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Abstract

Decision making under uncertainty is a key component in many Al settings, includ-
ing those that involve strategic decisions whose outcome depends on the actions of
other agents. The common solution of expected utility maximization requires both
a cardinal utility function and detailed probabilistic information. However, such
probabilities cannot be easily obtained, especially in strategic situations. Moreover,
people are notoriously bad at using probabilities even when such are available.

We present a framework that allows “shades of gray” of likelihood without probabil-
ities, creating a hierarchy of sets of states of the world, with inner sets reflect higher
likelihood. This hierarchy of likelihoods allows us to define ordinally-dominated
strategies. We apply this definition to voting settings and show that it justifies
various voting heuristics as bounded-rational strategies.

1 Introduction

The question of how an agent (human or artificial) chooses a strategy when faced with a
choice has been a key issue in artificial intelligence since its inception. Various approaches
have been presented, many of which fundamentally rely on two primary components: the
epistemic state of the decision maker (her beliefs on how her actions will affect the world),
and her innate preferences, i.e., the utility or cost involved in any outcome.

In voting settings, which will be our running application throughout this paper, agents’
views are aggregated to reach a shared result. Participants have various strategies they can
follow once they know the current state of the world—what other agents are voting—and
their own utility function (in most voting settings, an ordinal preference is assumed). This
voting decision may either be applied once (based on the current beliefs of the voters), or in
an iterative setting where voters have several opportunities to observe the state and change
their action.

When the exact state of the world is unknown, the epistemic state of the decision maker
might depend on some prior knowledge and/or signals from the environment, which provide
partial information.

The most common way to address this lack of knowledge has been to assign probabilities
to each state of the world, and to assume that agents each maximize their expected utility
over all possible states, and traditional voting models often take into account voters’ uncer-
tainty and expected utility (e.g., Myerson and Weber [19]). However, in many cases agents
may not have the ability to find the precise probabilities of each state of the world. More-
over, it has been well established that people are quite bad in assigning probabilities and in
acting according to them [21, 12]. Alternative approaches, focusing on decision making in
face of strict uncertainty (possible/impossible states) have been formulated (e.g., [11]) and
applied in various AI and economic settings [7, 3, 14], and more recently in voting [5, 20, 17].

1.1 Contribution

We extend the framework suggested in the latter papers, by allowing gradual levels of
uncertainty, without falling back to a probabilistic approach. Instead, we build on the idea



of having well-delineated sets of states of the world, each being a superset of the one before it,
where innermost sets correspond to the most likely states. We say that an action is justified if
it is not dominated by any other action, at any level of the hierarchy. This extends the most
basic rule of rationality: avoid dominated actions (Aumann [1, 2]). Importantly, an agent’s
belief in our model is only over other agents’ actions (in the context of voting, their ballots),
and not over their preferences or beliefs. This is in contrast to Aumann and mainstream
game theory, but in alignment with recent work in social choice and more traditional work
in AT (see Section 1.2). In particular, there is no common belief (or even individual belief) of
rationality. Equilibrium, if exists, emerges as a result of heuristic reactive reasoning rather
than recursive strategic deliberation.

We then suggest an alternative representation for information structures in voting, based
on what we term a pivot-graph. Given a hierarchy of pivot-graphs (one for every likelihood
level), we can determine, for example, which votes dominate others, using only ordinal
preferences. We show that many voting heuristics from the literature can be justified as
rational decisions for an appropriate epistemic model (a specific hierarchy of pivot-graphs).
Moreover, in an iterative voting setting, certain topological assumptions on the pivot-graphs
guarantee that voters converge to equilibrium, thereby generalizing some previous conver-
gence results.

1.2 Related Work

For an up-to-date coverage of iterative voting, heuristics and uncertainty-based models,
see Meir [16]. In particular, Conitzer et al. [5] considered a voter faced with an arbitrary
information set, and Reijngoud and Endriss [20] considered partial information where, for
example, only the ranking of candidates’ score or only the identity of the leader are known.
Closest to our paper is the Local Dominance model in Meir et al. [17] and Meir [15], in
which all voters base their belief on the possible states on a shared prospective state. It was
shown that in an iterative voting setting where voters play actions that dominate (within
the possible set) their current action, they are guaranteed to converge to an equilibrium
under certain assumptions on the distance metric. Voting heuristics do not explicitly define
the beliefs of the voter, and instead specify a (typically) simple function that dictates the
vote in every given state, and aims to capture realistic behavior [20, 10]. In particular, some
models suggested that a voter either votes truthfully [8] or abstains [6] when not pivotal.

