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Abstract

In many real-life scenarios, a group of agents needs to agree on a common action,
e.g., on the location for a public facility, while there is some consistency between
their preferences, e.g., all preferences are derived from a common metric space. The
facility location problem models such scenarios and it is a well-studied problem in
social choice. We study mechanisms for facility location on graphs, which are re-
sistant to manipulations (strategy-proof, abstention-proof, and false-name-proof) by
both individuals and coalitions and are efficient (Pareto optimal). We present a
family of graphs, ZV -line graphs, which includes almost all the graphs and graph
families that were studied for this problem. We show a general facility location
mechanism for this family which satisfies all these desired properties. Moreover, we
show that this mechanism can be computed in polynomial time, it is anonymous,
and it can be equivalently defined as the first Pareto optimal location, according to
some predefined order. Finally, we discuss some generalizations and limitations of
the characterization.

1 Introduction

Reaching an agreement could be hard. The seminal works of Gibbard [8] and Satterth-
waite [19] show that one cannot devise a general procedure for aggregating the preferences
of strategic agents to a single outcome, besides trivial procedures that a-priori ignore all
agents except one (that is, the outcome is based on the preference of a predefined agent)
or a-priori rule out all outcomes except two (that is, regardless of the agents’ preferences,
the outcome is one of two predefined outcomes). The problem is that agents might act
strategically aiming to get an outcome which they prefer. Note that while we refer to a
procedure and later to a mechanism, this impossibility is not technical but conceptual. We
identify a procedure with the conceptual mapping induced by it from the opinions of the
agents to an agreement, while the procedure itself could be more complex and abstract, e.g.,
to have several rounds or include a deliberation process between the agents (cheap-talk).
For simplicity of terms, we refer to the direct mechanism which implements this mapping.
That is, we think of an exogenous entity, the designer, who receives as input the opinions
of the agents and returns as output the aggregated decision.’

But in many natural scenarios, one does not look for a mechanism which is defined
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1For the properties we study in this work, this assumption does not hurt the generality, as according to
the revelation principle [16] argument, any general procedure is equivalent (w.r.t. the properties we study)
to such a direct mechanism.



for any profile of preferences, but instead it is assumed that the preferences satisfy some
additional exogenous rationality property, giving rise to new mechanisms that are not prone
to the above drawbacks. Two prominent examples are VCG mechanisms and generalized-
median mechanisms. VCG mechanisms [23, 3, 18, 9] are the mechanisms which are resistant
to manipulations like the ones described above for scenarios in which the agents’ preferences
are quasi-linear with respect to money [13, Def. 3.b.7], and monetary transfers are allowed
(that is, the outcome space is closed under monetary exchanges between the agents or
between the agents and the designer).

The second example, Generalized-Median mechanisms, do not include monetary transfers
and have more of an ordinal flavor. Generalized-median mechanisms [14] are the mechanisms
which are resistant to manipulations like above when it is known the preferences are single-
peaked w.r.t. the real line [1]. That is, the outcomes are locations on the real line, each
agent has a unique optimal location, £*, and her preference over the locations to the right
of ¢* is derived by the distance to £*, and similarly for the locations to the left of £*. For
example, in the Euclidean single-peaked case, the preferences of all agents’ are minimizing
the distance to their respective optimal locations.?

The facility location problem

A natural generalization of the second scenario is the facility location problem. In this prob-
lem, we are given a metric space over the outcomes® and it is assumed that the preference
of each of the agents is defined by the distance to her optimal outcome: An agent with an
optimal outcome £* prefers outcome a over outcome b if and only if a is closer to £* than
b. These problems arise in many real-life scenarios, such as locating a common good, e.g.,
a school, and in more general agreement scenarios with a common metric, e.g. partition
of a common budget to different tasks. A natural way to represent this common metric
space is using a weighted undirected graph: Having a vertex (location) for each outcome
and weighted edges between them s.t. the distance between any two outcomes is equal to
the distance between the two respective vertices. For the ease of presentation, throughout
this paper we assume that there are finitely many agents and finitely many locations.

Roughly speaking, given such a graph one seeks to find a mechanism that on one hand
will not a-priori ignore some of the voters or rule-out some of the locations, and on the other
hand will be resistant to manipulations of the agents. Since we would also like to consider
manipulations of coalitions of agents as well, we define the preference of a coalition as the
unanimous preference of its members. That is, we say that a coalition C' weakly prefers an
outcome a over an outcome b if all the members of C' weakly prefer a over b.* In this work,
we seek mechanisms which satisfy the following desired properties:

Anonymity The mechanism should not a-priori ignore agents and moreover it should
treat them equally in the following strong sense. The mechanism should be a function
of the agents’ votes (which we also refer to as ballots) but not their identities. Formally,
the outcome of the mechanism should be invariant to voters exchanging votes, i.e., to a
permutation of the ballots. In practice, most voting systems satisfy this property by first
accumulating the different ballots, by that losing the voters’ identities, and applying the
mechanism on the identity-less ballots.

