
Very Hard Electoral Control Problems

Zack Fitzsimmons, Edith Hemaspaandra, Alexander Hoover, and
David E. Narváez

Abstract

It is important to understand how the outcome of an election can be modified by
an agent with control over the structure of the election. Electoral control has been
studied for many election systems, but for all of those systems, the winner problem is
in P, and so control is in NP. There are election systems, such as Kemeny, that have
many desirable properties, but whose winner problems are not in NP. Thus for such
systems control is not in NP, and in fact we show that it is typically complete for Σp

2

(i.e., NPNP, a class at the second level of the polynomial hierarchy). This is a very
high level of complexity. What does this mean in practice? Approaches that perform
quite well for solving NP problems do not necessarily work for Σp

2-complete problems.
However, answer set programming is particularly suited to express problems in Σp

2,
and we discuss how our control problems can be encoded.

1 Introduction

The study of elections often deals with trade-offs for different properties that an election
system satisfies. Elections have a wide range of applications from voting in political elections
to applications to artificial intelligence (see, e.g., [9]). And given the role of elections in
multiagent system settings, it is important that we study the computational properties of
election systems.

Attacks on the structure of an election, referred to as control, were introduced by
Bartholdi, Tovey, and Trick [3] and model natural scenarios where an agent with control over
the structure of an election, modifies the structure (e.g., by adding candidates) to ensure
that their preferred candidate wins. It is important to study how these types of attacks on
the structure of an election can affect the outcome and how computationally difficult it is
to determine if such an attack exists.

The complexity of electoral control has been studied for many different natural elections
systems (see, e.g., [19]). However, for all of those systems the winner problems are in P,
and so the standard control problems are in NP.

There are election systems that have many desirable social-choice properties, but whose
winner problems are not in NP (assuming NP 6= coNP). One important example is the
Kemeny rule [28], whose winner problem is Θp

2-complete (i.e., complete for parallel access to
NP) [26] and so the complexity of the standard control problems for Kemeny are all Θp

2-hard
and thus also not in NP. For election systems with Θp

2-complete winner problems, control
is in Σp

2 (i.e., NPNP, a class at the second level of the polynomial hierarchy), and we show
that control is typically Σp

2-complete for such systems.
This is a very high level of complexity. And so a natural question to ask is if Kemeny

control can be solved in practice. We mention here that there has been a long line of
work that considers ways to solve hard election problems in practice. This includes work on
computing Kemeny winners in practice (see, e.g., [12, 5, 1, 4]) and on solving election-attack
problems in practice (see, e.g., [33]). The work on solving hard election-attack problems
has been restricted to problems in NP, and such approaches do not work for Σp

2-complete
problems. Answer set programming (ASP) is an approach that has been recently applied
for winner determination in voting, including for systems with hard winner problems [11].
ASP is particularly suited to express Σp

2 problems. However, this requires the use of more

advanced techniques than encoding computationally easier problems.
We make the following main contributions.

• We obtain the first natural Σp
2-completeness results for elections.

• We define several new natural and simple Σp
2-complete graph problems to prove our

results.

• We show for the most commonly-studied election systems with Θp
2-complete winner

problems, including the Kemeny rule, that control is typically Σp
2-complete.

• We build upon recent work on combining ASP with voting [11], and show how ASP
can be used to solve our control problems using a technique that is accessible to ASP
nonexperts: We encode our control problems by combining meta-interpretation [18]
and normalization [7] into a guess and check framework for Σp

2.

2 Preliminaries

An election consists of a set of candidates C, and a set of voters V , where each voter has
a vote that strictly ranks each candidate from most to least preferred. An election system,
E , maps an election (C, V) to a set of winner(s), where the winner set can be any subset of
the candidate set. The winner problem for an election system, E-Winner, is defined in the
following way. Given an election (C, V) and a candidate p ∈ C, is p a winner of the election
using election system E?

We consider the most-important election systems with Θp
2-complete winner problems:

Kemeny, Young, and Dodgson.
A candidate is a Kemeny winner if it is the most-preferred candidate in a Kemeny

consensus [28], which is a total order “>” that minimizes the sum of Kendall’s Tau dis-
tances (i.e., number of pairwise disagreements) with the voters in an election, i.e., minimizes∑

a,b∈C,a>b ‖{v ∈ V | b >v a}‖, where >v denotes the preference of voter v.
A candidate is a Young winner if it can become a weak Condorcet winner (a candidate

that beats-or-ties every other candidate pairwise) by deleting the fewest voters.
A candidate is a Dodgson winner if it can become a Condorcet winner (a candidate that

beats every other candidate pairwise) with the fewest swaps between adjacent candidates
in the voters’ rankings [14].

Electoral control models the actions of an agent, referred to as the election chair, who
modifies the structure of the election (e.g., the voters) to ensure that their preferred can-
didate wins (in the constructive case) [3] or that their despised candidate does not win (in
the destructive case) [25].1 We formally define constructive control by adding candidates
(CCAC) below, which models the real-world scenario of an election chair adding spoiler
candidates to an election to ensure that their preferred candidate wins.

Name: E-CCAC

Given: A set of registered candidates C, a set of unregistered candidates D, a set of voters
V having preferences over C∪D, an addition limit k, and a preferred candidate p ∈ C.

Question: Does there exist a set D′ ⊆ D such that ‖D′‖ ≤ k and p is a winner of (C∪D′, V)
using election system E?

1We mention here that early work that considered electoral control generally used the unique winner
model where the goal of the chair is to ensure that their preferred (despised) candidate is the only (not the
only) winner.

Adding Deleting
Voters Young (Thm 10)

Young (Thm 9)
Kemeny′ (Thm 7)

Candidates Kemeny (Thm 6) Kemeny (∗) (Thm 5)
Dodgson (Thm 11) Dodgson (Thm 11)

Table 1: Summary of our Σp
2-completeness results for control. Kemeny′ refers to a natural variant

of Kemeny defined in [15] and (∗) refers to the variant of control where the chair can delete only
certain candidates.

Computational Complexity Our results concern the complexity classes Θp
2 and Σp

2. Θp
2

is the class of problems that can be solved by a polynomial-time machine with parallel access
to an NP oracle, and Σp

2 = NPNP is the class of problems solvable by a nondeterministic
polynomial-time machine with access to an NP oracle, and is a class at the second level of
the polynomial hierarchy (see, e.g., [32]).

Note that NP ∪ coNP ⊆ Θp
2 ⊆ PNP ⊆ Σp

2.

3 Complexity Results

In this section we show that control problems for Kemeny, Young, and Dodgson elections
are typically Σp

2-complete.

Observation 1 For an election system E, the complexity of each standard control action is
in NPE-Winner.

It is easy to see that the above observation holds. For a given election, guess the control
action of the chair (e.g., the set of candidates to be added) and then use the oracle to check
that the preferred candidate is a winner (or that the despised candidate is not a winner).
In the case of partition control, which will not be discussed further in this paper, the oracle
will also be used to determine which candidates participate in the runoff.

The winner problems for Kemeny, Young, and Dodgson are each in Θp
2, and so the

complexity of each standard control action is in NPΘp
2 , which is equivalent to Σp

2.

Corollary 2 For Kemeny, Young, and Dodgson elections, the complexity of each standard
control action is in Σp

2.

As mentioned in [8], these control problems inherit Θp
2-hardness from their winner prob-

lems.
We will now show that these control problems are typically Σp

2-complete. Our Σp
2-

completeness results are summarized in Table 1 and we conjecture that for Kemeny, Young,
and Dodgson elections, the complexity of each standard control action is Σp

2-complete.2

We mention here that there are far fewer completeness results for Σp
2 than there are for

NP (see Schaefer and Umans [36, 37] for a list of completeness results in the polynomial
hierarchy). An important reason why proving Σp

2-hardness is difficult is the scarcity of
“simple” Σp

2-complete problems to reduce from. For example, scoring versions of Kemeny,
Young, and Dodgson are proven NP-hard by reductions from simple NP-complete problems
such as Vertex-Cover, but prior to this paper there were no Σp

2-complete simple versions

2de Haan [13] shows Σp
2-hardness for control by adding/deleting issues for an analogue of Kemeny for

judgment aggregation. Since our setting is much more restrictive, this lower bound does not at all imply
our lower bound.

of Vertex-Cover that we could use to show that related control-by-adding problems are
Σp

2-hard.
Below we define simple and natural Σp

2-complete versions of Vertex-Cover (and the anal-
ogous Independent-Set versions are also Σp

2-complete). We will see that these problems are
particularly useful to show that our control problems are Σp

2-hard. Of course, we need to
show that our new simple problems are Σp

2-hard, which is difficult. But we can then reuse
our simple problems to obtain simpler Σp

2-hard proofs for multiple other problems.
The following problem (and its closely related Independent-Set analogue) is particularly

useful to reduce to control-by-adding problems. For example, we will see that this prob-
lem quite easily reduces to Kemeny-CCAC and that the Independent-Set analogue of this
problem reduces quite easily to Young-CCAV (control by adding voters).

Name: Vertex-Cover-Member-Add

Given: Graph G = (V ∪ V ′, E), set of addable vertices V ′, addition limit k, and vertex
v̂ ∈ V .

Question: Does there exist a set W ⊆ V ′ of at most k addable vertices such that v̂ is a
member of a minimum vertex cover3 of (V ∪W,E)?

Theorem 3 Vertex-Cover-Member-Add is Σp
2-complete.

To show the essence of the argument of the proof of Theorem 3 and avoid some of the
more finicky details of the proof, we prove that Vertex-Cover-Member-Select is Σp

2-complete,
and then briefly discuss how this proof can be adapted for Vertex-Cover-Member-Add.4

Name: Vertex-Cover-Member-Select

Given: Graph G = (V,E), a set V ′ ⊆ V of deletable vertices, delete limit k, and vertex
v̂ ∈ V .

Question: Does there exist a set W ⊆ V ′ of at most k deletable vertices such that v̂ is a
member of a minimum vertex cover of G−W?

Lemma 4 Vertex-Cover-Member-Select is Σp
2-complete.

Proof. Membership in Σp
2 is easy to see: Guess at most k deletable vertices to delete,

then guess a vertex cover containing v̂ and use the NP oracle to check that the guessed
vertex cover is a minimum vertex cover.

To show hardness, we reduce from the following Σp
2-complete problem, QSAT2 [38, 39]:

all true formulas of the form ∃x1 · · · ∃xn¬(∃y1 · · · ∃ynφ(x1, . . . , xn, y1, . . . , yn)), where φ is a
formula in 3cnf.5

We first recall the standard reduction from 3SAT to Vertex-Cover [27]. Let G be the
graph constructed by this reduction on φ(x1, . . . , xn, y1, . . . , yn), where φ is in 3cnf. Let

3A vertex cover of a graph is a set of vertices such that every edge is incident with at least one vertex in
the set.

4 We can easily prove Vertex-Cover-Member-Select Σp
2-hard by reducing the Σp

2-complete problem
Generalized-Node-Deletion to it, in which we are given a graph, and two integers k and `, and we ask
if we can delete at most k vertices such that the remaining graph does not contain a clique of size `+ 1 [35].
For the reduction, simply output (H,V (H), k, v̂), where H is the graph (G ∪ ({v̂}, ∅)) + K`+1.

However, this proof does not generalize to Vertex-Cover-Member-Add. In particular, the “adding” ana-
logue of Generalized-Node-Deletion in which we ask if we can add up to k vertices such that the resulting
graph does not have a clique of size ` + 1, is in P (since it is best to add nothing). And the version where
we ask if there is a clique of size ` + 1 after adding is in NP.

5Note that we have the same number of variables in each quantified block (can simply pad to get this).
Also, we pull the negation out of the formula so that the formula is in 3cnf and not in 3dnf.