These models stand in contrast to expected utility models. Myerson and Weber [19]
examine calculus of voting for a large number of voters, in which a voter computes the
probability that each action (vote) will be pivotal in every pairwise tie. We see our model as
a way to capture the same line of reasoning of identifying the influential ties, albeit without
using probabilities. A more fundamental difference with the calculus of voting approach
is that the latter assumes a common knowledge of rationality and of the distribution of
preferences, from which an equilibrium is derived.

2 Model

In this section, we provide general definitions for our framework. Specifically, we introduce
the non-probabilistic model of information structures and what we term the ordinal dom-
inance relation between possible actions at a given structure. We denote vectors by bold
letters, e.g. ® = (x1,2,...). The notation x_; refers to all entries of & except x;. We use
terminology from social choice, but all definitions in Section 2 can be easily extended to
other decision making problems.

Each agent i has a set of possible actions A% (ballots), and there is a set of m possible
outcomes, C. The outcome of an action, and thus the agent’s utility, depends on the state



of the world denoted by s, and the agent’s own action. The state s may refer to a state of
nature and/or to the actions of other agents. In the multiplayer voting games in the focus
of this paper, the state s = so_, contains the score of each candidate, as derived from the
voting profile a_; of all voters except i.

The (finite or infinite) set of all world states is denoted by S. An outcome function
f:S8 x A" — C defines the outcome f(s,a) € C of action a taken by agent i at state s (in
Section 3 we show how f captures the effect of a single voter in voting games).

Each agent i has a weak preference order >=* over the set C' x A;.! We use the notation
=% and ~' to specify strict preference or indifference, respectively.

2.1 Information structures

An information set is a set of states S’ C S. An information structure of agent i is a
collection of information sets, denoted S* = (S;)?Zl We say that an information structure
S? is valid if S]i- C S]i- 41 for all j, i.e., they are concentric — each information set contains
the sets with a lower index.

An agent does not assign probabilities to states or to information sets, but an intuitive
interpretation of the model is that agent i believes any state in S} to be substantially more

likely than all states outside S]’ An information structure can either be shared by all agents,
or be agent-specific. Let % denote the set of all valid information structures on S.

Example 1. There are 1000 voters and 5 candidates — a, b, c,d, e — using the plurality voting
system. The voters have access to a poll where votes (in % of total) are s = (29,26,22,17,6).
Voters for a and b have an information structure S* = (S§,55). The set S¢ contains the
poll state, along with any states that can result changing the score of any candidate by at
most 5% (e.g., b may get up to 31% of the votes). The set S§ contains all states within a
range of 15% from the poll. In contrast, supporters of e, f, g are completely certain that the
poll is accurate, and their information structure is S¢ = (S7), where S§ = {s}.

Note that the voters do not reason about the preferences of other individuals—only
about their (aggregate) actions. We will return to this example after defining additional
components of the model.

2.2 Ordinal dominance

Following [5, 20, 17], for any information set S} and actions a,b € A, we say that action
a Si-dominates action b (denoted a = b) if f(s,a) =" f(s,b) for all s € S} and f(s,a) ="
f(s,b) for at least one s € S;».Q Agent i is indifferent between actions a,b at S]i- (denoted
a ~% b) if f(s,a) ~" f(s,b) for all s € Sj. Note that Si-dominance is a partial order over
actions A’ (transitive, antisymmetric and irreflexive relation).

Definition 1. Action a ordinally dominates action b (in structure 8" = (S%) cp)) if there
is some j € [k] such that action a Sj-dominates action b.

The next lemma guarantees that it is not possible that a >; b and b >, a for some
g
7'#

Lemma 2. Ordinal dominance is a partial order.

1'We usually ignore the action a; when looking at preferences. However some preference structures such
as truth-bias or lazy-bias (see Section 4.1) require explicit preferences over an agent’s own actions.

2Since agents care about their actions we should write (f(s,a),a) =* (f(s,b),b) but we keep the notation
simple.



Proof. Transitivity: Suppose action a ordinally dominates action b and b ordinally dominates
action ¢, due to S} and S, respectively. W.lo.g. j/ < j, then S, C S%. There is a state
s’ e S;-, where f(s',b) = f(s',c), and since s’ € S;-, C S’;, we also have f(s',a) =% f(s',b),
and so f(s',a) =" f(s',c). Similarly, for any s € S}, f(s,a) =* f(s,b) =* f(s,c). Thus
a > ¢ which means that a ordinally dominates c.