2Generalized-median mechanism were also proved to be the only manipulation-resistant mechanisms even
when the preferences of the agents are restricted to be Euclidean [2].

31.e., a distance function between outcomes.

4Notice that this preference is not complete. Also note that C' strictly prefers a over b if (i) all the
members of C' weakly prefer a over b (C' weakly prefers a over b), and (¢¢) at least one member of C strictly
prefers a over b (C' does not weakly prefer b over a).



Citizen sovereignty The mechanism should not a-priori rule-out a location, and each
location should be an outcome of some profile (Formally, the mapping to facility locations
should be onto). Moreover, we require it to respect the preferences of the agents in the
following way:

Pareto optimality The mechanism should not return a location ¢ if the coalition of all
agents strictly prefers a different location ¢ over £. In particular, if there exists a unique
location which is unanimously most-preferred by all agents, then it must be the outcome.
This property could be justified on efficiency grounds since switching (ex-post) from ¢ to ¢/
strictly increases the satisfaction of some of the agents without decreasing the satisfaction
of any of the other agents. Note that in the general case it is unreasonable to require that
all locations are treated equally due the inherent asymmetry induced by the graph.

Strategy-proofness An agent should not be able to change the outcome to a location
she strictly prefers by reporting a location different than her true location.
Abstention-proofness® An agent should not be able to change the outcome to a location
she strictly prefers by not casting a ballot.

False-name-proofness An agent should not be able to change the outcome to a location
she strictly prefers by casting more that one ballot.

This property received less attention in the classic social choice literature, since in most
voting scenarios there exists a central authority that can enforce a ‘one person, one vote’
principle (but cannot enforce participation or sincere voting). In contrast, many of the voting
and aggregation scenarios nowadays are run in a distributed manner on some network and
include virtual identities or avatars, which can be easily generated, so a manipulation of an
agent pretending to represent many voters is eminent.

Resistance to group manipulations We also consider the generalizations of the above
three properties and also require that a coalition should not be able to change the outcome
to a location it strictly prefers by its members casting insincere ballots, abstaining, or casting
more than one ballot.’

Related work

Several other variants of the facility location problem were also considered in the literature.
For instance, Schummer and Vohra [20] considered the case of continuous graphs, Lu et
al. [12, 11] studied variants in which several facilities need to be located and scenarios in
which an agent is located on several locations, and Feldman et al. [6] studied the impact of
constraining the input language of the agents.

False-name-proofness was first introduced by Yokoo et al. [24] in the framework of combi-
natorial auctions.” In this work, the authors showed that VCG mechanism does not satisfy
false-name-proofness in the general case, and they proposed a property of the preferences

5In the voting literature (e.g., [4, 15, 7]) this property is also referred to as voluntary participation
and the no-show paradox. This property is also equivalent to individual-rationality which takes the,
a bit different, point of view of mechanism design.

6 Actually, this property combined with Citizen sovereignty entails Pareto optimality. Nevertheless, we
prefer to think of Pareto optimality apart from this property due to the different motivation.

7 A similar concept was also studied later n the framework of peer-to-peer systems by Douceur [5] under the
name sybil attacks. ([24] is based on a series of previous conference papers, and hence this non-monotone
time line.)



under which this mechanism becomes false-name-proof. Later, Conitzer and Sobel [4] ana-
lyzed false-name-proof mechanisms in voting scenarios, Todo et al. [22] characterized other
false-name-proof mechanisms for combinatorial auctions, and Todo et al. [21] characterized
the false-name-proof mechanisms for facility location on the continuous line and on con-
tinuous trees. Todo et al. [21] also analyzed the implications of their characterization for
the design of mechanisms for social-welfare maximization (both for sum-of-costs and for
maximal-cost).

The characterization of manipulation-resistant mechanisms for facility location is highly
related to problems in Approzimate mechanism design without money [17]. In these prob-
lems, agents are characterized using cardinal utilities and the designer seeks to find an out-
come maximizing a desired target function (e.g., sum of utilities, product of utilities, or mini-
mal utility). These works bound the trade-of between the target function and manipulation-
resistance, that is, they bound the loss to the target function due to manipulation-resistance
constraints.

Our contribution

In this paper we present a family of unweighted graphs, ZV-line graphs, and show a general
mechanism for facility location over these graphs which satisfies the desired properties. The
mechanism is Pareto optimal and in particular satisfies citizen sovereignty; It is anonymous,
so in particular no agent is ignored; But on the other hand, it is resistant to all the above
manipulations. Roughly speaking, in ZV-line graphs we have two types of locations Z
and V (and we refer to them as Z-vertices and V-vertices, respectively), and the facility
is ‘commonly’ (except if all agents agree differently) located on a Z-vertex. For instance,
the Z-vertices could represent commercial locations for locating a public mall, or a set of
status-quo outcomes. We show that under some connectivity assumptions on the graph,
our mechanism satisfies the desired manipulation-resistance properties. To the best of our
knowledge, this is the first work to show a general false-name-proof mechanism for a general
family of graphs.