φ = ψ1 ∧ ψ2 ∧ · · · ∧ ψm and for each i, 1 ≤ i ≤ m, ψi = ci,1 ∨ ci,2 ∨ ci,3. Graph G consists of
4n+ 3m vertices: a vertex for each xi, xi, yi, and yi and for each clause i, 1 ≤ i ≤ m, three
vertices ci,1, ci,2, and ci,3, and the following edges:

• for each i, 1 ≤ i ≤ n, the edges {xi, xi} and {yi, yi},

• for each i, 1 ≤ i ≤ m, the edges {ci,1, ci,2}, {ci,1, ci,3}, and {ci,2, ci,3}, (i.e., the complete
graph on three vertices),

• and for each vertex ci,j we have an edge to its corresponding vertex candidate (e.g., if
ci,j = xt in φ then we have the edge {ci,j , xt}).

Below we give the graph corresponding to the formula φ = (x1 ∨ x1 ∨ y1) ∧ (x1 ∨ y1 ∨
y1) ∧ (x1 ∨ y1 ∨ y1).

Note that every vertex cover of G contains at least one of each {xi, xi}, at least one of
each {yi, yi}, and at least two of each {ci,1, ci,2, ci,3}, so G does not have a vertex cover of
size less than 2n+ 2m. The properties below follow immediately from the proof from [27].

1. If X is a vertex cover of size 2n+ 2m, then X ∩ {xi, xi, yi, yi | 1 ≤ i ≤ n} corresponds
to a satisfying assignment for φ.

2. If α is a satisfying assignment for φ, then there is a vertex cover X of size 2n + 2m
such that X ∩ {xi, xi, yi, yi | 1 ≤ i ≤ n} corresponds to this assignment.

Below we include an example of this construction given the formula φ = (x1 ∨x1 ∨ y1)∧
(x1 ∨ y1 ∨ y1) ∧ (x1 ∨ y1 ∨ y1).

x1 y1 y1

c1,2

c1,1 c1,3

c2,2

c2,1 c2,3

c3,2

c3,3c3,1

x1

In the figure above vertices that are in a minimum vertex cover are shaded in gray, and this
corresponds to the satisfying assignment x1 = 0, y1 = 1 for φ.

For the reduction from QSAT2 to Vertex-Cover-Member-Select, we construct the graph
H, which is a modified version of the graph G. For each clause i, 1 ≤ i ≤ m, instead of
the complete graph on three vertices, {ci,1, ci,2, ci,3}, we add an extra vertex di and have
the complete graph on four vertices, {ci,1, ci,2, ci,3, di}, and we connect the fourth vertex di
of each clause gadget to a special new vertex v̂. So our graph H consists of 4n + 4m + 1
vertices and the edges as just described. Below we give the graph corresponding to the same
formula as the previous example.

Note that every vertex cover of H contains at least one of each {xi, xi}, at least one of
each {yi, yi}, and at least three of each {ci,1, ci,2, ci,3, di}. So H does not have a vertex cover
of size less than 2n + 3m, and there is a vertex cover of size 2n + 3m + 1 that includes v̂.
Note that H has the following properties.

1. If X is a vertex cover of size 2n+ 3m, then v̂ 6∈ X and X ∩ {xi, xi, yi, yi | 1 ≤ i ≤ n}
corresponds to a satisfying assignment for φ.

2. If α is a satisfying assignment for φ, then there is a vertex cover of size 2n+ 3m such
that X ∩ {xi, xi, yi, yi | 1 ≤ i ≤ n} corresponds to this assignment.

Below we include an example of this construction given the formula ∃x1¬(∃y1φ(x1, y1)),
where φ = (x1 ∨ x1 ∨ y1) ∧ (x1 ∨ y1 ∨ y1) ∧ (x1 ∨ y1 ∨ y1).

x1 y1 y1

c1,2

c1,1

d1

c1,3

c2,2

c2,1

d2

c2,3

c3,2

c3,3

d3

c3,1

v̂

x1

Note that in the figure when x1 is removed (i.e., setting x1 = 0) that a minimum-size vertex
cover (shaded in gray) is of size n+ 3m = 10 and that φ(0, y1) is satisfied with y1 = 1.

We have repeated the same graph below, except now the vertex x1 is removed (i.e.,
setting x1 = 1).

x1 y1 y1

c1,2

c1,1

d1

c1,3

c2,2

c2,1

d2

c2,3

c3,2

c3,3

d3

c3,1

v̂

x1

The vertices shaded in gray above correspond to a minimum-size vertex cover of size n +
3m+ 1 = 11. Note that φ(1, y1) is not satisfiable and that this vertex cover includes v̂.

We will show that ∃x1 · · · ∃xn¬(∃y1 · · · ∃ynφ(x1, . . . , xn, y1, . . . , yn)) if and only if we can
delete at most n vertices in {xi, xi | 1 ≤ i ≤ n} such that v̂ is a member of a minimum
vertex cover of H-after-deletion.

From the listed properties of H and the above example, it is not too hard to see that the
statement above holds as long as the vertices deleted from H correspond to an assignment
to the x-variables. However, it is possible for the set of deleted vertices to contain neither
or both of {xi, xi}. We handle these cases below.

Suppose that W is a set of at most n vertices from {xi, xi | 1 ≤ i ≤ n} such that v̂ is a
member of a minimum vertex cover of H −W . Let n̂ ≤ n be the number of {xi, xi} pairs
that are undeleted, i.e., for which {xi, xi} ∩W = ∅. Note that the size of a vertex cover of
H −W is at least n̂ + n + 3m, and that vertex covers of that size do not include v̂. Since
v̂ is a member of a minimum size vertex cover of H −W , it follows that H −W does not
have a vertex cover of size n̂+ n+ 3m.

Let α ∈ {0, 1}n be an assignment to x1 · · ·xn that is consistent with W , in the sense
that for all i, 1 ≤ i ≤ n, if W ∩{xi, xi} = {xi}, then αi = 1 and if W ∩{xi, xi} = {xi}, then
αi = 0. To complete the proof, suppose for a contradiction that φ(α1, . . . , αn, y1, . . . , yn) is
satisfiable. Then H has a vertex cover X of size 2n+ 3m such that X ∩ {xi, xi | 1 ≤ i ≤ n}
corresponds to α. Note that X −W is a vertex cover of H −W . But ‖X ∩W‖ = n − n̂,
and so ‖X −W‖ = 2n+ 3m− (n− n̂) = n̂+ n+ 3m, which is a contradiction. q

Vertex-Cover-Member-Select reduces to the corresponding Kemeny control problem
Kemeny-CCDC∗.

Name: E-CCDC∗

Given: An election (C, V), a set of deletable candidates D ⊆ C, a delete limit k, and a
preferred candidate p ∈ C.

Question: Does there exist a set D′ ⊆ D of at most k deletable candidates such that p is
a winner of (C −D′, V) using election system E?

Note that E-CCDC∗ is more structured than E-CCDC (where the set of deletable can-
didates is C), since the chair can only delete from a subset of the candidate set.

Theorem 5 Kemeny-CCDC∗is Σp
2-complete.6

Proof Sketch. Kemeny-Score was shown to be NP-hard by a reduction from Feedback-
Arc-Set7 by Bartholdi, Tovey, and Trick [2], which was shown to be NP-hard by Karp [27]
by a reduction from Vertex-Cover. Both these reductions are straightforward. To show
the Θp

2-hardness of Kemeny-Winner, Hemaspaandra, Spakowski, and Vogel [26] define Θp
2-

complete versions of Vertex-Cover and Feedback-Arc-Set, namely Vertex-Cover-Member and
Feedback-Arc-Set-Member. They show that Vertex-Cover-Member is Θp

2-complete. They
then show that Vertex-Cover-Member reduces to Feedback-Arc-Set-Member, which then
reduces to Kemeny-Winner. These two reductions are similar to the NP reductions and
also straightforward. The same happens in our Σp

2 case: Vertex-Cover-Member-Select
easily and straightforwardly reduces to Feedback-Arc-Set-Member-Select, which easily and
straightforwardly reduces to Kemeny-CCDC∗. For details, see Appendix A.1. q

Vertex-Cover-Member-Add easily and similarly reduces to Feedback-Arc-Set-Member-
Add (defined in Appendix A.2) to Kemeny-CCAC. To show that Vertex-Cover-Member-Add
is Σp

2-hard, we use a similar reduction as for Vertex-Cover-Member-Select. The main differ-
ence is that we need an edge and two vertices for each xi and for each xi. See Appendix A.2
for the proof.

Theorem 6 Kemeny-CCAC is Σp
2-complete.

What about Kemeny-CCDC? We define the following.

Name: Vertex-Cover-Member-Delete

Given: Graph G = (V,E), delete limit k, and vertex v̂ ∈ V .

Question: Does there exist a set W ⊆ V of at most k vertices such that v̂ is a member of
a minimum vertex cover of G−W?

This problem is also Σp
2-complete. (The lower bound follows using the same reduction as

in Footnote 4.) Unfortunately, the reduction from Vertex-Cover to Feedback-Arc-Set does
not easily turn into a reduction from Vertex-Cover-Member-Delete to Feedback-Arc-Set-
Member-Delete. The problem is that the reduction from Vertex-Cover to Feedback-Arc-Set
turns every vertex v into a pair of vertices v → v′. So, one special vertex v̂ corresponds to
two special vertices v̂ → v̂′. And the problem is that we can not ensure that both special

6We mention in passing that this result holds even for four voters, using the construction from Dwork et
al. [15]. For details, see Appendix A.1.

7A feedback arc set of a directed graph is a set of arcs such that deleting this set makes the graph acyclic.

vertices are not deleted. (This is in fact the only problem; the version of Kemeny-CCDC
where there are two special candidates that we can not delete is Σp

2-complete.) A similar
issue occurs when we try to show that Kemeny-CCAV is Σp

2-complete. It is easy to show
that Feedback-Arc-Set-Member-Add-Arcs, where we add arcs instead of vertices, is Σp

2-
complete. The problem is that in the reduction from Feedback-Arc-Set to Kemeny-Score,
each arc corresponds to two voters. However, we were able to show this result for what
we here call Kemeny′, the natural variant of Kemeny from [15] where the voters do not
necessarily list all of the candidates in their votes and unlisted candidates in a vote do not
contribute to the distance to the Kemeny consensus and so do not increase the Kemeny
score. In this case, one arc will correspond to one voter.

Theorem 7 Kemeny′-CCAV is Σp
2-complete.

Finally, we explain how Independent-Set-Member-Delete, the Independent-Set analogue
of Vertex-Cover-Member-Delete, which is also Σp

2-complete, is useful to show that Young-
CCDV is Σp

2-complete.

Name: Independent-Set-Member-Delete

Given: Graph G = (V,E), delete limit k, and vertex v̂ ∈ V .

Question: Does there exist a set W ⊆ V such that ‖W‖ ≤ k and v̂ is a member of a
maximum independent set of G−W?

Theorem 8 Independent-Set-Member-Delete is Σp
2-complete.

Proof. Independent-Set-Member-Delete is clearly in Σp
2. We will show that Independent-

Set-Member-Delete is Σp
2-complete by reducing the Σp

2-complete problem Generalized-Node-
Deletion to it, in which we are given a graph, and two integers k and `, and we ask if we
can delete at most k vertices such that the remaining graph does not contain a clique of size
`+ 1 [35]. For the reduction, simply output (H, k, v̂), where H is the graph G+K`, and v̂
is a vertex in K`.

If we can delete at most k vertices in G such that the remaining graph does not contain
a clique of size `+ 1, then G after deletion does not contain an independent set of size `+ 1.
It follows that after deletion, K` is a largest independent set in H and v̂ is an element of
this independent set.

For the converse, suppose we delete at most k vertices from H such that v̂ is a member
of a largest independent set. This independent set has size at most `, and so after deletion,
G does not have an independent set of size `+ 1. q

Theorem 9 Young-CCDV is Σp
2-complete.