Antisymmetry: Suppose action a ordinally dominates action b due to S;. For every
J' < j, there cannot be a state s € S}, C S} where f(s,b) =* f(s,a). Similarly, for
any j' > j, there is a state s’ € S; - S;, where f(s',b) <% f(s’,a). Thus, b does not
S},-dominates a. Since this is true for any 7', b does not ordinally dominate a. O

Dynamics and equilibrium The ordinal dominance (OD) relation does not uniquely
define what an agent will do in a given state. An agent playing action a with an information
structure S may have several reasonable responses (just like an agent in a full information
setting may play any action that increases her utility). Thus, ordinal dominance defines a
mapping OD : . x A — 24, where ODyi(S,a) contains all actions that ordinally dominate
a in S according to preferences >=*, and a move from @ to such an action a’ € ODyi(S,a)
is called an ordinal dominance move. We omit the subscript =% when clear from context.
We also define a stricter notion of undominated ordinal dominance move, where UOD(S, a)
contains all actions a’ that ordinally dominate a but are not ordinally dominated themselves.
By transitivity, OD(S,a) = <= UOD(S,a) = 0.

Definition 2. An ordinal dominance (OD) equilibrium (for a given information struc-
ture S and preference profile >) is an action profile a such that for every agent 1,
ODyi(S"(5a_,),a;) is empty.

That is, no agent plays an action that she believes to be ordinally dominated. Note that
the definition would not change by using UOD instead of OD.

Observation 3. For a “full information” epistemic model where S'(s) = ({s}), the set
OD(8(s),a;) coincides with the set of better responses to (s,a;); the set UOD(S%(s),a;)
coincides with best-responses; and OD equilibrium coincides with a pure strategy Nash equi-
librium.

Observation 4. If S, = S, any globally-dominated action (i.e., dominates any other action,
in all possible situations) is also ordinally-dominated.

3 Voting and Pivotal Actions

We now apply our model to voting scenarios. Specifically, we consider single-winner elections
with a large population of voters [19, 15], under scoring voting rules. The set of outcomes
is the set of candidates C, and the states of the world are all possible score vectors S = N,
where s(c¢) is the number of votes for ¢. A score-based voting (SBV) rule f4 is an outcome
function defined by a set A C N of allowed votes: For example, the set A under Plurality
contains all vectors whose sum is 1, Approval allows all binary vectors, and Borda allows
all permutations of (0,...,m — 1). The action sets are symmetric, i.e., A® = A for all
voters. We denote by a;(c) € N the absolute score given to ¢ by agent i in vote a; € A*.
The outcome function fa(s,a;) selects a candidate ¢ € C' with the maximal total score
s(e) + a;(c), breaking ties (say) lexicographically.



3.1 Pivot graphs

A pair of actions (a’,a”) is pivotal for a pair of outcomes ¢/,¢” € C in state s € S, if
f(s,a') = ¢ and f(s,a”) = ¢’. An agent i is pivotal for the pair of outcomes ¢/, ¢’ € C in
information set S%, if there are s € S} and actions aj,a; € A' that are pivotal for ¢/, ¢” in s.

1?7

Information set S; induces a pivot-graph H; = (C, E), which contains a vertex for every

outcome, and an edge (¢, ¢”) if agent ¢ is pivotal for the pair ¢/,¢” in S;
Every information structure S induces a pivot graph structure H' = (H;:)?:l,

each H} is a subgraph of H} ;. The set 5#(C) contains all pivot graph structures.

where

Example 5. Continuing our Example 1 from above, there is a state s’ € S{ such that
s = (28,28,19,20,5) and thus a single voter can change the outcome from f(s',;a) = a
to f(s',b) = b. Thus, for supporters of a and b, Hy will have an edge between a and b,
and similarly between a and c¢ and between b and c. Their Hy will have these edges and
additionally between d and a,b and c. For voters of e, f, g, their pivot-graphs have no edges
at all.

In elections with large populations of voters, each voter is almost insignificant, as she
carries a minute effect on the outcome. Therefore, voters do not know the exact score of
each candidate, but only have a rough idea of what it is (each candidate’s share of the
votes). As a result, it is likely that if a voter considers herself pivotal in some possible tie,
she will consider any change in her vote as possibly pivotal. We capture this property in
the following formal definition.

Definition 3 (Sharp Pivot Property (SPP)). An information structure S° satisfies the
Sharp Pivot Property if: for all ¢’,c" € C, an edge (¢',c") € H; entails that any pair of
actions a/,a! € A® such that a(c') > a//()? and al(c") < all(c") is pivotal for ¢, c".