For example, consider the following family of graphs (which is a sub-family of ZV-line
graphs and captures the main insight of our mechanism). Let G = (V, E) be a bipartite
graph with vertex set V and edges set . That is, there exists a partition of the vertices
Y = VUZ s.t. there are no edges between V-vertices and no edges between Z-vertices. In
addition, we also require that (a) the agents agree on some predefined order of the Z-vertices
(similarly to the single-peaked case [1]) and that (b) any of the V-vertices is connected to
a sequence (according to the order) of Z-vertices. Our mechanism for such graphs:

» The mechanism returns the leftmost Pareto optimal location in Z, if one exists.

» If no location in Z is Pareto optimal, then necessarily all agents voted for the same

location, and the mechanism returns this location.

For example, bi-cliques (full bipartite graphs)

can be represented as a ZV-line graph in which each V-vertex is connected to all the
Z-vertices as follows (and we use below < for Z-vertices and o for V-vertices):




Our mechanism for this case:
» If all agents voted unanimously for the same location, the mechanism returns this
location.

» If at least two V-vertices were voted for, the mechanism returns the leftmost Z-vertex.

» Otherwise, the mechanism returns the leftmost Z-vertex that was voted for.
Notice that in this case the order over the Z-vertices is arbitrary (as well as the choice of
one of the sides to be the Z-vertices) in the sense that it is not derived from the graph but
a parameter of the mechanism (for instance, the order might represent the social norm of
the society).

A second example is the discrete line graph, which can be represented as a ZV-line graph
in which each two consecutive Z-vertices are connected by a unique V-vertex,
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In particular, we show a strategy-proof, false-name-proof, Pareto optimal mechanism which
is far from generalized-median mechanisms (for instance, in the common case the output of
the mechanism belongs to a subset consisting of only half of the locations), in contrary to
the characterization of these mechanisms for the continuous line [21, Thm. 2].

Two simple graphs that are generalizations of (the ZV-line graph representation of) the

discrete line graph are "\ / N / N\ e "\, , in which each two consecutive Z-vertices
NN

are connected by two V-vertices, and the 2 x n grid ‘*‘7‘7‘7‘7‘7‘7‘ which can

be represented as a ZV-line graph in which each three consecutive Z-vertices are connected
by a unique V-vertex, i.e.,
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A common property to all the above examples is their regularity: All the V-vertices
have the same degree and similarly all the Z-vertices have the same degree. An example
we encountered of a graph for which a mechanism was known (although not published) is

\:L‘, which can be represented as a non-regular ZV-line graph as
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In the definition of the ZV-line graph family we extend the above family (and extend
the mechanism accordingly) in two different ways: allowing edges between the Z-vertices
(under a similar interval constraint), and replacing vertices by a tree, a clique, or any other
graph for which a manipulation-free Pareto optimal anonymous mechanism is known. For



example,
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In particular, the ZV-line graphs family includes all trees, cliques, block graphs [10], and
cycles of size up to 4 (note that there is no manipulation-resistant Pareto optimal anonymous
mechanism for cycles of size larger than 5).

2 Model

Consider a graph G = (V, E) with a set of vertices V and a set of (neither weighted nor
directed) edges E < (g), and we refer to the vertices v € V also as locations and use the
two terms interchangeably. We use the notations E (S,T) = {(s,t)e E|s€ S, te T} for
the edges between S €V and T € V, and E(S) = E(S,S) =En (g) for the edges inside
S. The distance between two vertices v, u € V, notated d (v, u), is the length of the shortest
path connecting v and u,® and the distance between a vertex v € V and set of vertices S C V,
d (v, S), is defined as the minimal distance between v and a vertex in S. We define B (v, d),
the ball of radius d = 0 around a vertex v € V, to be the set of vertices of distance at most
d from v

B(v,d) ={ueV|d(v,u) <d}.

We say that two vertices are neighbors if there is an edge connecting them. We notate by
N (v) the set of neighbors of a vertex v, and by N (5) the set of neighbors of a set of vertices
S, that is, N (S) = U,eg N (v).

An instance of the facility location problem over G is comprised of n agents who are
located on vertices of V; Formally, we represent it by a location profile * € V™ where x; is
the location of Agent i. Given an instance x, we would like to locate a facility on a vertex
of the graph while taking into account the preferences of the agents over the locations. In
this work, we assume the preference of an agent is defined by her distance to the facility:
An agent located on z € V strictly prefers the facility being located on v € V over it being
located on w € V iff d (z,v) < d(x,u) and she is indifferent between the two locations in
case of equality.

A general facility location mechanism (or shortly a mechanism) defines for any profile of
locations a location for the facility. We require the mechanism to assign a location for the
facility for any profile and any number of agents. Hence, we represent the mechanism by
a function F': (J,5, Yt — V. We also think on F' as a voting procedure: Each agent votes
(and we also refer to his vote as a ballot) for a location, and based on the ballots F' returns
a location for the facility. We say that a mechanism is anonymous if the outcome F' (x)
does not depend on the identities of the agents, i.e., it can be defined as a function of the
ballot tally, the number of votes for each of locations.