Proof. For G a graph, α(G) is the independence number of G, i.e., the size of a maximum
independent set of G. For v a vertex, αv(G) is the size of a maximum independent set of G
that contains v.

Given a graphG = (V,E), a delete limit k ≤ ‖V ‖, and a vertex v̂ ∈ V , below we construct
an election with two special candidates p and q such that our instance is a positive instance
of Independent-Set-Member-Delete if and only if we can make the Young score8 of p at least
2 and at least as high as the Young score of q by deleting at most k voters.

8The Young score of a candidate is the size of a largest subset of the voters that make it a weak Condorcet
winner. A Young winner is a candidate with highest Young score.

This is not quite the same as making p a Young winner, since other candidates could
have higher scores and since it is also possible for a Young winner to have a score below 2.
However, this can easily be handled as follows: We can use the trick from [34] to change
the election such that the Young scores of p and q remain the same, the Young scores of all
other candidates are at most 2, and such that there is a candidate with a Young score of at
least 2.

We use candidate q to witness the size of a maximum independent set. The main idea on
how to do this is implicit in the construction from Rothe, Spakowski, and Vogel [34]. The
new twist is to use candidate p to witness the size of a maximum independent set containing
v̂. In order to do so, we make sure that all voters corresponding to vertices connected
to v̂ are not in a set of voters that realizes the Young score of p, by making these voters
maximally unattractive to p, by ranking p last.

Given a graph G = (V,E), a delete limit k ≤ ‖V ‖, and a vertex v̂ ∈ V , without loss
of generality assume that G has no isolated vertices and that for every set W of at most
k vertices, α(G −W) ≥ 3 (the latter property can for example be ensured by adding two
(k+ 1)-cliques to G). Let the candidate set be E ∪ {a, p, q} and let the voter set consist of:

Type IA For each v ∈ V such that {v, v̂} 6∈ E, one voter corresponding to v voting
({e ∈ E | v ∈ e} > a > q > p > · · ·).

Type IB For each v ∈ V such that {v, v̂} ∈ E, one voter corresponding to v voting
({e ∈ E | v ∈ e} > a > q > · · · > p).

Type II One voter voting (p > q > · · · > a).

Type III 2‖V ‖ voters voting (· · · > p > q > a).

Suppose X is a set of at most k voters that we delete. If X contains the voter of Type II,
the Young scores of p and q are 0 (since there are no isolated vertices). If not, let W be the
set of of vertices corresponding to the Type-I voters in X. Careful and tedious inspection
shows that the Young score of q is 2α(G−W) (this Young score is realized by a set of voters
whose Type-I voters correspond to a maximum independent set) and that the Young score
of p is 2αv̂(G−W) (this Young score is realized by a set of voters whose Type-I voters are
all of Type-IA and correspond to a maximum independent set that contains v̂). For details,
see the appendix. q

The same construction gives a reduction from Independent-Set-Member-Add to Young-
CCAV.

Theorem 10 Young-CCAV is Σp
2-complete.

Previous complexity results for Dodgson elections do not reduce from problems related
to Vertex-Cover or Independent-Set. However, in Dodgson there is more flexibility in how
to construct the voters in a reduction, and so we were able to directly reduce QSAT2 to
Dodgson-CCDC and Dodgson-CCAC, though the constructions are quite involved. The
proofs can be found in the appendix.

Theorem 11 Dodgson-CCDC and CCAC are Σp
2-complete.

4 Solving Control Problems with ASP

Answer set programming (ASP) is a paradigm for encoding computationally difficult prob-
lems in a declarative way (see [10]). Using modern ASP input languages like the one in

Guess Program Check Program

Normalization of Aggregates
[7]

“Guess and Check” Integration
[18]

ASP Instance

Figure 1: Illustration of our “guess and check” approach.

the gringo grounder [22], which extends conventional ASP with aggregate functions like
#sum and #count, one can use variable names and predicates. A descriptive naming scheme
usually leads to natural encodings of problems when compared to other approaches such as
encoding into Boolean satisfiability problems.

The idea of using ASP to solve computational problems in voting was first proposed
by Konczak [29]. Recent work by Charwat and Pfandler [11] provides winner-problem
encodings for many election systems, including systems with hard winner problems, and
mentions encoding control problems as future work. The predicates used in their encodings
are arguably self-explanatory and the use of aggregates provides succinct representations of
the different voting rules they consider.

In this section we address the issue of encoding the control problems we described in
previous sections, using ASP. Encodings for NP problems are fairly straightforward and
common in the literature. However, though it is known that ASP can encode problems in
Σp

2 [16], doing so often requires advanced techniques that may not be suitable for nonexperts
(see, e.g., the discussion by Eiter and Polleres [18]). The work of Eiter and Polleres [18]
addresses the issue of having to craft cumbersome ASP encodings of Σp

2 problems in the
following way: They provide a template “meta-interpreter” and a transformation of ASP
programs that can, together, be used to integrate an ASP program that guesses a solution to
the Σp

2 problem with an ASP program that checks whether the guessed solution is incorrect.
The combination of these two then amounts to a “guess and check” encoding of a Σp

2

problem.9 While this is a significant step towards simplifying the encoding of Σp
2 problems

as ASP programs, for our specific application it has the drawback that it does not support
ASP programs extended with aggregates (e.g., #count). This is problematic for our ASP
encodings since not using aggregates would lead to more complex, less intuitive programs.

To work around this issue, we need a way to transform ASP programs with aggregates
into equivalent ASP programs that do not employ aggregates. The lp2normal tool [7]
provides such a transformation. We can combine lp2normal with meta-interpretation to
express control problems with elections while harnessing the full expressive power of modern
ASP input languages. Figure 1 illustrates the interaction between the several parts of this
approach. We note that the transformation to eliminate aggregates is only needed for
the check program, since the integration between the guess and the check programs only
transforms the latter.

4.1 Preliminaries on Answer Set Programming

We briefly state our definitions for ASP. (See Gebser et al. [21] for more detailed def-
initions.) A normal logic program is comprised of a finite set of rules of the form

9Note that this is different and much more involved than the guess and check encoding of an NP prob-
lem (see [17]).

a← b1, . . . , bm, not bm+1, . . . , not bn where each of a, b1, . . . , bn are atoms and each atom is
a predicate of the form p(t1, . . . , tk) such that k ≥ 1 and each ti is a constant or a variable.
We indicate that p is a k-ary predicate by writing p/k. In the rule, “,” refers to conjunction,
and “not” refers to default negation. A rule is satisfied (i.e., the head of a rule is true), if
the body is true. Uppercase characters are used to denote variables. A ground program is
a program that contains no variables. A stable model (answer set) is a subset of the ground
atoms that satisfies each rule.

Our encodings also utilize the following extensions to the above syntax, but each can
be expressed as a normal rule (see [21]). A fact is a rule with no body and an integrity
constraint is a rule with no head. So, a fact occurs in every answer set, and an integrity
constraint eliminates answer sets where its body is satisfied. We additionally use choice
rules with cardinality constraints, which can be used to generate subsets of ground atoms
within a given bound, and aggregates such as #count and #sum that count/sum ground
atoms in a statement.

4.2 Encoding Control in ASP

We assume that the input to our encodings is given as a list of facts. So for E-CCAC,
our input consists of a fact for each registered candidate, each unregistered candidate, the
addition limit, the preferred candidate, and facts that describe the voters. For the voters,
we follow the approach used in Democratix [11], where each distinct vote (c1 >i> · · · >i cm)
is represented by m atoms of the form ip(i, j, c) meaning candidate c is the jth-preferred
candidate by vote i. The corresponding count is represented by voteCount(i, k), meaning k
voters have vote i.

We illustrate the encoding of the control problems we discussed in this paper by showing
guess and check programs for Kemeny-CCAC. Due to space limitations, we focus on the
crucial parts of each program. Appendix D contains full listings of these programs together
with more detailed explanations. Figure 2 shows the relevant parts of the guess program
which assumes an input as described in Democratix [11] but extended with predicates that
define the parameters of the control problem. We start by guessing a subset of at most
K of the unregistered candidates (marked by the ucandidate/1 input predicate) to add to
the election, where K is the addition limit given as part of the input. Next, a “guess”
preference gpref/2 over the candidates (with gpref(i, c) meaning candidate c is the ith-
preferred candidate) is guessed as per the rules in Democratix. The Kendall’s Tau distance
of this guessed preference with respect to the votes is calculated in Line 2 and finally, Line 3
guarantees that the preferred candidate is a winner in the guessed preference. Figure 3
shows the relevant parts of the checking part. It is overall very similar to the guess part,
except that it guesses a “check” preference cpref/2 that has a Kendall’s Tau distance strictly
less than that of gpref/2 (Line 4) (it needs to be strictly less because we are working under
the nonunique-winner model). Line 5 guarantees that the preferred candidate does not win
in this preference. Combining the guess and check programs using the approach outlined in
the previous section we obtain an ASP program that is satisfiable if and only if there is a
subset of unregistered candidates that can be added such that the preferred candidate wins
the election.

4.3 Similar Encoding Approaches

The framework of stable-unstable semantics by Bogaerts et al. [6] provides a similar “guess
and check” strategy to solving problems in Σp

2. They mention that an advantage of the
stable-unstable semantics is that they can be easily extended to represent problems at any
level of the polynomial hierarchy. In their implementation both the guess and the check

{candidate(C) : ucandidate(C)} K ← limit(K). (1)

% A preference gpref/2 and a “worse” rank gwrankC/3 are guessed as in Democratix [11]

gkt(K)← K = #sum{N,C1, C2 : gwrankC(C1, C2, N)}. (2)

← preferredCand(C), not gpref(1, C). (3)

Figure 2: Relevant parts of the encoding of the guess part of Kemeny-CCAC.

% A new preference cpref/2 and corresponding rank cwrankC/3 are guessed as in Figure 2

← gkt(K),K #sum{N,C1, C2 : cwrankC(C2, C1, N)} .(4)

← preferredCand(X), cpref(1, X). (5)

Figure 3: Relevant parts of the encoding of the check part of Kemeny-CCAC.

program are normalized, essentially discarding aggregates altogether. It is an interesting
direction for future work to determine if not exploiting aggregates as implemented in modern
ASP solvers like clasp [23] could hurt the performance of solvers employed in the task of
solving very hard control problems in election systems.

5 Future Work

In addition to the future work on ASP described at the end of the previous section, it will be
interesting to see if our newly-defined simple Σp

2-complete problems will be useful in proving
other problems Σp

2-hard, in particular the remaining control cases and other election-attack
problem such as manipulation for systems with hard winner problems.

Acknowledgments: We thank the referees for their helpful comments and suggestions.
This work was supported in part by a National Science Foundation Graduate Research
Fellowship under NSF grant no. DGE-1102937.

References

[1] A. Ali and M. Meilă. Experiments with Kemeny ranking: What works when? Mathe-
matical Social Sciences, 64(1):28–40, 2012.

[2] J. Bartholdi, III, C. Tovey, and M. Trick. Voting schemes for which it can be difficult
to tell who won the election. Social Choice and Welfare, 6(2):157–165, 1989.

[3] J. Bartholdi, III, C. Tovey, and M. Trick. How hard is it to control an election?
Mathematical and Computer Modeling, 16(8/9):27–40, 1992.

[4] N. Betzler, R. Bredereck, and R. Niedermeier. Theoretical and empirical evaluation of
data reduction for exact Kemeny Rank Aggregation. Autonomous Agents and Multi-
Agent Systems, 28(5):721–748, 2014.

[5] N. Betzler, M. Fellows, J. Guo, R. Niedermeier, and F. Rosamond. Fixed-parameter
algorithms for Kemeny scores. In Proceedings of the 4th International Conference on
Algorithmic Aspects in Information and Management, pages 60–71, June 2008.

[6] B. Bogaerts, T. Janhunen, and S. Tasharrofi. Stable-unstable semantics: Beyond NP
with normal logic programs. Theory and Practice of Logic Programming, 16(5-6):570–
586, 2016.