Note that structures S* and H* are two different ways to represent the information of
an agent. In general, ' contains less information than S?. We will assume throughout
the paper that all information structures have SPP, which means that #’ contains all the
relevant information in S°.

The SPP is justified when the scale of a single voter’s influence is much smaller than
the scale of a candidate’s score. In the large-population model of Myerson and Weber [19]
a similar assumption is made: either ¢, ¢” are not tied (in which case the pivot probability
is negligible), or ¢/, ¢” are tied in the expectation, in which case a difference of 0,1,2,3, or
any other score (up to the maximum allowed by the voting rule to be cast by a single
voter) are all equally likely. SPP makes a weaker assumption, that none of these states
is substantially more likely than another (i.e., belongs in a different certainty level). For
example, if (¢,d) € Ha, a}(c) = a;(c) + 3 and a}(d) = a;(d) then there is state s’ € Sy where
¢ needs exactly 3 more votes to beat d (so a;,a} are pivotal for d,c in §'), but we do not
need to specify exactly what this state s’ is (i.e., the exact score of each candidate).

3.2 Computing dominance relations

We show that strategies can be efficiently compared according to ordinal dominance.

Proposition 6. Given a pivot graph structure H* = (Hi,...,H}) and any SBV f, voter i
can check in time O(|C|2k) if vote a, € A dominates vote a; € A.

Intuitively, Algorithm 1 checks (for each uncertainty level j), whether the new vote a}
is “safe” (not worse than a; in any possible tie), and whether it is “pivotal” (better than a;

3For a vote a € R™ and a candidate ¢ € C, we denote as a(c) the value of candidate ¢’s coordinate in a.



in at least one tie). Interestingly, the only dependence on the voting rule is that it defines
which actions A are allowed.
I[X] € {—1,1} is an indicator variable for statement X.

Algorithm 1: ORDINALLYDOMINATES(a}, a; € A, =%, H' € )

for ¢,/ € C do

diff(e, ¢') < ai(c) + ai(¢") — ai(c) — al();
| effect(c, ') « sign(diff(c, ) - I[c >* ’]),
for j <k do
safe(j) < min . NeH effect(c, ¢');

pivot(j) < max. . e effect(c, ¢);
| dom(j) < I[pivot(j) + safe(j) > 1];

if 3j <k s.t. dom(j) =1 then
L return TRUE

else
L return FALSE

Proof. Suppose o’ ordinally dominates a. Then there is some level j < k such that o >-§- a.
This means that for any pair of candidates (¢, ¢’) that can be tied in Hj@, either c is preferred
to ¢’ and a’ weakly reduced ¢’s score, or ¢’ is preferred to ¢ and a’ weakly adds to c’s
score (thus effect(c, ¢’) > 0). Hence, in particular safe(j) > 0. In addition, there must be a
pair for which the gain is strict, and effect(c,¢’) = 1, which means pivot(j) = 1. In total,
dom(j) > 1+ 0 =1 so the algorithm returns TRUE.

Otherwise, in every level j, either a}, a; have the same outcome in all states, or there is
a pair (¢,c’) € H} such that f(s, al)—c f(s,al)=¢,and ¢ = ¢.

In the latter case, since f is a scoring rule this means that a}(c) — a;(c) < ai(c’) — a;(c),
i.e. that ¢’ gained strictly more score than ¢ when changing from a; to a}. Thus diff(c, ') =
ai(c) + a;(d') — a;(c) — ai(d') < 0, and effect(c,c’) = —1. The algorithm then computes
safe(j) = —1. Therefore dom(j) <1—1=0.

In the first case, effect(c,c’) = 0 for all pairs, and thus safe(j) = pivot(j) = 0, and
dom(j) = 0. O

3.3 Epistemic models

Beliefs are often derived from a current state or signal. An epistemic model of agent ¢ maps
any state s to an information structure S%(s) = (Si(s), S%(s),...,SL(s)), or directly to a
pivot graph structure H*(s). In particular, full information occurs when each S; contains a
single state (the “real” state — s).