8For simplicity, we assume the graph is connected.



Manipulation-resistance

A strategic agent might act untruthfully if she thinks it might cause the mechanism to return
a location she prefers (i.e., closer to her). In this work we consider the following manipu-
lations: Misreport: An agent might report to the mechanism a location different from
her real location; False-name-report: An agent might pretend to be several agents and
submit several (not necessarily identical) ballots;” Abstention: An agent might choose not
to participate in the mechanism at all. A mechanism in which no agent benefits from these
manipulations, regardless to the ballots of the other agents, is said to be strategy-proof,
false-name-proof, and abstention-proof, respectively. We also consider a generalization
of these manipulations to manipulations of a coalition, and say a mechanism is group-
manipulation-resistant (shortly manipulation-resistant) if no coalition can change the
outcome, by misreporting, false-name-reporting, or abstaining, to a different location which
they unanimously agree is no worse than the original outcome (i.e., if they vote sincerely)
and at least one of its members strictly prefers the new location. Notice that this is a very
strong definition of a resistance to manipulations - We do not require that all the members
of the coalition will use the same (insincere) deviation and we do not require all of them to
strictly prefer to deviate.

Definition 1 (Group-manipulation-resistant).!® A mechanism F is not group-manipulation-
resistant if there exists a vector of locations @ € V™, a coalition of agents C' € {1,...,n},
and a set of ballots A € (J,5, V" s.t. (i) all the members of C' weakly prefer F'(A,z_¢),
that is the outcome when the agents outside of C' do not change their vote and the agents of
C replace their ballot by A, over F'(x) and (¢) at least one of C’s members strictly prefers
F(A,z_¢) over F (x).

We note that for C = {i} being a singleton, this general manipulation coincides with
misreport for |A| = 1, with false-name-report for |A| > 1, and with abstention for A = (.

The revelation principle

One could also consider more general mechanisms in which the agents vote using more
abstract ballots, and define similar manipulation-resistance terms for the general framework.
Applying a simple direct revelation principle [16] shows that any such general manipulation-
resistant mechanism is equivalent to a manipulation-resistant mechanism in our framework:
The two mechanisms implement the same mapping of the agents private preferences to a
location of the facility, and since the above properties are defined for the mapping they are
invariant to this transformation.

Efficiency

So far, we defined the desired manipulation-resistance properties for a mechanism. On the
other hand, we would also like the mechanism to respect the preferences of the agents, e.g.,
we would like to avoid a scenario in which, after the mechanism have been used, the agents
can agree that a different location is preferable. Given a location profile & € V", the set of
Pareto optimal locations, PO (x), is the set of all locations which the agents cannot agree
to rule out. Formally, given two locations v,u € V, we say that u Pareto dominates v
(w.r.t. a location profile @) if (2) all agents weakly prefer v over v and (i¢) at least one
agent strictly prefers u over v. We say that v is Pareto optimal (v € PO (x)) if it is not
Pareto dominated by any other location. We say a mechanism is Pareto optimal if for any

9A special case of false-name-voting which is considered in the literature is double-voting: Casting the
same ballot several times to increase its impact.
10For simplicity of notations, we give the formal definition for anonymous mechanisms.



report profile & (and assuming truthful reporting) F (x) € PO («). In particular, Pareto
optimality entails unanimity, if all the agents unanimously vote for the same location then
the mechanism outputs this location, and citizen sovereignty, the mechanism is onto and
does not a-priori rule out any location.

3 Main Result

In this work we define a family of graphs, ZV -line graphs, and present a general mechanism
for this family.

Definition 2 (ZV-ordered partition).

Given an unweighted undirected connected graph G = (V, E) and a sequence of non-
empty sets of vertices Z, V1,..., Vi €V, we say that the sequence Z,Vy,..., Vi (k= 0)is a
ZV-ordered partition if the following holds.

1. The sets V; are disjoint,

VinV; =@ fori#j.

2. The sequence is a cover of ¥ and no sub-sequence of it is a cover of V,!1

ZoViu--uVp =V
ZEViu---u Vg
VideZ fori=1,...,k.

3. For i =1,... k there is a unique vertex in V; which is closest to Z. We refer to it as
the root of V; and denote it by R (V;),

R (V;) = argmind (v, Z) .
veV;
4. All paths between vertices of V; and vertices outside of V; pass through the root R (V;)
and through Z.'2
5. Last, Z is equipped with an order (that is, an injective mapping from Z to ). For
simplicity of description we refer to this order as an order from left to right. We call
a subset A of Z an interval if it is a sequence of vertices according to the order, i.e.,
if A is the preimage of an interval in R.
We use the notions V;-subgraphs, V-vertices, and Z-vertices for the respective sets of ver-
tices.

