/k of the agents in all groups. From a practical perspective, it may be important in
some settings to give fairness guarantees to at least half of the agents in all groups. Prelim-
inary numerical calculations indicate that the RWAV protocol can be modified to provide
such guarantees. We plan to check this further in future work. From an algorithmic per-
spective, it is interesting whether there exists a polynomial-time algorithm that guarantees
EF1 to any positive fraction of the agents.
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A Omitted proofs

A.1 Proof of Lemma 2.3

Denote by u the utility function of the agent and assume without loss of generality that the
agent is in group A1.

(a) EF1 implies that in each bundle Gi (for i ∈ {1, . . . , k}) there exists a subset Ci with
|Ci| ≤ 1 such that u(G1) ≥ u(Gi\Ci). Summing over all groups gives that k · u(G1) ≥
u(G\(C2∪· · ·∪Ck)). Now, in any partition of G into k bundles, there is at least one bundle
that does not contain any good in C2∪· · ·∪Ck. This bundle is contained in G\(C2∪· · ·∪Ck).
Therefore, the MMS is at most u(G\(C2 ∪ · · · ∪Ck)) which is at most k · u(G1). Therefore,
u(G1) is at least 1/k of the MMS.

To show that the factor 1/k is tight, assume that there are 2k − 1 goods with u(g1) =
· · · = u(gk) = 1 and u(gk+1) = · · · = u(g2k−1) = k. If the agent’s group (say, group A1) gets
g1 and group i ≥ 2 gets {gi, gk+i−1}, the agent gets utility 1 and finds the allocation EF1.
However, the MMS is k, as can be seen from the partition ({g1, . . . , gk}, {gk+1}, . . . , {g2k−1}).

(b) Suppose the agent’s group wins l of the agent’s desired goods. EF1 implies that each
of the other k − 1 groups wins at most l + 1 of the agent’s desired goods. Hence the agent
has at most kl+ k− 1 desired goods. Hence the agent’s MMS is at most l, so the allocation
is MMS-fair for her.

A.2 Proof of Theorem 3.7

We first convert all valuations to binary by assuming each agent desires only his two most
valuable goods (breaking ties arbitrarily).

If, in one of the groups, at least 3/5 of the agents desire the same good g, then give
g to that group and give all other goods to the other group. The allocation is obviously
3/5-democratic one-of-best-two.

Otherwise, run RWAV with the following initial payments. In the first group, all n1
agents pay B(2, 1) = 3/4. In the second group, there are less than 3

5n2 agents whose desired
good was taken; these agents pay B(1, 1) = 1/2 and the others pay B(2, 1) = 3/4. The
initial balance of the first group is 3

4n1. Hence, as in the proof of Lemma 3.5, at the end
at least 3

4n1 of its members are happy. The initial balance of the second group is at least
3
5n2 ·

1
2 + 2

5n2 ·
3
4 = 3

5n2. Hence, at the end at least 3
5n2 of its members are happy.
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