An epistemic model is cliqued if its mapping to a pivot graph structure H(s) at every
state s € S, Hj(s), is a clique. The epistemic model is upward closed if the pivot graph
structure #H(s) at every state s has an order L over outcomes such that if (¢,c’) € H,(s)
and ¢’ >, ¢ then (¢,c¢”) € Hj(s). Note that any cliqued epistemic model is upward closed
(where L may be an arbitrary order where all candidates in H;(s) precede all others). More
generally, L can be roughly thought of as an order of likelihood of states. For simplicity of
notation, we shall be referring to a particular pivot graph structure as the epistemic model
which maps into it.
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Figure 1: A schematic example of the poll s, the information structure S, »(s), and the
induced pivot graph structure He, »(s). E.g., graph Hy contains the edge (b, d) due to state
s’ € S4. States below Sy are considered impossible. All the pivot graphs are upward closed
w.r.t. the lexicographic order on C, but they are not always a clique ((d,e) ¢ Hy).

Distance-based uncertainty Following Meir et al. [17], we consider the following way
to derive information sets and information structures. Given a metric d: S x .S — Ry and
a parameter r € Ry, every state s € S explicitly defines an information set Sy, (s) = {s’ :
d(s,s’) < r}. In general, the metric d can be completely arbitrary and the induced set is
meaningless.* However in many contexts there is a natural metric over states. E.g. if the
states represent geographic locations, times, temperatures etc., then it is natural to assume
that d is an Euclidean distance metric. Note that “being in the same information set” is
not a transitive relation, in contrast to the common partition model. E.g., for two scores
s =11 and s’ = 17, we get Sq44(s) = [7,15] and Sg4(s) = [13,21] which partially overlap.

Distance-based uncertainty is particularly natural in games with many players, where
states correspond to action profiles and the distance d(s, s’) may reflect how many players
change their action between s and s’. Such uncertainty model was applied in Meir et al. [17]
and Meir [15] to voting scenarios, where the distance between states (candidate score vectors)
were defined by various f-norms and the Earth Mover distance (EMD).? Thus, Sy ,(s) may
reflect a range of possible candidates’ scores given a poll or a current state s. It was also
applied to routing games in Meir and Parkes [18].

Distance metrics provide us with a simple way to define an information structure: given
a metric d and an increasing sequence of distances r = (r1,72,...,7%), we get an epistemic
model where Sy r(s) = (Sar,(8); Sars(S)s -+, Sare (8)). We will call such an information
structure concentric.

Example 7. We expand Ezample 1 where candidates’ scores (in % of total) are
(29,26,22,17,6). We do not specify the number of voters in the poll. We consider a voter
with a concentric information structure, based on the radii r = {1%, 3%, 7%, 20%} and the
EMD metric. These information sets induce pivot-graphs as illustrated in Figure 1.

4In fact, any set S’ C S can be derived from s for some carefully designed metric d.

SUnder the ¢, norm, d(s,s") = (3 .cc |s(c) — s(c’)|p)1/p. The EMD is essentially the ¢1 norm, with the
additional constraint that the total number of votes remains the same.



In Example 7, consider a Plurality voter whose preferences are e = d > ¢ >= b > a. Then
the action “¢” (a shorthand for (0,0,1,0,0)) ordinally dominates action “e” (due to Hj)
and “b” ordinally dominates everything else due to Hs.

To recap, our model differs from standard (strict uncertainty) epistemic game theory
models in two important ways: it does not (necessarily) assume that beliefs form a partition
of the state space; and agents do not attribute explicit beliefs, preferences, or rationality to
other agents. Rather, our agents each act as bounded rational individual decision makers,
reacting to an uncertain but static world.

4 Justifying Voting Heuristics with Ordinal Dominance

Many heuristics have been suggested to analyze how voters behave and change their vote.
Most heuristics are derived from a single “prospective state” s, which is assumed to be
the state where the voter is (or some proxy for this state). Formally, a set heuristics is a
function h: S x A — 24 that maps the prospective state and the current action to a set of
new possible actions. We say that h is a point heuristics if |h(s,a)| < 1 for every s,a. To
be consistent with previous definitions, we always omit a from the set h(s,a), and assume
that when h(s,a) = () the voter simply keeps her current vote.

Definition 4. We say that an epistemic model justifies heuristic h, if for any state s € S
and current action a € A': (I) h(s,a) = 0 if and only if UOD(S(s),a) = 0; and (1I)
h(s,a) CUOD(S(s),a).

This means that the heuristic only recommend undominated ordinal-dominance moves
under the epistemic model, and only keeps the current action if no such move exists (we
could also think of a weaker justification with OD moves).

