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Abstract

We study ordinal approximation algorithms for maximum-weight bipartite match-
ings. Such algorithms only know the ordinal preferences of the agents/nodes in the
graph for their preferred matches, but must compete with fully omniscient algorithms
which know the true numerical edge weights (utilities). Ordinal approximation is all
about being able to produce good results with only limited information. Because of
this, one important question is how much better the algorithms can be as the amount
of information increases. To address this question for forming high-utility matchings
between agents in X' and ), we consider three ordinal information types: when we
know the preference order of only nodes in X for nodes in )/, when we know the
preferences of both A and Y, and when we know the total order of the edge weights
in the entire graph, although not the weights themselves. We also consider settings
where only the top preferences of the agents are known to us, instead of their full
preference orderings. We design new ordinal approximation algorithms for each of
these settings, and quantify how well such algorithms perform as the amount of
information given to them increases.

1 Introduction

Many important settings involve agents with preferences for different outcomes. Such set-
tings include, for example, social choice and matching problems. Although the quality of
an outcome to an agent may be measured by a numerical utility, it is often not possible to
obtain these exact utilities when forming a solution. This can occur because eliciting nu-
merical information from the agents may be too difficult, the agents may not want to reveal
this information, or even because the agents themselves do not know the exact numerical
values. On the other hand, eliciting ordinal information (i.e., the preference ordering of each
agent over the outcomes) is often much more reasonable. Because of this, there has been a
lot of recent work on ordinal approxzimation algorithms: these are algorithms which only use
ordinal preference information as their input, and yet return a solution provably close to
the optimum one (e.g., [3H5L9H12,/17]). In other words, these are algorithms which only use
limited ordinal information, and yet can compete in the quality of solution produced with
omniscient algorithms which know the true (possibly latent) numerical utility information.
oo

Ordinal approximation is all about being able to produce good results with only limited
information. Because of this, it is important to quantify how well algorithms can perform as
more information is given. If the quality of solutions returned by ordinal algorithms greatly
improves when they are provided more information, then it may be worthwhile to spend a
lot of resources in order to acquire such more detailed information. If, on the other hand,
the improvement is small, then such an acquisition of more detailed information would not
be worth it. Thus the main question we consider in this paper is: How does the quality of
ordinal algorithms improve as the amount of information provided increases?
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In this paper, we specifically consider this question in the context of computing a
maximum-utility matching in a metric space. Matching problems, in which agents have
preferences for which other agents they want to be matched with, are ubiquitous. The
maximum-weight metric matching problem specifically provides solutions to important ap-
plications, such as forming diverse teams and matching in friendship networks (see [4L[5] for
much more discussion of this). Formally, there exists a complete undirected bipartite graph
for two sets of agents X and Y of size N, with an edge weight w(x, y) representing how much
utility z € X and y € Y derive from their match; these edge weights satisfy the triangle
inequality. The algorithms we consider, however, do not have access to such numerical edge
weights: they are only given ordinal information about the agent preferences. The goal is to
form a perfect matching between X and ), in order to approximate the maximum weight
matching as much as possible using only the given ordinal information. We compare the
weight of the matching returned by our algorithms with the true maximum-weight perfect
matching in order to quantify the performance of our ordinal algorithms.

Types of Ordinal Information Ordinal approximation algorithms for maximum weight
matching have been considered before in [45], although only for complete graphs; algorithms
for bipartite graphs require somewhat different techniques. Our main contribution, however,
lies in considering many types of ordinal information, forming different algorithms for each,
and quantifying how much better types of ordinal information improve the quality of the
matching formed. Specifically, we consider the following types of ordinal information.

e The most restrictive model we consider is one-sided preferences. That is, only prefer-
ences for agents in X’ over agents in ) are given to our algorithm. These preferences
are assumed to be consistent with the (hidden) agent utilities, i.e., if « prefers y; to ya,
then it must be that w(x,y1) > w(x,y2). Such one-sided preferences may occur, for
example, when X represents people and ) represents houses. People have preferences
over different houses, but houses do not have preferences over people. These types of
preferences also apply to settings in which both sides have preferences, but we only
have access to the preferences of X, e.g., because the agents in )} are more secretive.

e The next level of ordinal information we consider is two-sided preferences, that is,
both preferences for agents in X over ) and agents in ) over X are given. This
setting could apply to the situation that two sets of people are collaborating, and
they have preferences over each other, or of a matching between job applicants and
possible employers. As we consider the model in a metric space, the distance (weight)
between two people could represent the diversity of their skills, and a person prefers
someone with most diverse skills from him/her in order to achieve the best results of
collaboration.

e The most informative model which we consider in this paper is that of total-order.
That is, the order of all the edges in the bipartite graph is given to us, instead of only
local preferences for each agent. In this model, global ordinal information is available,
compared to the preferences of each agent in the previous two models. Studying this
setting quantifies how much efficiency is lost due to the fact that we only know ordinal
information, as opposed to the fact that we only know local information given to us
by each agent.