[7] J. Bomanson, M. Gebser, and T. Janhunen. Improving the normalization of weight rules
in answer set programs. In Proceedings of the 12th European Conference on Logics in
Artificial Intelligence, pages 166–180, Sept. 2014.

[8] F. Brandt, M. Brill, E. Hemaspaandra, and L. Hemaspaandra. Bypassing combinato-
rial protections: Polynomial-time algorithms for single-peaked electorates. Journal of
Artificial Intelligence Research, 53:439–496, 2015.

[9] F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. Procaccia. Handbook of Computa-
tional Social Choice. Cambridge University Press, 2016.

[10] G. Brewka, T. Eiter, and M. Truszczyński. Answer set programming at a glance.
Communications of the ACM, 54(12):92–103, 2011.

[11] G. Charwat and A. Pfandler. Democratix: A declarative approach to winner deter-
mination. In Proceedings of the 4th International Conference on Algorithmic Decision
Theory, pages 253–269, Sept. 2015.

[12] V. Conitzer, A. Davenport, and J. Kalagnanam. Improved bounds for computing Ke-
meny rankings. In Proceedings of the 21st National Conference on Artificial Intelligence,
pages 620–626, July 2006.

[13] R. de Haan. Complexity results for manipulation, bribery and control of the kemeny
judgment aggregation procedure. In Proceedings of the 16th International Conference
on Autonomous Agents and Multiagent Systems, pages 1151–1159, May 2017.

[14] C. Dodgson. A method of taking votes on more than two issues. Pamphlet printed by
the Clarendon Press, Oxford, and headed “not yet published”, 1876.

[15] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for
the web. In Proceedings of the 10th International World Wide Web Conference, pages
613–622, Mar. 2001.

[16] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive datalog. ACM Transactions on
Database Systems, 22(3):364–418, 1997.

[17] T. Eiter, G. Ianni, and T. Krennwallner. Answer set programming: A primer. In Rea-
soning Web. Semantic Technologies for Information Systems, pages 40–110, Aug/Sep
2009.

[18] T. Eiter and A. Polleres. Towards automated integration of guess and check programs
in answer set programming: A meta-interpreter and applications. Theory and Practice
of Logic Programming, 6(1-2):23–60, Jan. 2006.

[19] P. Faliszewski and J. Rothe. Control and bribery in voting. In F. Brandt, V. Conitzer,
U. Endriss, J. Lang, and A. Procaccia, editors, Handbook of Computational Social
Choice, pages 146–168. Cambridge University Press, 2016.

[20] Z. Fitzsimmons and E. Hemaspaandra. High-multiplicity election problems. In Pro-
ceedings of the 17th International Conference on Autonomous Agents and Multiagent
Systems, July 2018. To appear.

[21] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers, 2012.

[22] M. Gebser, R. Kaminski, M. Ostrowski, T. Schaub, and S. Thiele. On the input
language of ASP grounder gringo. In Proceedings of the 10th International Conference
on Logic Programming and Nonmonotonic Reasoning, pages 502–508, Sept. 2009.

[23] M. Gebser, B. Kaufmann, and T. Schaub. Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence, 187-188:52–89, 2012.

[24] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Exact analysis of Dodgson elec-
tions: Lewis Carroll’s 1876 voting system is complete for parallel access to NP. Journal
of the ACM, 44(6):806–825, 1997.

[25] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Anyone but him: The complexity
of precluding an alternative. Artificial Intelligence, 171(5–6):255–285, 2007.

[26] E. Hemaspaandra, H. Spakowski, and J. Vogel. The complexity of Kemeny elections.
Theoretical Computer Science, 349(3):382–391, 2005.

[27] R. Karp. Reducibilities among combinatorial problems. In R. Miller and J. Thatcher,
editors, Complexity of Computer Computations, pages 85–103, 1972.

[28] J. Kemeny. Mathematics without numbers. Daedalus, 88:577–591, 1959.

[29] K. Konczak. Voting theory in answer set programming. In Proceedings of the 20th
Workshop on Logic Programming, pages 45–53, 2006.

[30] D. McGarvey. A theorem on the construction of voting paradoxes. Econometrica,
21(4):608–610, 1953.

[31] A. McLoughlin. The complexity of computing the covering radius of a code. IEEE
Transactions on Information Theory, 30:800–804, 1984.

[32] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[33] J. Rothe and L. Schend. Challenges to complexity shields that are supposed to protect
elections against manipulation and control: A survey. Annals of Mathematics and
Artificial Intelligence, 68(1–3):161–193, 2013.

[34] J. Rothe, H. Spakowski, and J. Vogel. Exact complexity of the winner problem for
Young elections. Theory of Computing Systems, 36(4):375–386, 2003.

[35] V. Rutenburg. Propositional truth maintenance systems: Classification and complexity
analysis. Annals of Mathematics and Artificial Intelligence, 10(3):207–231, 1994.

[36] M. Schaefer and C. Umans. Completeness in the polynomial-time hierarchy: Part I: A
compendium. SIGACT News, 33(3):32–49, 2002.

[37] M. Schaefer and C. Umans. Completeness in the polynomial-time hierarchy: Part II.
SIGACT News, 33(4), 2002.

[38] L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–
22, 1976.

[39] C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Computer
Science, 3(1):23–33, 1976.

Zack Fitzsimmons
Dept. of Mathematics and Computer Science
College of the Holy Cross
Worcester, MA 01610
Email: zfitzsim@holycross.edu

Edith Hemaspaandra
Dept. of Computer Science
Rochester Institute of Technology
Rochester, NY 14623
Email: eh@cs.rit.edu

Alexander Hoover
Dept. of Computer Science
Rochester Institute of Technology
Rochester, NY 14623
Email: ash4519@rit.edu

David E. Narváez
College of Computing and Information Sciences
Rochester Institute of Technology
Rochester, NY 14623
Email: den9562@rit.edu

A Kemeny

A.1 Proof of Theorem 5: Kemeny-CCDC∗ is Σp
2-complete

Kemeny-Score was shown to be NP-hard by a reduction from Feedback-Arc-Set by
Bartholdi, Tovey, and Trick [2], which in turn was shown to be NP-hard by Karp [27].
The complete proof of the NP-hardness of Kemeny-Score can be viewed as consisting of the
following three steps.

1. Vertex-Cover is NP-hard [27].

2. Vertex-Cover ≤p
m Feedback-Arc-Set [27].

3. Feedback-Arc-Set ≤p
m Kemeny-Score [2].

Kemeny-Winner was shown to be Θp
2-hard by a chain of three reductions, basically a

“lifted” version of the NP-hardness proof for Kemeny-Score. For the lifted-to-Θp
2 version,

Hemaspaandra, Spakowski, and Vogel [26] define suitable Θp
2-complete equivalent problems,

and show the following.10

1. Vertex-Cover-Member is Θp
2-hard.

2. Vertex-Cover-Member ≤p
m Feedback-Arc-Set-Member.

3. Feedback-Arc-Set-Member ≤p
m Kemeny-Winner.

10Fitzsimmons and Hemaspaandra [20] recently showed a similar “lifting” to ∆p
2, to show that Kemeny-

Winner for weighted elections (elections where each voter has a corresponding integral weight) and for high-
multiplicity elections (where the voters are represented as a list of distinct votes and their corresponding
counts) is hard for ∆p

2.

In order to show that Kemeny-CCDC∗ is Σp
2-hard, we lift the reductions to Σp

2. We
already defined an appropriate Σp

2-complete analogue of Vertex-Cover and below we define
an appropriate Σp

2-complete analogue of Feedback-Arc-Set, and we show the following.

1. Vertex-Cover-Member-Select is Σp
2-hard (Lemma 4).

2. Vertex-Cover-Member-Select ≤p
m Feedback-Arc-Set-Member-Select (Lemma 12).

3. Feedback-Arc-Set-Member-Select ≤p
m Kemeny-CCDC∗ (Lemma 13).

The Σp
2-complete analogue of Feedback-Arc-Set is defined as follows.

Name: Feedback-Arc-Set-Member-Select

Given: Irreflexive and antisymmetric directed graph G = (V,A), a set V ′ ⊆ V − {v̂} of
deletable vertices, delete limit k, and vertex v̂ ∈ V .

Question: Does there exist a set W ⊆ V ′ of at most k deletable vertices such that some
minimum size feedback arc set of G−W contains all arcs entering v̂?

The second and third parts of the lifting use similar constructions as in the NP, Θp
2,

and ∆p
2 cases. As we saw previously in the proof Lemma 4, the proof that Vertex-Cover-

Member-Select is Σp
2-hard requires significantly more work.

Lemma 12 Vertex-Cover-Member-Select ≤p
m Feedback-Arc-Set-Member-Select.

Proof. Given a graph G, define digraph f(G) = (V̂ , A) as in the standard reduction from
Vertex-Cover to Feedback-Arc-Set from [27].

1. V̂ = {v, v′ | v ∈ V }.

2. A = {(v, v′) | v ∈ V } ∪ {(v′, w), (w′, v) | {v, w} ∈ E}.

We know from [26, Lemma 4.8] that for every graph G′ and vertex v̂ in G′, G′ has a
minimum size vertex cover containing v̂ if and only if f(G′) has a minimum size feedback
arc set containing (v̂, v̂′), which is the only arc entering v̂′.

Our reduction from Vertex-Cover-Member-Select to Feedback-Arc-Set-Member-Select
maps (G,V ′, k, v̂) to (H,V ′ − {v̂}, k, v̂′), where H = f(G). Let W ⊆ V ′ − {v̂}. Then
from [26, Lemma 4.8], G −W has a minimum size vertex cover containing v̂ if and only
if f(G −W) has a minimum size feedback arc set containing (v̂, v̂′), which is the only arc
entering v̂′.

Now consider H. Note that if we delete a vertex v, we do not have any cycles going
through v′ and so A′ is a minimum feedback arc set of H−W if and only if A′ is a minimum
feedback arc set of H −W − {v′ | v ∈ W}. Since H −W − {v′ | v ∈ W} = f(G −W), it
follows that G−W has a minimum size vertex cover containing v̂ if and only if H −W has
a minimum size feedback arc set containing (v̂, v̂′), which is the only arc entering v̂′. q

Lemma 13 Feedback-Arc-Set-Member-Select ≤p
m Kemeny-CCDC*.

Proof. We use the construction from [2]. Given an irreflexive and antisymmetric digraph
G = (C,A), let C be the set of candidates and use McGarvey’s construction [30] to construct
in polynomial time a set of voters such that for every arc (v, w) in A, there are exactly two
more voters who prefer v to w than who prefer w to v and if there are no arcs between
v and w then the same number of voters prefer v to w as w to v. From the proof of

Lemma 4.2 of [26], it holds that for every C ′ ⊆ C and for every c ∈ C ′ that some minimum
feedback arc set of (C ′, A ∩ (C ′ × C ′)) contains all arcs entering c if and only if c is a
Kemeny winner of (C ′, V). This then shows that Feedback-Arc-Set-Member-Select reduces
to Kemeny-CCDC*. q

This completes the proof that Kemeny-CCDC∗ is Σp
2-complete.

Do we always get this jump from a Θp
2-complete winner problem to a Σp

2-complete control
problem? Dwork et al. [15] show that Kemeny-Winner is already NP-hard if we have four
voters. And Fitzsimmons and Hemaspaandra [20] show that Kemeny-Winner for four voters
is still Θp

2-complete. Certainly the voter control cases for Kemeny with four voters are still
in Θp

2, and the control by adding voters and control by deleting voters cases are clearly
Θp

2-complete. What about the candidate control cases?

Theorem 14 Kemeny-CCDC∗ is Σp
2-complete, even for four voters.