Given a graph G = (V, E) with a ZV -ordered partition, Z,Vi,..., Vi € V, and a se-
quence of mechanisms F;: [, (%)t — V; for i =1,...,k, we define the following mecha-
nism F*: (J,50 V' = V:

Definition 3 (F*). Given a vector of reports @ € (J,5 V'
» If all the ballots belong to the same V;-subgraph, return F; (x).
» Otherwise, return the leftmost Pareto optimal location in Z.

It is not hard to see the following:

F* is well defined: If « is not included in any of the V;-subgraphs, then there exist two
locations, z; and z;, and a short path between them s.t. all its vertices are in PO ()
and at least one of its vertices is in Z. Hence, PO (x) n Z # & and in particular the
leftmost location in PO (x) n Z is well-defined.

1Since we {Vi} are pair-wise disjoint, the third constraint is equivalent to V; £ Z o Vi u--- U V1 U
‘/7;+1 U U Vk
12Equivalently, Vv € V;\R (V;) N (v) € V;and N(R(V;)) SV, u Z.



F* runs in polynomial time: Checking whether an agent weakly prefers a location a over
a location b can be done in polynomial time. Hence, also checking whether all agents
weakly prefer one location over another, and checking for each location whether the
coalition of all agents strongly prefers some other location over it can be done in a
polynomial time.

Order representation of F*: If Fy,..., F} can be defined as the ‘first Pareto optimal
location according to some order,” then an equivalent way to define F™* is as the first
Pareto optimal location in the following order:

First, go over the vertices of Z from left to right, and then on the vertices of
the V;-subgraphs in some order s.t. for each subgraph the order over its vertices
matches the order of Fj;.

Next, we define ZV-line graphs by adding a connectivity constraint over the Z-vertices.

Definition 4 (ZV-line graph). An unweighted undirected connected graph G = (V, E) is
a ZV-line graph w.r.t. V =2Z o (V1U---OVy) it Z,V4,..., Vi is a ZV -ordered partition of
G and in addition for any vertex v € V, B (v,1) n Z is an interval in Z (which might be the
empty set).

For instance, for any k > 1 the clique over k vertices, Ky, is a ZV-line graph w.r.t.
Z =Y and any order over the vertices. A special case of ZV-line graphs is when all the
V;-subgraphs are singletons (for example, the graphs in the introduction).

Theorem 5 (Main result).'?
Let G = (V, E) be a graph with a ZV-ordered partition V = Z u (ViU --- UVy) and let
Fi: Uizo (V;)t — V; be a sequence of mechanisms s.t. fori=1,...,k
e F; is anonymous and Pareto optimal;
e For an infinite number of 7 € N there exists a profile © € (J,5 (Vi)t in which all
locations in V; were voted for at least T times and F; (x) = R (V;); and
e For any vector of locations © € (V;)", a coalition of agents C, and a set of ballots
A € Upzg (Vi)',"* A is not a beneficial deviation for C (That is, C does not y(%)
strictly prefer F; (A,x_¢) over F; (x)).
Then, for F*: U;sq V¢ — V being the mechanism defined in Definition 3, F* is an
anonymous and Pareto optimal mechanism and
(I) If G is a ZV -line graph w.r.t. V = Z v (V1O ---OVy), then F* satisfies (% ).1°
(IT) If R(Vi) € Z fori = 1,...,k, and the mechanism Fz: \J,5o 2" — Z which returns
the leftmost Pareto optimal location satisfies (¥ ),*> then also F* satisfies (¥ ).t

Before proving the theorem we note the following:
e By considering singleton coalitions, we get that F'* is strategy-proof, false-name-proof,
and abstention-proof.
Moreover, no coalition can find a beneficial deviation, by assigning misreporting, false-
name-reporting, or abstaining among its members.'6
e As a corollary for the case ZV-line graphs with singleton V;-subgraphs we get

13We describe the strong version of the theorem, deriving from resistance of F; to any manipulation, the
same resistance for F'. The same proof shows that also weaker manipulation-resistance properties of F; (e.g.,
against individual agents, against misreporting , or against abstentions) result in the same manipulation-
resistance for F'.

MSince F; (and later F'*) are anonymous mechanisms, we define A as a set of ballots ignoring identities.

151.e., for any vector of locations & € V™, a coalition of agents C, and a set of ballots A € Uz>0 Vi, Ais
not a beneficial deviation for C.

16Notice this is a strong notion of group manipulation-resistance. A coalition cannot even find a deviation
which is beneficial for one of its members, while not hurting the other members.



Corollary 6. Let G = (V, E) be a graph and V = VOZ a partition of the vertices to
two disjoint sets with Z being equipped with an order s.t.

~EBE(V) =2

— For any vertex v eV, N (v) is an interval in Z; and

— For any vertexve Z, N (z) u {z} is an interval in Z.
Next, let F' be the following mechanism

» If all ballots are identical, return this location as the outcome.