As a simple example, consider the Plurality rule f (where the action set A coincides
with C), and the heuristic h"°*~12!(s a) that is empty except when action a is the least
preferred candidate a,, and then it moves to an arbitrary other candidate (regardless of s).
The epistemic model which maps to the pivot graph structure H!(s) = (H{!) where H! is
the complete graph justifies h"°*~!est as follows: (I) suppose that a # @;. Then no candidate
ordinally dominates a and thus UOD(H%!(s),a) = ) = h"et=last(s q). (II) when a = a;,
any other candidate is undominated but globally dominates a (since there is a possible state
where i is pivotal for ¢ against a), in which case UOD(H(s),a) = C\{a;} = h™'~1%5¢ (s, a).

4.1 Local dominance

Local dominance [17] heuristic with metric d and parameter r explicitly define a set Sy ,-(s) =
{s’ : d(s,s") <r}. The heuristic action b (s, a;) is defined for the Plurality rule as follows:
Let D C C be the set of candidates that Sy, (s)-dominate a;; If D is non-empty, then vote
for the most preferred candidate in D.

To justify hder) with ordinal dominance, we define an epistemic model ’Hi? where
HEP(s)4, contains a single pivot graph H; which is the pivot graph induced by Sy, (s).
Note that our definition applies for any voting rule, unlike the one in Meir et al. [17]. In
Plurality, HdL’? justifies hdL,? (straightforward proof omitted due to space constraints).

Truth/lazy-bias Denote the top candidate of i by ¢; € C, and denote by L an “abstain”
action that adds no score to candidates. We adopt the suggested variations in Dutta and
Laslier [8] and Desmedt and Elkind [6], where the voter prefers the truthful/abstain action
if this does no affect the outcome. However, this naive modification alone may lead to
unreasonable behaviors, e.g., where no-one votes [9], even under full information. This issue



was handled in Meir et al. [17] by defining an explicit heuristic rule with two distances. In
the remainder of this subsection we restrict out attention to Plurality, where A = C for
truth-biased agents, and A = C U {L} for lazy-biased agents.

The “truth bias” heuristics hi?frzB (s,a;) is as follows [17]: (1) perform a local-
dominance move at radius ri, if exists. If such move does not exist, ¢ examines if
f(s',a;) =" f(s',q;) for some s € Sy,,(s). (2a) If so, agent i keeps the current vote
a;, (2b) otherwise, ¢ moves to g;.

While the behavior seems to maintain the reason behind truth bias, the definition of h
is cumbersome. Instead, we can use rq, 7y to define an epistemic model ’Hig TTZB as follows.
We let Hi(s) be as in 7—[5)?1 above. We similarly compute a graph H’ from Sg ,,(s). Then,
we define H” to be a subgraph of H' containing only edges between a; and candidates less

preferred than a;, and set Hy(s) = Hy(s) U H”. Let H = HLPTTB(s) = (H,(s), Ha(s)).

d,r1,m2
Proposition 8. 'Hﬁffglg Justifies hﬁ?l fTZB in Plurality.
Proof. First, if Hj(s) is nonempty (at least one tie) then hiZTgB(s,ai) = a €

UOD(H(s),a;) as in a standard LD move. Otherwise, there are two cases.

If Hs(s) contains some edge (a;,b), then by SPP for any o’ # a; there is a state s’ €
Sa,r,(s) where f(s',a;) = a; and f(s',a’) = b (think of s’ as state where a single additional
vote for a; is critical). Since a; is preferred to b by the definition of Hs(s), we conclude that
no candidate a’ dominates a; in Ha(s) (thus UOD(H(s),a;) = 0); and that f(s',a;) = a; =*
b= f(s',q) (and thus hﬁ,ﬁfiB (s,a;) =0).

In the second case, there is no such edge, then Hs(s) is empty. This means that no
action of ¢ can change the outcome whatsoever, and thus by the slight truth-bias g; is strictly
preferred to any other action. In particular, it ordinally dominates a; and is undominated
so UOD(H(s),a;) = {¢;}. Finally, since ¢ is non-pivotal then in particular there is no state
s € Sar,(s) such that f(s',a;) =* f(s',q;). Thus hi?:gB(s,ai) =¢q; € UOD(H(s),a;), as

required. O

The statement for lazy-bias is similar, and uses the same information structure but with
a slight preference to abstain instead of voting truthfully.