Proof. To show hardness, we argue as in the proof that Kemeny-Winner for four voters
is Θp

2-hard from [20].
Given an irreflexive and antisymmetric digraph G = (V,A) and vertex v̂ ∈ V , we first

compute an irreflexive and antisymmetric digraph Ĝ as done in [15]. Ĝ = (V̂ , Â) such

that V̂ = V ∪ A and Â = {(v, (v, w)), ((v, w), w) | (v, w) ∈ A}. Let W ⊆ V − {v̂}. Note
that G −W has a feedback arc set of size ` that contains all arcs entering v̂ if and only
if Ĝ −W has a feedback arc set of size ` that contains all arcs entering v̂. It follows that
(G,V ′, k, v̂) is in Feedback-Arc-Set-Member-Select if and only if (Ĝ, V ′, k, v̂) is in Feedback-
Arc-Set-Member-Select. Now apply the reduction from Feedback-Arc-Set-Member-Select to
Kemeny-CCDC∗ from Lemma 13 to (Ĝ, V ′, k, v̂). The construction from Dwork et al. [15]
shows that we need only four voters in the election. q

A.2 Proof of Theorem 6: Kemeny-CCAC is Σp
2-complete

Membership follows from Corollary 2. The proof of hardness is similar to the proof of hard-
ness for CCDC∗: We define suitable Σp

2-complete versions of Vertex-Cover and Feedback-
Arc-Set and show the following.

1. Vertex-Cover-Member-Add is Σp
2-hard.

2. Vertex-Cover-Member-Add ≤p
m Feedback-Arc-Set-Member-Add.

3. Feedback-Arc-Set-Member-Add ≤p
m Kemeny-CCAC.

Name: Vertex-Cover-Member-Add

Given: Graph G = (V ∪ V ′, E), set of addable vertices V ′, addition limit k, and vertex
v̂ ∈ V .

Question: Does there exist a set W ⊆ V ′ of at most k addable vertices such that v̂ is a
member of a minimum vertex cover of (V ∪W,E)?11

Name: Feedback-Arc-Set-Member-Add

Given: Irreflexive and antisymmetric directed graph G = (V ∪ V ′, A), a set V ′ of addable
vertices, addition limit k, and vertex v̂ ∈ V .

11We slightly abuse notation by writing (V ∪W,E) instead of (V ∪W,E′), where E′ is the restriction of
E to V ∪W .

Question: Does there exist a set W ⊆ V ′ of at most k addable vertices such that some
minimum size feedback arc set of (V ∪W,A) contains all arcs entering v̂?

The proof that Vertex-Cover-Member-Add reduces to Feedback-Arc-Set-Member-Add is
similar to the proof of Lemma 12 and the proof that Feedback-Arc-Set-Member-Add reduces
to Kemeny-CCAC is similar to the proof of Lemma 13. This leaves the following lemma to
prove.

Lemma 15 Vertex-Cover-Member-Add is Σp
2-complete.

Proof. The upper bound is immediate. For the lower bound, we will again reduce from
QSAT2. We will modify the construction of the proof of Lemma 4, which showed Σp

2-
hardness for Vertex-Cover-Member-Select. Let H be the graph from the proof of Lemma 4.
We add an addable vertex x′i connected only to xi and an addable vertex xi

′ connected only
to xi. So, V = V (H), V ′ = {x′i, xi′ | 1 ≤ i ≤ n}, and E = E(H) ∪ {{xi, x′i}, {xi, xi′} | 1 ≤
i ≤ n}.12

Let W ⊆ V ′. Let H ′ = (V ∪W,E). Some relevant properties of H ′ are as follows.

1. If X is a vertex cover, then X is still a vertex cover if we replace x′i by xi and xi
′

by xi. In particular, this implies that there is a minimum vertex cover that does not
contain any vertex in W .

2. Every vertex cover of H ′ contains at least one of {xi, xi}, at least one of {yi, yi}, at
least three of {aj , bj , cj , dj}, at least one of {xi, x′i} for x′i ∈ W , and at least one of
{xi, xi} for xi

′ ∈W .

3. If X is a vertex cover of size 2n + 3m, then v̂ 6∈ X and V ′ ∩ X = ∅ and X ∩
{xi, xi, yi, yi | 1 ≤ i ≤ n} corresponds to a satisfying assignment for φ.

4. If α is a satisfying assignment for φ, then there is a vertex cover X of size 2n+ 3m of
(V,E) such that X ∩ {xi, xi, yi, yi | 1 ≤ i ≤ n} corresponds to this assignment.

5. If for all i, 1 ≤ i ≤ n, {x′i, xi′} 6⊆ W , then there is a vertex cover of size 2n + 3m + 1
that includes v̂ and that does not contain any vertex in W .

We will show that ∃x1 · · · ∃xn¬(∃y1 · · · ∃ynφ(x1, . . . , xn, y1, . . . , yn)) if and only if there
exists a set W ⊆ V ′ of at most n addable vertices such that v̂ is a member of a minimum
vertex cover of (V ∪W,E).

First assume that ∃x1 · · · ∃xn¬(∃y1 · · · ∃ynφ(x1, . . . , xn, y1, . . . , yn)). Let α ∈ {0, 1}n be
an assignment to x1 · · ·xn such that φ(α1, . . . , αn, y1, . . . , yn) is not satisfiable. Let W be
the set of vertices in V ′ corresponding to α, i.e., W = {x′i | αi = 1} ∪ {xi′ | αi = 0}. Then
(V ∪W,E) does not have a vertex cover of size 2n+ 3m (by 3), and (V ∪W,E) does have
a vertex cover of size 2n+ 3m+ 1 that includes v̂ (by 5).

For the converse, suppose that W is a set of at most n vertices from {x′i, xi′ | 1 ≤ i ≤ n}
such that v̂ is a member of a minimum vertex cover of (V ∪W,E). If W corresponds to an
assignment α, it is easy to see that φ(α1, . . . , αn, y1, . . . , yn) is not satisfiable. But W does
not necessarily correspond to an assignment, since it is possible for W to contain neither or
both of {x′i, xi′}. Let n̂ be the number of {x′i, xi′} pairs that are unadded, i.e., for which
{x′i, xi′} ∩W = ∅. Note (by 2) that the size of a vertex cover of (V ∪ W,E) is at least
‖W‖+ n̂+n+3m, and that vertex covers of that size do not include v̂. Since v̂ is a member
of a minimum size vertex cover of (V ∪W,E), it follows that (V ∪W,E) does not have a
vertex cover of size ‖W‖+ n̂+ n+ 3m.

12We can not simply use H with the x-vertices as addable vertices, since in that case d would be a member
of a minimum vertex cover after adding any nonempty set of vertices that corresponds to an assignment.

Let α ∈ {0, 1}n be an assignment to x1 · · ·xn that is consistent with W , in the sense that
for all i, 1 ≤ i ≤ n, if W ∩ {x′i, xi′} = {x′i}, then αi = 1 and if W ∩ {x′i, xi′} = {xi′}, then
αi = 0. To complete the proof, suppose for a contradiction that φ(α1, . . . , αn, y1, . . . , yn) is
satisfiable. Then (by 4) (V,E) has a vertex cover X of size 2n+3m such that X∩{xi, xi | 1 ≤
i ≤ n} corresponds to α. Clearly, X ∪ {xi | x′i ∈ W} ∪ {xi | xi′ ∈ W} is a vertex cover of
(V ∪W,E). Since ‖X ∩ ({xi | x′i ∈ W} ∪ {xi | xi′ ∈ W})‖ = n − n̂, the size of this vertex
cover is ‖W‖ + ‖X‖ − (n + n̂) = ‖W‖ + n̂ + n + 3m, which implies that (V ∪W,E) has a
vertex cover of size ‖W‖+ n̂+ n+ 3m, which is a contradiction. q

A.3 Proof of Theorem 7: Kemeny′-CCAV is Σp
2-complete

Note that in the reduction from feedback arc set problems to Kemeny control problems,
vertices correspond to candidates and arcs roughly correspond to voters. Also note that
arc (v, v′) in Feedback-Arc-Set-Member-Add basically correspond to vertex v. And so we
can easily define a version of Feedback-Arc-Set-Member-Add where we add arcs instead of
vertices.

Name: Feedback-Arc-Set-Member-Add-Arcs

Given: Irreflexive and antisymmetric directed graph G = (V,A ∪ B), a set B of addable
arcs, addition limit k, and vertex v̂ ∈ V .

Question: Does there exist a set B′ ⊆ B of at most k addable arcs such that some minimum
size feedback arc set of (V,A ∪B′) contains all arcs entering v̂?

It is easy to see that Vertex-Cover-Member-Add ≤p
m Feedback-Arc-Set-Member-Add-

Arcs: Given a graph G = (V ∪W,E), define digraph f(G) = (V̂ , A ∪B) as in the standard
reduction from Vertex-Cover to Feedback-Arc-Set from [27], with the set of addable arcs B
being the arcs corresponding to the addable vertices W .

1. V̂ = {v, v′ | v ∈ V ∪W}.

2. A = {(v, v′) | v ∈ V } ∪ {(v′, w), (w′, v) | {v, w} ∈ E}.

3. B = {(v, v′) | v ∈W}.

Our reduction from Vertex-Cover-Member-Add to Feedback-Arc-Set-Member-Add-Arcs
maps (G,W, k, v̂) to ((V̂ , A ∪B), B, k, v̂′).

As mentioned previously, in the reduction from feedback arc set problems to Kemeny
control problems, vertices correspond to candidates and arcs roughly correspond to voters. If
the voters vote with total orders, each arc corresponds to two voters: arc a→ b corresponds
to a voter voting a > b > C − {a, b} and a voter voting (C − {a, b})r > a > b [30].

There exist variations of Kemeny where the voters do not necessarily list all of the
candidates in their votes. Dwork et al. [15] consider a natural variant of Kemeny, which we
here call Kemeny′, where unlisted candidates in a vote do not contribute to the distance to
the Kemeny consensus and so do not increase the Kemeny score. (The Kemeny consensus
is still a complete total order.) So, in this model, a voter voting a > b corresponds exactly
to an arc a → b. This gives a straightforward reduction from Feedback-Arc-Set-Member-
Add-Arcs to Kemeny′-CCAV.

B Young

B.1 Details of the proof of Theorem 9

Given graph G = (V,E), a delete limit k ≤ ‖V ‖, and a vertex v̂ ∈ V , such that G has no
isolated vertices and for every set W of at most k vertices, α(G −W) ≥ 3, we will show
that ((V,E), k, v̂) is a positive instance of Independent-Set-Member-Delete if and only if we
can make the Young score of p at least 2 and at least as high as the Young score of q by
deleting at most k voters.

Let W ⊆ V be a set of at most k vertices such that v̂ is in a maximum independent set
of G−W . Delete the voters corresponding to W . We will show that the Young score of p is
at least 2 and at least as high as the Young score of q. Let Ŵ be a maximum independent
set of G −W such that v̂ ∈ Ŵ . Then all the voters corresponding to Ŵ are of Type IA.
It is easy to see that p and q are weak Condorcet winners in the set of voters that consists
of the voters corresponding to Ŵ , the voter of Type II, and ‖Ŵ‖ − 1 voters of Type III. It
follows that the Young scores of p and q are at least 2α(G −W). It also follows from the
argument from [34, Lemma 2.4] that the Young score of q is at most 2α(G−W).

For the converse, suppose X is a set of at most k voters such that after deletion, p’s
Young score is at least 2 and at least as high as q’s Young score. Then X does not contain
the voter of Type II. Let W be the set of vertices corresponding to the Type-I voters in X.
Then the Young score of q is 2α(G−W). Let X̂ be a set of voters of size 2α(G−W) such

that p is a weak Condorcet winner of X̂. Without loss of generality, assume that X̂ does not
contain voters of Type IB (if it does, we can replace such a voter by a voter of Type III).
In order for p to be a weak Condorcet winner, the vertices corresponding to the voters of
Type I in X̂ form an independent set of G−W . Since all voters in X̂ of Type I are of Type
IA, this independent set contains no vertices connected to v̂ and so we can safely add v̂ to
this independent set, giving us an independent set containing v̂ of size at least α(G−W).