» Otherwise, return the leftmost Pareto optimal location in Z.
Then, F is an anonymous and Pareto optimal mechanism, and the following property
holds: For any vector of locations € V", a coalition of agents C, and a set of ballots
A€o Vt, A is not a beneficial deviation for C.

e Last, we note that the theorem does not hold for weighted graphs.
Consider the following weighted graph and a profile in which Alice 0
is located on z, and Bob on v. Then, the outcome is z,., but Bob can ! 10
move the facility to a preferred location z, both (2) by misreporting @ e
z¢, hence F™* is not strategy-proof, and (%) by false-name-reporting 7 — {v}
z¢ in addition to his sincere report, hence F'* is not false-name-proof. Z = {2z, 2}

3.1 Implications: Mechanisms for recursive graph families

By applying the main result to recursive families of graphs, we can generate a recursive (and
hence commonly simple) mechanisms which satisfy our desiderata. For instance, a corollary
of our result is a manipulation-resistant mechanism for the following recursive family of
rooted graphs (That is, (V, E,r) s.t. EC (g) and r € V).

Definition 7 (F).
o ({v},J,v)e F.
e For any k,0 > 1: If {(Vi,Ei,ri>}f=1 are in F (and the V; are disjoint), then also the
following graph is in F.
k

(630 (Uy) 1rihos g oo (UL B) 1)

Le., adding a new layer of pre-roots, a bi-clique between them and the roots of the
graphs of the previous stage, and defining one of the pre-roots to be the new root.

Claim 8. The anonymous Pareto Ooptimal mechanism F' (z) = argmin,e po(q) d (v, ), which
returns the Pareto optimal location closest to the root and breaks ties according to a pre-
defined order, is manipulation-resistant.

Note that by setting ¢ = 1 in the second step of the definition we get a recursive
definition of rooted trees. Hence, we get that for any tree G the mechanism that returns
the lowest common ancestor of the ballots (with regard to some root) is a manipulation-
resistant mechanism (These are also the mechanisms which Todo et al. [21] characterized as
the false-name-proof, anonymous, and Pareto optimal mechanisms for the continuous tree.).

Proof. We prove the claim by induction over the number of steps needed to generate G,
h(G).

If h(G) =0,ie., G={{v},d,v) consists of a single vertex and the trivial mechanism
satisfies all the desired properties.

If h(G) > 1, then G is a ZV-line graph w.rt. Z = {?j}f.:l and V; = V;. Note that for
all V;-subgraphs h ((V;, E;,r;)) < h(G) — 1. Hence, our recursive mechanism returns one of
the pre-roots of the ‘lowest’ subgraph which includes & when ties are broken according to
the (arbitrary) order over the pre-roots. O



A second example is Connected block graphs [10].17 A connected graph G = (V, E) is a
block graph if one of the following equivalent conditions holds:
e Every biconnected component of G is a clique.
Since for any graph the structure of its biconnected components is described by a
block-cut tree,'® connected block graphs are also called clique trees.
e The intersection of any two connected subgraphs of G is either empty or connected.
e For every four vertices u,v,w,x € V, the larger two of the distance sums

d(u,v) + d(w, x), d(u, w) +d(v, x), and d(u, z) + d(v, w)

are equal.
Our mechanism for a connected block graph G returns the closest Pareto optimal location
to an arbitrarily predefined location, breaking ties according to an arbitrarily predefined
order over the locations.

Proof sketch. Let T (G) be the block-cut tree of G. Following the inductive structure of
T (G), and recalling that a clique is a ZV-line graph w.r.t. all vertices of the clique being
Z-vertices and any order over them, we get that our mechanism is defined by an arbitrary
predefined component-vertex of 7 (G), R, and a series of arbitrary predefined orders over
the locations of each of the components. The mechanism is:

» If all ballots belong to the same component, return the first location (according to the
order) that was voted for.

» Otherwise, choose the component closest to R s.t. one of the locations of the compo-
nent is Pareto optimal, and return the first location (according to the order) in this
component.

Last, we note that an equivalent definition of this mechanism is returning the closest Pareto
optimal location to some location v € R, breaking ties according to a concatenation of the
orders over the components. O

4 Summary & Extensions

In this work, we presented a family of graphs, ZV-line graphs, and a general anonymous
Pareto optimal manipulation-resistant mechanism for the facility location problem on these
graphs. To the best of our knowledge, this is the first work to show a general false-name-
proof mechanism for a large family. Our construction is inductive: It derives a mechanism
for a given ZV-line graph from mechanisms for its subgraphs (which might not be ZV-line
graphs). Hence, it is straightforward to derive from the construction general mechanisms
for recursive families of graphs.
We assumed that our graphs are connected, but it is not hard to see that the following
easy extension for unconnected graphs will satisfy the same desiderata.
» At the first stage, choose the first connected component according to some predefined
order s.t. at least one agent voted for a location in this component.
» At the second stage, run our mechanism taking into account only agents who voted
for locations in the chosen component.
Note that, just like the mechanism for the connected case, also this mechanism can be
equivalently defined as the first Pareto optimal location according to some order of the
vertices - The concatenation of the respective orders for the different components.

17We thank Ayumi Igarashi for suggesting us this family as an example.