4.2 T-pragmatist

The T-pragmatist (point) heuristic [4, 20] considers the leading T' candidates in s (denoted
T), and sets a new action a’ = hT~P"%9(s, a;) where a’ is identical to a; except the favorite
candidate in T is moved to the top. E.g., if a; = (b1, ba, bs, by, bs) is the truthful order,
and the voter state s is such that the score order is (b3, by, b, b1, bs), then h2~P"% (s a;) =
(bg, b1,bo, by, b5) and h?’_p”lg(s, ai) = (bg, b1, b3, by, bs)

Consider an epistemic model that creates for each agent i H7»¥~5!7(s), which creates a
star graph, in which the center node is the most preferred candidate by voter ¢ in the top
T candidates, and it is tied with all other T"— 1 candidates in the top T'.

Proposition 9. HTi=st" jystifies hT P79 for all s and a; in Plurality (or other rules).
That is, KT =P (s, a;) = UOD(HT =517 (s), a;).

Proof. For T = 1, the graph has no edges, which means the heuristic advises doing nothing
as well. Otherwise, the graph contains T'—1 edges, and the only O D action is to vote for voter
i’s favorite candidate in the top 7', which is a UOD. This is exactly the recommendation
of the heuristic. O

6Formally, for truth-biased agents (f(s,a),a) =% (f(s,b),b) either if f(s,a) =* f(s,b), or if f(s,a) =
f(s,b) and a = ¢;, b # a. Similarly for lazy-biased agents when a = L.




4.3 Leader Rule (Approval voting)

Assume candidates ¢y, . .., ¢, are sorted in decreasing score order in a state s. In Approval
voting the allowed actions are A = 2¢. The Leader rule a’ = h*®(s,a;) is a strategy
approving all candidates strictly preferred to the leader of s, and approves the leader of s
(candidate ¢p) if and only if it is preferred to the runner-up cs (i.e., exactly one of ¢y, co is
being approved in o’ [13]).

We consider the epistemic model where HX(s) of two nested pivot graphs. The inner
graph H; contains a single edge between ¢; and co. The outer graph Hs is a star connecting
c1 to all candidates.

Proposition 10. o’ = h*(s,a;) ordinally dominates all other actions according to HF.
In particular, HT justifies h*E.

Proof. Let a” be any alternative vote to a’. We will show that @’ dominates a” in at least
one of the tie graphs H; or Hs.

Consider a” that differs from a’ on either ¢; or co or both, as well as on any other set
of candidates. On the graph H;, the voter is pivotal for ¢1,co and thus there is a state s
where f(s,a”) = ca <' ¢1 = f(s,d’), or f(s,a"”) = c1 <' ca = f(s,a’). Thus o’ dominates
a" on Hj.

Next, consider a” that approves ¢y, ¢o iff a’ approves them, but differs in (at least) some
other candidate ¢’. If ¢; > ¢/, ¢’ is not approved in o' and thus approved in a” (this is
regardless of whether ¢; is approved). Since there is a state s in Hy where ¢; and ¢ are
tied, f(s,a”) = < ¢ = f(s,a’). I ¢; < ¢, ¢ is approved in @’ but not in a”. Again,
since there is a state s where they are tied, f(s,a’) = ¢’ < ¢; = f(s,a”). Thus @’ =% o and
therefore a’ ordinally dominates a”.” O

5 Ordinal-domination and Iterative Voting

Once the ordinal-domination dynamic is defined on voting settings, it is natural to examine
how it behaves when multiple strategic agents apply it, and would it reach a OD equilibrium
or cycle. This is iterative voting, in which proceeding from some initial state s°, and in each
iteration an arbitrary subset of voters change their votes. Our convergence results depend
on the structure of the pivot graphs in the epistemic model.

We first show that both cliqued and upward-closed epistemic structures are the result
distance-based uncertainty with natural assumptions on the distance function.

Proposition 11. 1. Any neutral distance metric d on scoring vectors induces an upward-
closed epistemic model.

2. Any candidate-wise distance metric® d on scoring vectors induces a cliqued epistemic
model.

Proof sketch. Proof of 1: Assume that there is a state s = (s1,...,8,,) in which there are
c1,c2,c3 € C such that s; > s > s3; and another state s’ within a distance r from s where
¢a, ¢y are tied. We construct a (non-normalized) vector s” where ¢y, c3 are tied, such that
|s7 — sj| < |s}; — s;| for all j (hence s” is closer to s than s’) or one where s” is such that

si =8} for j > 2 and [s] — 51| < |s5 — s2| and [s — s2| < |57 — s1].

J

"Note that a’ does not dominate the first type of alternative actions on H;, so a single star graph would
not have sufficed.

8This is a metric on a scoring vector, composed of a singleton metric D : R? — R, where d(s,s’) =
max.cc D(s(c),s’(c)). This includes, for example, the £oc norm.