C Dodgson Elections

In this section we consider the complexity of control for Dodgson elections [14]. Recall
that the Dodgson score of a candidate c using the Dodgson election system is the minimum
number of swaps between adjacent candidates in votes such that c is a Condorcet winner and
that the candidate(s) with the minimum score are the winner(s) of the Dodgson election.
We will use the notation DodgsonScore(c) to denote the Dodgson score of a candidate c in
a given election. As we did with Kemeny, we first consider the complexity of CCDC∗.

Theorem 16 Dodgson-CCDC∗ is Σp
2-complete.

Proof. In our hardness proofs for control for Kemeny and Young elections, our approach
was to define a new simple Σp

2-complete analogue of Vertex-Cover or Independent-Set (the
problems used to show NP-hardness for the score problems) to then reduce to a control
problem. Dodgson score was originally shown NP-hard by a reduction from Exact-Cover-
by-3-Sets [2]. [24] provides a reduction from Three-Dimensional-Matching (3DM) as part of
the proof of Θp

2-completeness of the winner problem. There does exist a simple Σp
2-complete

analogue of 3DM [31]. However, this analogue does not straightforwardly reduce to Dodgson
control problems.

Fortunately, in Dodgson there is a lot of flexibility in how to construct the voters in
a reduction, and so we will directly reduce QSAT2 to Dodgson-CCDC∗, though the con-
struction is quite involved. To better understand our reduction, it helps to first consider a
reduction from 3SAT to the Dodgson score problem, in which we ask if the Dodgson score
of a distinguished candidate is at most k.

Let φ(z1, . . . , zn) be a Boolean formula in 3cnf, where φ = ψ1∧ψ2∧· · ·∧ψm and for each
i, 1 ≤ i ≤ m, ψi = `i,1∨ `i,2∨ `i,3. Without loss of generality, let n ≥ 1 and m ≥ 1. We now
construct an instance of the Dodgson score problem. An example of this construction is
given in Example 1 below. We begin by showing the core parts of the construction (Blocks I
and II).

Let C = {ẑ1, . . . , ẑn}∪{c1, . . . , cm}∪{ci,1, ci,2, ci,3, . . . , cm,1, cm,2, cm,3}∪{q, b}. Let there
be the following voters. Note that “· · · ” in a vote denotes that the remaining candidates
are strictly ranked in a arbitrary, fixed, and easy to compute order. Similarly, a set in a
vote denotes that the candidates in that set are strictly ranked with respect to that order.

Block I For each i, 1 ≤ i ≤ m and j, 1 ≤ j ≤ 3,

• One voter voting: (ci > ci,j > q > · · ·).

Block II For each t, 1 ≤ t ≤ n,

• One voter voting: (ẑt > {ci,j | `i,j = zt} > q > · · ·).
• One voter voting: (ẑt > {ci,j | `i,j = zt} > q > · · ·).

The above election can be easily padded so that the following properties hold.

• q needs one vote over each ci, each ci,j , and each ẑi, and no votes over b.

• One swap in votes other than the Block I and Block II votes does not give q a vote
over any of the ci, ci,j , or ẑi candidates, i.e., one swap in votes other than Block I and
Block II votes is useless.

Note that for each ci,j candidate, 2n+ 3m− 2 (of the 2n+ 3m) voters in Blocks I and II
prefer q to ci,j , that for each ẑi candidate, 2n + 3m − 2 voters in Blocks I and II prefer q
to ẑi, and that for each ci candidate, 2n+ 3m− 3 of the voters in Blocks I and II prefer q
to ci. We can ensure that q needs one vote over each of these candidates (by making q tie
pairwise with each of these candidates) by adding the following 2n+ 3m− 4 voters. We use
the buffer candidate “b” to ensure that one swap outside of Blocks I and II does not give q
a vote over any of the ci, ci,j , or ẑi candidates.

Block III

• One voter voting: (· · · > b > q > {c1, . . . , cm}).
• 2n+ 3m− 5 voters voting: (· · · > b > q).

We will show in Lemma 17 that φ is satisfiable if and only if DodgsonScore(q) ≤ 4m+n.
Before proving the correctness of this construction, let’s first consider the following ex-

ample, which will show how assignments to variables correspond to swaps between adjacent
candidates.

Example 1 Given the formula φ(z1, z2) = (z1 ∨ z2 ∨ z1) ∧ (z2 ∨ z1 ∨ z2), our construction
gives the following election.

C = {c1, c2, c1,1, c1,2, c1,3, c2,1, c2,2, c2,3, ẑ1, ẑ2, q, b}, and we have the following voters.
(We do not name the voters in Block III since we do not need to swap q in these votes.)

Block I

• v1 voting: (c1 > c1,1 > q > · · ·).
• v2 voting: (c1 > c1,2 > q > · · ·).

• v3 voting: (c1 > c1,3 > q > · · ·).
• v4 voting: (c1 > c2,1 > q > · · ·).
• v5 voting: (c1 > c2,2 > q > · · ·).
• v6 voting: (c1 > c2,3 > q > · · ·).

Block II

• v7 voting: (ẑ1 > c1,1 > c1,3 > q > · · ·).
• v8 voting: (ẑ1 > c2,2 > q > · · ·).
• v9 voting: (ẑ2 > c2,3 > q > · · ·).
• v10 voting: (ẑ2 > c1,2 > c2,1 > q > · · ·).

Block III

• One voter voting: (· · · > b > q > c1 > c2).

• Five voters voting: (· · · > b > q).

It is easy to see that the assignment z1 = 1, z2 = 0 is a satisfying assignment for φ. We
will now show that this implies that DodgsonScore(q) ≤ 10.

Swapping q over a ci,j candidate in its Block I vote will correspond to that clause literal
being true and swapping q over a ci,j candidate in its Block II vote will correspond to that
clause literal being false. Since z1 is true, swap q with c1,1 in v1 and c1,3 in v3 (these
correspond to positive z1-literals in φ) and then in Block II swap q with c2,2 and ẑ1 in v8

(this vote corresponds to the negated z1-literals). Similarly, since z2 is false, swap q with
c1,2 in v2, swap q with c2,1 in v4, and then in Block II swap q with c2,3 and ẑ2 in v9. This
takes eight swaps for q to gain one vote over each of the ẑi and ci,j candidates.

Note that since φ is satisfiable, for each clause there exists at least one true literal, and
we just swapped q over the true clause literals in Block I. So, to gain one vote over c1, swap
q with c1 in v1 (we already swapped q with c1,1) and to gain one vote over c2, swap q with
c2 in v2 (we already swapped q with c1,2). This takes exactly two swaps. Thus the Dodgson
score of q is ≤ 10.

We will now show the following lemma.

Lemma 17 φ is satisfiable if and only if DodgsonScore(q) ≤ 4m+ n

Proof. First suppose that φ(z1, . . . , zn) is satisfiable. Fix an assignment α ∈ {0, 1}n for
φ. We argue as in Example 1.

Recall that q needs one vote over each ẑi, each ci, and each ci,j candidate. For each
t, 1 ≤ t ≤ n if zt is false in the assignment (i.e., αt = 0) then for each ci,j such that `i,j = zt,
swap q with ci,j in the corresponding votes in Block I and swap q up to the top in the
corresponding zt vote in Block II, and if zt is true in the assignment (i.e., αt = 1) then for
each ci,j such that `i,j = zt, swap q with ci,j in the corresponding votes in Block I and swap
q up to the top in the corresponding zt vote in Block II. For example, if zt is false in the
satisfying assignment do the following.

• Swap q with ci,j in each Block I vote (ci > ci,j > q > · · ·) for which `i,j = zt to get
(ci > q > ci,j > · · ·).

• Swap q up to the top in the Block II vote (ẑt > {ci,j | `i,j = zt} > q > · · ·) to get
(q > ẑt > {ci,j | `i,j = zt} > · · ·).

This takes 3m+ n swaps.
Since α is a satisfying assignment for φ we know that for each clause there exists a clause

literal that is true. In our election, this means that for each i, 1 ≤ i ≤ m, there exists
a j, 1 ≤ j ≤ 3, such that q has been swapped in the vote (ci > ci,j > q > · · ·) to get
(ci > q > ci,j > · · ·). So with a total of m swaps q can gain one vote over each clause
candidate ci. This all takes a total of 4m+ n swaps.

For the converse, suppose that DodgsonScore(q) ≤ 4m + n. The Dodgson score of q
will always be at least 4m + n, since q must gain one vote over 4m + n candidates (each
ci, each ci,j , and each ẑi candidate). To avoid “wasting” swaps, q must swap only with
these candidates and only in Block I and Block II, since these are the only votes were q is
directly adjacent to these candidates. Since each swap must gain a necessary vote, for each
t, 1 ≤ t ≤ n, we either swap q up in the Block II vote (ẑt > {ci,j | `i,j = zt} > q > · · ·) to get
(q > ẑt > {ci,j | `i,j = zt} > · · ·) or swap q up in the Block II vote (ẑt > {ci,j | `i,j = zt} >
q > · · ·) to get (q > ẑt > {ci,j | `i,j = zt} > · · ·). Note that this is the only way for q to gain
one vote over ẑt without wasting swaps. In the first case set zt to false and in the second
case set zt to true. This gives us a satisfying assignment for φ since for each i, 1 ≤ i ≤ m,
q must also swap with the clause candidate ci, which implies that for some j, 1 ≤ j ≤ 3,
q swaps with ci,j in Block I, and since q only swaps over each of these candidates exactly
once, q did not swap with this ci,j in Block II. So ci,j corresponds to a true literal in the
constructed satisfying assignment. q

We will now use the idea from the reduction above to show that Dodgson-CCDC∗ is
Σp

2-complete.
Membership in Σp

2 follows from Corollary 2. To show hardness, we re-
duce from QSAT2 and recall that it is defined as all true formulas of the form
∃x1 · · · ∃xn¬(∃y1 · · · ∃ynφ(x1, . . . , xn, y1, . . . , yn)), where φ is a formula in 3cnf, where φ =
ψ1 ∧ ψ2 ∧ · · · ∧ ψm and for each i, 1 ≤ i ≤ m, ψi = `i,1 ∨ `i,2 ∨ `i,3. Let X = {x1, . . . , xn}
and X = {x1, . . . , xn} denote the positive and negative x-literals and let Y = {y1, . . . , yn}
and Y = {y1, . . . , yn} denote the positive and negative y-literals. Without loss of gen-
erality, let n > m and n > 6. Let m̂ be the number of occurrences of y-literals, i.e.,
m̂ = ‖{(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ 3, and `i,j ∈ Y ∪ Y }‖. Note that m̂ ≤ 3m.

We now construct an instance of Dodgson-CCDC∗. Let the candidate set C consist
of the x-variable candidates {x̂1, . . . , x̂n}, the y-variable candidates {ŷ1, . . . , ŷn}, the clause
candidates {c1, . . . , cm}, a clause-literal candidate for each occurrence of a y-literal {ci,j | 1 ≤
i ≤ n, 1 ≤ j ≤ 3, and `i,j ∈ Y ∪ Y } (note that there are m̂ clause-literal candidates), the
buffer candidates {b1, b2, b3, b4}, the positive and negated x-literal candidates X ∪ X and
the candidates p, q, and d. Let p be the preferred candidate of the chair, let X ∪X be the
set of deletable candidates, and let the delete limit be 2n (i.e., we can delete any subset of
X∪X; this will be useful when we look at CCAC). We have the following 16n+8m+2m̂−8
voters.

Block IA For each i, 1 ≤ i ≤ m, and j, 1 ≤ j ≤ 3, such that `i,j = yt or yt,

• One voter voting: (ci > ci,j > q > b1 > p > d > · · ·).