18 The block-cut tree of a graph G is a tree 7 (G) which is defined in the following way. In T (G) there is a
vertex (component-vertez) for each maximal biconnected component of G and a vertex (intersection-vertex)
for each vertex in G which belongs to more than one maximal biconnected component. There is an edge in
T (G) between each component-vertex and the intersection-vertices belonging to this component.



The mechanism we presented is not the only mechanism satisfying the desired properties.
Taking any other order over the Z-vertices s.t. the constraints of Def. 4 hold and defining
F* accordingly will also satisfy them. In particular, a mechanism which takes at the second
stage of Def. 3 the rightmost Pareto optimal Z-vertex will also satisfy the same desiderata.
We conjecture that these are the only anonymous Pareto optimal manipulation-resistant
mechanisms for the facility location problem.

Conjecture 9.
Let G = (V, E) be a ZV-line graph w.r.t. V = Zo(V1U - OVi) and let F: |50 V' =V
be a mechanism s.t.
e F'is anonymous and Pareto optimal; and
e For any wvector of locations x € V™, a coalition of agents C, and a set of ballots
A€o Vi, A is not a beneficial deviation for C.
Then, for i = 1,...,k: If x € (V;)", i.e., all locations are in V;, then also F (x) € V;.
Moreover,
F is the outcome of applying Def. 3 for F; defined by = € (V;)" — F (x) and an order
over Z which satisfies the ZV -line constraints.

Conjecture 10.
For almost all graphs G = (V, E),*° if there exists an anonymous and Pareto optimal
mechanism F: J,5, V' =V s.t.
For any vector of locations x € V™, a coalition of agents C, and a set of ballots
A€ U0 Vt, A is not a beneficial deviation for C.
Then, there exists a sequence of non-empty sets of vertices Z,Vy,..., Vi, €V s.t. G is a
ZV -line graph w.r.t. V=2 u (V1U---OV).

Last, an important continuation of this work is analyzing the implications for Approx-
imate mechanism design without money [17]. That is, assuming the agents are accurately
represented by a cost function (e.g., the distance to the facility or a monotone function of
the distance) and analyzing the implications of manipulation-resistance on the approxima-
bility of the minimization problem of natural social cost functions, e.g., the average cost
(Harsanyi’s social welfare), the geometric mean of the costs (Nash’s social welfare), or the
maximal cost (Rawls’ criterion). For instance, assuming our two conjectures above, one
gets that when there is a large disagreement in the population (i.e., the agents are dispersed
over many V;-subgraphs) an extreme status-quo alternative must be chosen by the mech-
anism, which results in a bad price of false-name-proofness. Nowadays, many aggregation
mechanisms (e.g., over huge anonymous networks like the internet, but also in other cases
in which vote frauds are easy) are highly susceptible to double voting and to more general
false-name manipulations. We think that such results should open a discussion on the costs
of these protocols (since the benefits are clear).

9The only counter example we’ve found to the conjecture is the cycle of size 5~ “_ (and graphs
AN /

derived from it by the second result of Thm. 5, e.g., éﬁ\/\//\<)' It is not hard to verify that a mechanism

which returns the first Pareto optimal location according to one of the following orders

‘/ \27 vf/ \Z, and ,./ \,2
N~ N/ N
(and their rotations and reflections) is a manipulation-resistant mechanism and that this graph is not a

ZV-line graph. We conjecture that this is a representative extreme exception and intend to characterize the
exception and replace the ‘almost’ with an exact statement.
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A Proof of Main Result (Thm. 5)

The anonymity of F* is an immediate corollary of the mechanisms F; and Fz being anony-
mous mechanisms.

Notice that if all agents are in the same V;-subgraph, then all of them strictly prefer R (V;)
over any location outside of V;, so PO () € V;. Moreover, any location v € V;\PO (x) is
Pareto dominated by a location y € PO (x) € V;. Hence, the Pareto optimal set when
considering only the locations in V; equals to the Pareto optimal set when considering all
locations. Since, the mechanisms F; are Pareto optimal mechanisms we get that also F™ is
Pareto optimal.

In order to prove the main part of the theorem, we assume towards a contradiction
that there exists a vector of locations @ € V", a coalition of agents C, and a set of ballots
A € U;so V', st. C can, by voting A, get an outcome F* (A,x_¢) which it strictly
prefers, that is, all of its members weakly prefer F* (A, x_¢) over F* () = F* (x¢,x_¢),
and at least one of C’s members, Agent i for i € C, strictly prefers F* (A,x_¢) over
F*(x). F* () € PO (x) and in particular the coalition of all agents does not strictly prefer
F* (A x_¢) over F* (x). Hence, there exists an Agent j, for j ¢ C, who strictly prefers
F* (x) over F* (A, xz_¢).