W.lLo.g we have s3 > s3 and s} < s; for all j # 2,3,. Denote by w = s3 = s3 be the
winning score in s’. There are several cases: (I) if w > s, define s = 51,84 = 59 < s, 54 =
s1; (IT) if s2 < w < s1, define s = w € [s] + 1, 51], 85 = s2,84 = w . It is easy to check that
s holds both conditions, thus d(“z—xu, s) < d(s',s) < r asrequired. If (IIT) w < sq, it quite
simple to see that by setting s = w, s§ = w — 1, s§ = w we are closer to s than s'.

Proof of 2 is similar to Meir [15], Lemma 2. O

Theorem 12. Suppose agents each have a concentric, cliqued epistemic model (not neces-
sarily the same one). Iterative voting using plurality must converge to OD equilibrium, from
any initial state.

Proof sketch. The proof is a mild modification of the convergence proof from Meir [15]. The
key observation is that any ordinal dominance move in ' is a local dominance move in some
level H; The second observation is that by Prop. 11, Sg ,(s) with the ¢ norm (which is
the information set used in Meir [15]) induces the cliqued graph Hy . (s), with edges among
all candidates who are possible winners in Sq,(s). Thus H}(s) is equivalent to Hy,,(s) for
some appropriate r = r;.

Intuitively, convergence is as follows: Assume towards a contradiction that a cycle exists,
and consider state s’ when a voter 4 moves from a; to the lowest-score candidate in the cycle
(say, z). We then look at state s” in the cycle when ¢ had moved to a;, and show that there
are no ', r" such that z is a local dominance move in Sy, (s'), and a; is a local dominance
move in Sy, (s"). O

Theorem 13. Suppose agents each have a concentric, cliqued epistemic model (not neces-
sarily the same one). Iterative voting using veto must converge to OD equilibrium, from any
initial state.

Proof. Assume, for contradiction, that the process does not converge. Let R be the set of
candidates whose score changes an infinite number of times, and let z € R be the candidate
which has the lowest score in the cycle (breaking ties using the tie-breaking rule), and let s?
be the state where it reaches this abysmal score. That is, some voter j moves from vetoing
candidate a to vetoing candidate z. Candidate a’s (and any other ¢ € R) score is above 2’s,
as otherwise its own vetoing before would give it a lower score than z. Since this is a cliqued
epistemic model, leaving a means it is the favorite candidate of voter j over all candidates
with scores above z, in particular, for any ¢ € R, a >7 c.

At some point in the future sq/, due to the cycle, voter j will move from vetoing some
candidate b € C to veto a, due to an edge in its relevant pivot-graph, indicating a tie
between a and some other candidate z. If 2’s score at s? was higher than z, then we know
a is preferred over it from z’s vetoing. If 2’s score was lower, we know it hasn’t changed (as
it isn’t in R), meaning b is still tied with a as well in the pivot-graph of 8¢ as it was in s,
hence voter j will not move (since a =7 b). O

This result also implies the first non-plurality result for local dominance.

Corollary 14. Using any candidate-wise metric, local-dominance converges to an equilib-
rium when using veto.

6 Discussion

This paper presents a framework to model games in which players do not have perfect
information of the world. Moreover, they do not even have an exact understanding of their
uncertainty of the world’s state. Hence, their understanding is modeled in a coarser way —



as “shades of likelihood” of various states of the world around them. Such a model is robust
enough to capture many previously suggested heuristics and strategies of voter behavior
under uncertainty.

Indeed, the use of the pivot-graph and its topological properties to show convergence (or
lack of it), opens the question of whether we can discuss issues of convergence in terms of
graph structures (and the metrics or properties that induce them). Perhaps a wider variety
of voting rules can converge in iterative voting under different pivot-graph structures. The
fact that ordinal dominance in a large population voting scenario can be computed efficiently,
stands in contrast to the negative results in Conitzer et al. [5], where verifying whether vote
a’ dominates a is NP-hard under the Borda rule. This is due to our simplifying assumption
on the sharp pivot property that allows us to replace (arbitrarily complicated) information
sets with a simple pivot graph representation.

A natural and important use of our model is to reformulate heuristics from various
game-theoretic domains — not limited to social choice — as ordinally-dominant strategies.
This might offer an insight into the built-in assumptions inherent in these heuristics, and
allowing, perhaps, novel formulations of new heuristics and methods, tailored to particular
uncertainty structures.
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