Block IB For each i, 1 ≤ i ≤ m, and j, 1 ≤ j ≤ 3, such that `i,j = xt or xt,

• If `i,j = xt, one voter voting: (ci > xt > q > b1 > p > d > · · ·).
• If `i,j = xt, one voter voting: (ci > xt > q > b1 > p > d > · · ·).

Block II For each t, 1 ≤ t ≤ n,

• One voter voting: (ŷt > {ci,j | `i,j = yt} > q > b1 > p > d > · · ·).

• One voter voting: (ŷt > {ci,j | `i,j = yt} > q > b1 > p > d > · · ·).

Block III For each t, 1 ≤ t ≤ n,

• One voter voting: (x̂t > xt > p > q > d > · · ·).
• One voter voting: (x̂t > xt > p > q > d > · · ·).

Block IV

• One voter voting: (d > · · · > b2 > {c1, . . . , cm} > {all ci,j} > {ŷ1, . . . , ŷn} > p >
b1 > q).

• One voter voting: (d > · · · > b2 > {x̂1, . . . , x̂n} > q > b1 > b3 > p).

Block V

• One voter voting: (d > · · · > b2 > p > q > {c1, . . . , cm}).
• 2n+ 3m− 6 voters voting: (d > · · · > b2 > p > b1 > q).

Block VI

• 4n+m+ m̂− 2 voters voting: (p > q > d > · · ·).
• 2n+m+ m̂− 4 voters voting: (· · · > b3 > q > b4 > d > p > b1 > b2 > X ∪X).

• 4n− 1 voters voting: (d > · · · > b2 > q > b1 > p > b3 > b4 > X ∪X).

• Two voters voting: (· · · > b3 > d > p > b4 > q > b1 > b2 > X ∪X).

Note the following about the election above.

1. q needs one vote over each x̂i, each ŷi, each ci, each ci,j , and p, and no votes over
other candidates. Note that DodgsonScore(q) ≥ 2n+m+ m̂+ 1.

2. The votes in Block IA and the Block II votes function in the same way to determine
(part of) the score of q as in the Dodgson score reduction above. And q can only
gain a vote over any of the ŷi, ci, or ci,j candidates without wasting a swap in Block I
and Block II.

3. p needs one vote over each x̂i, each ŷi, each ci, each ci,j , and q, and no votes over other
candidates. p needs at least two swaps to gain one vote over q and to accomplish this p
needs to swap over a buffer candidate. Note that DodgsonScore(p) ≥ 2n+m+ m̂+ 2.

4. d needs 2n+m+m̂−1 votes over q, 3 votes over p, and no votes over other candidates.
Note that regardless of which candidates in X ∪ X are deleted, DodgsonScore(d) =
2n+m+ m̂+ 2.

5. Each candidate in C−{p, q, d} needs at least 2n+m+m̂+2 votes over d. So regardless
of which candidates in X∪X are deleted, for each c ∈ C−{p, q, d}, DodgsonScore(c) ≥
2n+m+ m̂+ 2.

Let’s consider the Dodgson score of p. It is easy to see for every X ′ ⊆ X ∪ X, in the
election (C −X ′, V), p can gain each needed vote over the ŷi, ci, and ci,j candidates in the
Block IV vote and then use two more swaps to gain one vote over q. What remains is to
show how p can gain one vote over each of the x̂i candidates. When at least one of the
{xi, xi} candidates is deleted, p can gain one vote over the corresponding x̂i candidate in
Block III, using one swap. So, we can state the following observation.

Observation 18 For every X ′ ⊆ X ∪X,

1. The Dodgson score of p with X ′ removed is ≥ 2n+m+ m̂+ 2.

2. The Dodgson score of p with X ′ removed is 2n + m + m̂ + 2 if and only if for each
i, 1 ≤ i ≤ n, at least one of each xi or xi in is X ′.

We now consider the Dodgson score of q.

Lemma 19 For every X ′ ⊆ X ∪X,

1. The Dodgson score of q with X ′ removed is ≥ 2n+m+ m̂+ 1.

2. The Dodgson score of q with X ′ removed is 2n + m + m̂ + 1 if and only if φ with
x-literals in X ′ set to true and x-literals not in X ′ set to false is satisfiable.

Proof.

1. Clearly the Dodgson score of q with X ′ removed is ≥ 2n + m + m̂ + 1, since q needs
one vote over each x̂i, each ŷi, each ci, each ci,j , and p, and does not need any votes
over other candidates.

2. Suppose that q can be made a Condorcet winner in the election (C − X ′, V) with
exactly 2n + m + m̂ + 1 swaps. This means that every swap must gain a necessary
vote, since q needs one vote each over 2n+m+ m̂+ 1 candidates. With the exception
of candidate p and the x̂i candidates, q is only ever not separated from candidates it
needs votes over by a buffer candidate in Block I and Block II. So n+m+ m̂ of these
swaps must occur there. Note that q can easily swap over p (in Block III), and the x̂i
candidates (in Block IV) with exactly n+ 1 swaps.

Consider the candidates deleted in X ′. If `i,j = xt (xt) then q can gain one vote over ci
in the corresponding Block I vote with only one swap. This will correspond to setting
xt to true (false) in the corresponding assignment and setting xt (xt) to true means
that the ith clause is true.

Now let’s consider the y-literals. Since the Dodgson score of q is 2n + m + m̂ + 1, q
can swap over the ŷi, ci, and ci,j candidates without wasting swaps. It follows from a
similar argument as in the proof of Lemma 17 that since q can swap over the remaining
n+m+ m̂ candidates without wasting a swap, φ with the x-literals in X ′ set to true
and x-literals not in X ′ set to false is satisfiable.

For the other direction, consider a fixed satisfying assignment for y-variables in φ,
where the assignment to the x-literals is set by the deleted candidates X ′. For each
t, 1 ≤ t ≤ n, if yt is true (false) in the satisfying assignment, swap q up over the ci,j
candidates and ŷt in the yt (yt) vote in Block II. Then for each t, 1 ≤ t ≤ n, if yt is
true (false) swap q with ci,j in the corresponding `i,j = yt (yt) Block I votes. This
takes n + m swaps and handles the ci,j and ŷi candidates. Since we are looking at a
satisfying assignment, for all i, there exists a j, 1 ≤ j ≤ 3 such that ci > ci,j > q has
been swapped to ci > q > ci,j or xt (xt) has been deleted so that ci > q. With k extra
swaps, p beats ci pairwise for all i. q must additionally gain one vote over p and one
vote over each x̂i candidate and it is clear to see how this can be accomplished with
n+ 1 swaps. This all takes 2n+m+ m̂+ 1 swaps.

q

We will now show that ∃x1 · · · ∃xn¬(∃y1 · · · ∃ynφ(x1, . . . , xn, y1, . . . , yn)) ∈ QSAT2 if and
only if there exists X ′ ⊆ X ∪X such that p is a Dodgson winner of (C −X ′, V).

Suppose that ∃x1 · · · ∃xn¬(∃y1 · · · ∃ynφ(x1, . . . , xn, y1, . . . , yn) ∈ QSAT2. Fix an as-
signment α ∈ {0, 1}n for the x-literals such that φ is not satisfiable. Let the candidates
deleted be X ′ = {xi | αi = 1} ∪ {xi | αi = 0}. We know from Observation 18 that the
Dodgson score of p with X ′ deleted is 2n + m + m̂ + 2 and by Lemma 19 we know that
DodgsonScore(q) > 2n+m+ m̂+ 1. And as stated in the list of properties given after the
construction, the Dodgson score of each candidate in C−{p, q, d} is at least 2n+m+m̂+2.
Additionally, the Dodgson score of d is 2n + m + m̂ + 2 regardless of which candidates in
X ∪X are deleted. It follows that p is a Dodgson winner of (C −X ′, V).

Suppose that there exists an X ′ ⊆ X ∪X such that p is a winner. Regardless of which
candidates in X∪X are deleted, DodgsonScore(d) = 2n+m+m̂+2 and DodgsonScore(p) ≥
2n + m + m̂ + 2. Since p is a winner, DodgsonScore(p) = 2n + m + m̂ + 2 and it follows
from Observation 18 that X ′ contains at least one of each {xi, xi}. Let α ∈ {0, 1}n be
an assignment to the x-literals that is consistent with the candidates in X ′, that is, for
all i, 1 ≤ i ≤ n, if αi = 1, then xi ∈ X ′ and if αi = 0, then xi ∈ X ′. Suppose that
φ(α1, . . . , αn, y1, . . . , yn) is satisfiable. Then by Lemma 19, DodgsonScore(q) = 2n + m +
m̂ + 1. However, since DodgsonScore(p) = 2n + m + m̂ + 2, p is not a winner, which is a
contradiction. It follows that φ(α1, . . . , αn, y1, . . . , yn) is not satisfiable. q

The analogous result for CCAC follows almost immediately.

Theorem 20 Dodgson-CCAC is Σp
2-complete.

Proof. Membership in Σp
2 follows from Observation 1. To show hardness, we reduce from

QSAT2 and use the same construction as for the case of the proof of Theorem 16, with
the obvious modification that the set of deletable candidates (X ∪ X) is now the set of
unregistered candidates and the delete limit is now the addition limit of 2n. Note that p
can be a winner by deleting a set of candidates X̂ ⊆ X ∪X ′ from (C, V) if and only if p can

be made a winner by adding (X ∪X ′)− X̂ to (C − (X ∪X ′), V), which immediately gives
the result. q

The construction used for the proof of Dodgson-CCDC∗ can be adapted to show the
following.

Theorem 21 Dodgson-CCDC is Σp
2-complete.

Proof Sketch. Membership in Σp
2 follows from Corollary 2. We will adapt the construc-

tion used in the proof of Theorem 16. Set the delete limit to n. Our main challenge is to
ensure that the arguments from the previous proof still go through when we delete up to n
arbitrary candidates. We start with Blocks I, II, III, and IV and do the following.

1. To ensure that the buffer candidates function in the same way, we replace each buffer
candidate by n+ 1 copies of that candidate.

2. We also replace the candidate “d,” which in the Dodgson-CCDC∗ proof, regardless
of which candidates in X ∪ X are deleted, always has Dodgson score equal to the
minimum-possible Dodgson score of p, by n + 1 copies: {d1, . . . , dn+1}. And we
replace each occurrence of d in the construction by d1 > d2 > · · · > dn+1. This will
ensure that regardless of which candidates in C − {q} are deleted, the Dodgson score
of the first di that is not deleted is the minimum-possible Dodgson score of p. (We
will mention why we do not delete q later.)

3. We now will make sure that the candidates deleted correspond to an assignment. In
the Dodgson-CCDC∗ proof, this was accomplished by the Block III votes and the x̂i
candidates.

Old Block III For each t, 1 ≤ t ≤ n,

• One voter voting: (x̂t > xt > p > · · ·).
• One voter voting: (x̂t > xt > p > · · ·).

In our new construction we create 2n of each of the x̂i candidates:
{x̂1

1, . . . , x̂
2n
1 , . . . , x̂1

n, . . . , x̂
2n
n } and we make sure that p needs one vote over each of

these 2n2 variables. We then change Block III to be the following 4n2 votes.

New Block III For each t, 1 ≤ t ≤ n, and s, 1 ≤ s ≤ 2n,

• One voter voting: (x̂st > xt > p > · · ·).
• One voter voting: (x̂st > xt > p > · · ·).

Now for each xi or xi deleted, p can gain the necessary vote over each of the at least n
nondeleted x̂si candidates without wasting swaps, and so one such deletion decreases
the Dodgson score of p by at least n. Note that if for an i, 1 ≤ i ≤ n, both of xi and
xi were deleted, or if a candidate in C− (X ∪X) was deleted, then the Dodgson score
of p would decrease by at most 1.