If F*(x) is not in Z: Then necessarily, all the locations in @ and F* (x) belong to
the same V;-subgraph, w.l.o.g. Vi, so F* () = Fy (). Since F} is resistant to false-name
manipulations of Agent ¢ and since Agent i can achieve R (V1) by casting enough false
ballots, we get that Agent i weakly prefers F* (x) over R (V1) and hence Agent i strictly
prefers F* (A, z_c) over R (V1). Since for any w outside of V; it holds that d (z;, R (V1)) <
d(z;,u), we get that F* (A, z_c) € VI\R (V1) € V1\Z. Hence, A € V; and F* (A, x_¢) =
F1 (A, z_¢), and we get a contradiction to the false-name-proofness of Fj.

Similarly, if F* (A, x_¢) is not in Z: Then necessarily, F'* (A, x_¢) and all the locations
in A and &_¢ belong to the same V;-subgraph, w.l.o.g. Vi, s0 F* (A,xz_¢) = F1 (A, xz_¢).
Since F} is resistant to false-name manipulations of Agent j and since Agent j can achieve
R (V1) by casting enough false ballots, we get that Agent j weakly prefers F* (A, x_¢) over
R (V1) and strictly prefers F™* () over R (V7). Since for any u outside of V; it holds that
d(z;, R (V1)) < d(x;,u), we get that F* (x) € Vi\R (V1) € V1\Z. Hence, hence € V; and
F*(x) = Fy (x), and we get a contradiction to the false-name-proofness of Fj.

If both F* () and F* (A,x_¢) are in Z: We deal with this case using two different
argumentations for the two scenarios of the theorem.

(I) Gisa ZV-line graph wrt. V=Z v (VU --- UV}): We first prove the following two

auxiliary lemmas.

Lemma i. For anyveV and d >0, B(v,d) n Z is an interval in Z.

Proof of Lemma i. We prove the lemma by induction over d.

For d =0, B (v,0) n Z equals to {v} if v € Z and to the empty set if v ¢ Z.

For d =1, B(v,1) n Z is either the empty set or an interval in Z.

Ford>2: Ifd<d(v,Z2), Blv,dnZ=. Ifd>d(v,Z)>1 (in particular, v ¢ Z
and is not a root), then there exists a location u (the root of the V;-subgraph v belongs
to) s.t. all paths from v to locations in Z pass through u, 1 < d(v,u) < d(v,Z) < d and

B((v,d)ynZ = B(u,d—d(v,u))nZ

which is an interval by the induction hypothesis.



Otherwise, d (v, Z) < 1 < d and in particular B (v,d) n Z # ¢, and hence

B(v,d)nZ=(B(v,1)nZ)u U Bd-1)nz

ueN(v) s.t.
d(u,Z)<1

For any u € N (v) s.t. d(u,Z) < 1 we claim that B (u,d—1)n Z and B (v,1) n Z
intersect.

e lfueZ: ue(B(u,d—1)nZ)n (B(v,1)n Z).

e Ifu¢ Z: thenve Zandve (B(u,d—1)nZ)n (B(v,1)n Z).
Hence, for any u € N (v) s.t. d(u,Z) <1, B(u,d —1)nZ and B (v,1)nZ are intersecting
intervals in Z. So B (v,d) n Z is an interval as the union of intersecting intervals. [

Lemma ii. Let x be a vector of locations s.t. F* (x) € Z and let v € Z be a location s.t.
Agent i strictly prefers v over F* (x). Then F* (x) is to the left of v.

Proof of Lemma 4i. If x; € Z then z; € PO () nZ and by the definition of F*, F* (z)
is to the left of x;. Since F* (x) ¢ B (x;,d (x;,v)) n Z and since this set is an interval
which includes x;, we get that F™* (x) is to the left of the interval and in particular to
the left of v.

Otherwise, z; ¢ Z and there exists an Agent k for which xj is not in the same V;-
subgraph as x;. Hence, there exists a location u € Z s.t. u is on a shortest-path from x;
to zx, u € Z, and u € PO (x). Hence, d (z;,u) < d(z;,v) and so

u€ B(x;,d(z,u) nZ S B(x,d(x;,v))nZ.
The two sets are intervals in Z, F* (x) is to the left of u (or equal to it), and
F*(x) ¢ B (z;,d(z;,v)) n Z.
Hence, F* (x) is to the left of v. O
By applying Lemma ii for the profile x and Agent ¢, we get that F'* (x) is to the left

of F* (A,x_¢); and by applying Lemma ii for the profile (A, x_¢) and Agent j, we get
that F* (A, x_¢) is to the left of F* (). Hence, we get a contradiction.

(II) R(V;) e Z and Fy satisfies (k): We notice that since R (V;) € Z for all V;-

subgraphs the preference of an agent which is located in a V;-subgraph over the locations
in Z and an agent which is located on the root, R (V;), are identical. Hence, for any
profile y if F* (y) € Z then F* (y) = Fz (y) for Y being the profile generated from y by
replacing each ballot outside of Z with the root of its V;-subgraph. Therefore, for the
profile Z € Z™ the coalition C' can, by voting ;l, get an outcome Fz (:4, i\,c) which it

strictly prefers over Fz (Z), in contradiction to Fyz satisfying ().