In order for p to tie with “d” by deleting at most n candidates, we need to delete
exactly one of each {xi, xi}, which corresponds to an assignment. Note that this also
implies that we do not delete q.

4. In the Dodgson-CCDC∗ proof, to get its needed vote over q, p needs to waste a swap
over q and does this by swapping over a buffer candidate. Since there are now n + 1
copies of each buffer candidate, we need to modify the votes so that p still wastes
exactly one swap to gain its vote over q. Recall the Block II votes from the Dodgson-
CCDC∗ proof.

Old Block II For each t, 1 ≤ t ≤ n,

• One voter voting: (ŷt > {ci,j | `i,j = yt} > q > b1 > p > d > · · ·).
• One voter voting: (ŷt > {ci,j | `i,j = yt} > q > b1 > p > d > · · ·).

In our new construction, we replace the buffer candidate with candidates from X ∪X
in the following way.

New Block II For each t, 1 ≤ t ≤ n,

• One voter voting: (ŷt > {ci,j | `i,j = yt} > q > {xt, xt} > p > d > · · ·).
• One voter voting: (ŷt > {ci,j | `i,j = yt} > q > {xt, xt} > p > d > · · ·).

Since from above we know that an assignment must be deleted, we know that one of
each {xi, xi} remains after deletion, and so to gain one vote over q, p swaps over a
remaining x-literal candidate in a New Block II vote to then swap over q. Note that
in votes outside of Block II where p is ranked below q, p is separated from q by at
least n+ 1 buffer candidates.

5. We must then pad the above construction (Blocks I-IV) so that the following hold.

• q needs one vote over each x̂ji , each ŷi, each ci, each ci,j , and p, and no votes over
other candidates.

• q can only gain a vote over any of the ŷi, ci, or ci,j candidates without wasting
a swap in Block I and Block II.

• p needs one vote over each x̂ji , each ŷi, each ci, each ci,j , and q, and no votes over
other candidates. p wastes a swap to gain a vote over q.

• Each di ∈ D needs 2n2 +n+m+ m̂+ 2 votes in total over p and q, and no votes
over candidates in C − ({p, q}∪D). d1 can gain these 2n2 +n+m+ m̂+ 2 votes
without wasting swaps.

• Each candidate in C − ({p, q}∪D) needs at least 2n2 +n+m+ m̂+ 2 votes over
the candidates in D.

q

D ASP Encodings

We present the complete encoding of the guess and check ASP programs for some of the
control actions discussed in this paper (see Section 4 for details about the “guess and check”
approach for Σp

2 problems). Our encodings are written in a language mostly based on the
input language to the gringo grounder [22]. We start by showing the Kemeny-CCAC guess
program.

candidate(1..M)← rcandnum(M). (6)

ucandidate((M + 1)..(M + N))← rcandnum(M), ucandnum(N). (7)

% Guess a subset of unregistered candidates of size at most K to add.

{candidate(C) : ucandidate(C)} K ← limit(K). (8)

candnum(N)← N = {candidate(C)}. (9)

domain(1..N)← candnum(N). (10)

% Number of times candidate C1 is worse-ranked than candidate C2 in the preference profile

wrank(P,C1, C2)← ip(P, Pos1, C1), ip(P, Pos2, C2), Pos1 > Pos2. (11)

wrankC(C1, C2, N)← candidate(C1), candidate(C2),

N = #sum{V C, P : prefVC(P, V C),wrank(P,C1, C2)}. (12)

% Guess preference relation

1{gpref(D,C) : candidate(C)} ← domain(D). (13)

← gpref(Pos1, C), gpref(Pos2, C), Pos1! = Pos2. (14)

% In the guessed preference relation C1 is better-ranked than C2

grank(C1, C2)← gpref(Pos1, C1), gpref(Pos2, C2), Pos1 < Pos2. (15)

% Number of votes that disagree on C1 being better-ranked than C2

gwrankC(C1, C2, N)← grank(C1, C2),wrankC(C2, C1, N). (16)

gkt(K)← K = #sum{N,C1, C2 : gwrankC(C2, C1, N)}. (17)

% Preferred candidate must win

← preferredCand(C), not gpref(1, C). (18)

The manipulation action happens in Line 8, where a subset of the unregistered candidates
is guessed. A preference is guessed in Line 13 and its Kendall’s Tau distance to the vote is
calculated in Line 17. The guessed preference must be such that the preferred candidate is
the winner (Line 18) gpref/1 becomes the preference to beat in the check program, which
we show next.

1 {cpref(Pos, C) : candidate(C)} 1← domain(Pos). (19)

← cpref(Pos1, C), cpref(Pos2, C), Pos1! = Pos2. (20)

% In the guessed preference relation C1 is better-ranked than C2

crank(C1, C2)← cpref(Pos1, C1), cpref(Pos2, C2), Pos1 < Pos2. (21)

% Number of votes that disagree on C1 being better-ranked than C2

cwrankC(C1, C2, N)← crank(C1, C2),wrankC(C2, C1, N). (22)

% Change < to ≤ for stronger control (no multiple winners)

← gkt(K), K #sum{N,C1, C2 : cwrankC(C2, C1, N)}. (23)

← preferredCand(X), cpref(1, X). (24)

In this check program, a different preference cpref/1 where the preferred candidate is not
the winner is guessed. The purpose of this new preference is beating the gpref/1 preference
guessed before. The integrity constraint in Line 23 achieves that by discarding any answer
set where the Kendall’s Tau distance of cpref/1 is at least that of gpref/1. Thus, unless
gpref/1 minimizes the Kendall’s Tau distance over all possible preferences, a preference
cpref/1 can be guessed that has a smaller distance. It follows that the interplay between
the guess and check programs effectively minimizes the Kendall’s Tau distance of gpref/1.

Taking a closer look at the integrity constraint in Line 23, we can see where the choice
of the winner model (in our case, the multiple winners model) plays a role. In our model, it
is enough for the gpref/1 preference to have the same Kendall’s Tau distance as the cpref/1
preference for the preferred candidate to win. In the unique winner model, a preference
cpref/1 whose Kendall’s Tau distance equals that of the gpref/1 would be enough to assume
the preferred candidate is not a winner. To work under the unique winner model, it is enough
to modify the integrity constraint in Line 23 to discard any preference cpref/1 whose distance
is at least K + 1, where K is the distance of gpref/1.

We now present the encoding for the guess part of Kemeny-CCDC. The same check
program used for Kemeny-CCAC applies to the check part of Kemeny-CCDC.

icandidate(1..M)← candnum(M). (25)

% Guess a subset of candidates of size at least K fewer than the initial total number of candidates.

candidate(C)← preferredCand(C). (26)

X −K {candidate(C) : icandidate(C)} X ← candnum(X), limit(K). (27)

domain(1..N)← N = {candidate(C)}. (28)

% Number of times candidate C1 is worse-ranked than candidate C2 in the preference profile

wrank(P,C1, C2)← p(P, Pos1, C1), p(P, Pos2, C2), Pos1 > Pos2. (29)

wrankC(C1, C2, N)← candidate(C1), candidate(C2),

N = #sum{V C, P : prefVC(P, V C),wrank(P,C1, C2)}. (30)

% Guess preference relation

1 {gpref(D,C) : candidate(C)} ← domain(D). (31)

← gpref(Pos1, C), gpref(Pos2, C), Pos1! = Pos2. (32)

% In the guessed preference relation C1 is better-ranked than C2

grank(C1, C2)← gpref(Pos1, C1), gpref(Pos2, C2), Pos1 < Pos2. (33)

% Number of votes that disagree on C1 being better-ranked than C2

gwrankC(C1, C2, N)← grank(C1, C2),wrankC(C2, C1, N). (34)

gkt(K)← K = #sum{N,C1, C2 : gwrankC(C2, C1, N)}. (35)

% Preferred candidate must win

← preferredCand(C), not gpref(1, C). (36)

This encoding is similar to that of Kemeny-CCAC except that instead of guessing a
subset of unregistered candidates to add to the election, a subset of the initial candidates
is dropped from the election. To do this, initial candidates are marked by the icandidate/1
predicate as part of the input, while the candidates that will ultimately participate in the
election are marked by the candidate/1 predicate in Line 27. Note that the previous line
guarantees that the preferred candidate is part of the election.

The next pair of programs show respectively the guess and check parts of Young-CCAC.

candidate(1..M)← rcandnum(M). (37)

ucandidate((M + 1)..(M + N))← rcandnum(M), ucandnum(N). (38)

% Guess a subset of unregistered candidates of size at most K to add.

{candidate(C) : ucandidate(C)} K ← limit(K). (39)

% Guess the number of kept votes per preference relation

keepMax(0..V)← voternum(V). (40)

1 {gkeep(P,X) : X <= V C, keepMax(X)} 1← prefVC(P, V C). (41)

% Count the number of kept voters

gcountKeep(N)← N = #sum{X,P : gkeep(P,X)}. (42)

% Compute Condorcet winner (considering only kept votes)

prefer(P,C1, C2)← ip(P, Pos1, C1), ip(P, Pos2, C2), Pos1 < Pos2. (43)

gpreferCount(C1, C2, N)← candidate(C1), candidate(C2), C1! = C2,

N = #sum{X,P : gkeep(P,X), prefer(P,C1, C2)}. (44)

noGWinner(C)← gpreferCount(C, ,N), gcountKeep(X), N ∗ 2 < X. (45)

gwinner(C)← candidate(C), not noGWinner(C). (46)

% Keep answer-set only in case there is a Condorcet winner (with removing votes)

anyGWinner ← gwinner(). (47)

← not anyGWinner. (48)

% Ensure the preferred candidate is the gwinner

← preferredCand(X), not gwinner(X). (49)

Guessing the subset of unregistered candidates to add is achieved in the same way as
in the Kemeny-CCAC encoding. The next part of the encoding deals with the deletion of
votes. Because votes are specified as pairs of a profile P and the number of voters that
voted P (the predicate prefVC/2), we guess in Line 41 a number of votes to keep per profile
P , which cannot exceed the original vote count for that profile. From Lines 43 to 46 the
(weak) Condorcet winners are calculated but Line 48 ensures there is at least one winner for
this guess. Finally, Line 49 guarantees that for this guess of added candidates and deleted
votes, the preferred candidate is a winner.

1 {ckeep(P,X) : X <= V C, keepMax(X)} 1← prefVC(P, V C). (50)

% Count the number of kept voters

ccountKeep(N)← N = #sum{X,P : ckeep(P,X)}. (51)

% Compute Condorcet winner (considering only kept votes)

cpreferCount(C1, C2, N)← candidate(C1), candidate(C2), C1! = C2,

N = #sum{X,P : ckeep(P,X), prefer(P,C1, C2)}. (52)

noCWinner(C)← cpreferCount(C, ,N), ccountKeep(X), N ∗ 2 < X. (53)

cwinner(C)← candidate(C), not noCWinner(C). (54)

% Keep answer-set only in case there is a Condorcet winner (with removing votes)

anyCWinner ← cwinner(). (55)

← not anyCWinner. (56)

% Ensure the preferred candidate is not a cwinner

← preferredCand(X), cwinner(X). (57)

% Ensure ckeep keeps strictly more than gkeep

← gcountKeep(Kg), ccountKeep(Kc), Kc <= Kg. (58)

The check program for Young-CCAC guesses a different deletion of votes for which the
(weak) Condorcet winners are calculated. In this program, the preferred candidate must not
be one of these winners, which is guaranteed by the constraint in Line 57. Line 58 ensures
the guess in the check program deletes strictly less votes than that of the guess program.
Two simple modifications can be made in order to adapt these programs to other Young

elections: for the single winner model, the constraint in Line 58 can be relaxed to require
the number of deleted votes in the check program to be less or equal to that of the guess
program; and to consider strong Condorcet winners the only change needed is to use “less
than or equal to” in the criteria at Lines 45 and 53, since this guarantees that candidates
will only be marked as winners if they actually beat every other candidate.