Comparing the results for the above three information types allows us to answer questions
like: “Is it worth trying to obtain two-sided preference information or total order information
when only given one-sided preferences?” However, above we always assumed that for an
agent x, we are given their entire preferences for all the agents in ). Often, however, an
agent would not give their preference ordering for all the agents they could match with, and



instead would only give an ordered list of their top preferences. Because of this, in addition
to the three models described above, we also consider the case of partial ordinal preferences,
in which only the top « fraction of a preference list is given by each agent of X'. Thus for
« = 0 no information at all is given to us, and for o = 1 the full preference ordering of an
agent is given. Considering partial preferences tells us when, if there is a cost to buying
information, we might choose to buy only part of the ordinal preferences. We establish
tradeoffs between the percentage of available preferences and the possible approximation
ratio for all three models of information above, and thus quantify when a specific amount
of ordinal information is enough to form a high-quality matching.

Our Contributions We show that as we obtain more ordinal information about the agent
preferences, we are able to form better approximations to the maximum-utility matching,
even without knowing the true numerical edge weights. Our main results are shown in
Figure [I] and Table

a vs. approximation ratio for partial preferences
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Table 1: « vs. approximation ratio for partial information.

Using only one-sided preference information, with only the order of top aN preferences
given for agents in X, we are able to form a (3 — (2 — v/2)a)-approximation. We do this
by combining random serial dictatorship with purely random matchings. When a = 1, the
algorithm yields a (y/2 + 1)-approximation. This is the first non-trivial analysis for the
performance of RSD on maximum bipartite matching in a metric space, and this analysis
is one of our main contributions.

Given two-sided information, with the order of top N preferences for agents in both
X and Y, we can do significantly better. When o« > 1, adopting an existing framework

- 2 )
in 4], by mixing greedy and random algorithms, and adjusting it for bipartite graphs, we
get a %—approximation. When o < %, the framework would still work, but would

not produce a good approximation. We instead design a different algorithm to get better
results. Inspired by RSD, we take advantage of the information of preferences from both
sets of agents, adjust RSD to obtain “undominated” edges in each step, and finally combine
it with random matchings to get a (3 —«)-approximation. When o > %7 the algorithm yields



a 1.8-approximation.
For the total-ordering model, the order of top /N2 heaviest edges in the bipartite graph is

given. We use the framework in [4] again to obtain a ?:7\/7 v1:3—approximaution. Here we must

re-design the framework to deal with the cases that o < %N , which is not a straight-forward
adjustment. When o > %N the algorithm yields a %—approximation.
Finally, in Section [6] we analyze the case when edge weights cannot be too different: the

highest weight edge is at most § times the lowest weight edge in one-sided model. When

the edge weights have this relationship, we can extend our analysis to give a (/8 — % + %)-
approximation, even without assuming that edge weights form a metric.

Discussion and Related Work Previous work on forming good matchings can largely
be classified into the following classes. First, there is a large body of work assuming that
numerical weights or utilities don’t exist, only ordinal preferences. Such work studies many
possible objectives, such as forming stable matchings (see e.g., [15[16]), or maximizing
objectives determined only by the ordinal preferences (e.g., [2,|8]). Second, there is work
assuming that numerical utilities or weights exist, and are known to the matching designer.
Unlike the above two settings, we consider the case when numerical weights ezist, but are
latent or unknown, and yet the goal is to approximate the true social welfare, i.e., maximum
weight of a perfect matching. Note that although some previous work assumes that all
numerical utilities are known, they often still use algorithms which only require ordinal
information, and thus fit into our framework; we discuss some of these results below.

Similar to our one-sided model, house allocation [1] is a popular model of assigning n
agents to n items. [6] studied the ordinal welfare factor and the linear welfare factor of RSD
and other ordinal algorithms. [14] studied both maximum matching and maximum vertex
weight matching using an extended RSD algorithm. These either used objectives depending
only on ordinal preferences, such as the size of the matching formed, or used node weights
(as opposed to edge weights). |11] and [9] assumed the presence of numerical agent utilities
and studied the properties of RSD. Crucially, this work assumed normalized agent utilities,
such as unit-sum or unit-range. This allowed [9}[11] to prove approximation ratios of ©(y/n)
for RSD. Instead of assuming that agent utilities are normalized, we consider agents in
a metric space; this different correlation between agent utilities allows us to prove much
stronger results, including a constant approximation ratio for RSD. Kalyanasundaram et
al. studied serial dictatorship for maximum weight matching in a metric space |13], and
gave a 3-approximation for SD in this, while we are able to get a tighter bound of 2.41-
approximation using RSDB

Besides maximizing social welfare, minimizing the social cost of a matching is also pop-
ular. [7] studied the approximation ratio of RSD and augmentation of serial dictatorship
(SD) for minimum weight matching in a metric space. Their setting is very similar to ours,
except that we consider the maximization problem, which has different applications [4l5],
and allows for a much better approximation factor (constant instead of linear in n) using
different techniques.

Another area studying ordinal approximation algorithms is social choice, where the goal
is to decide a single winner in order to maximize the total social welfare. This is especially
related to our work when the hidden utilities of voters are in a metric space (see e.g.,
[3,10,/12,17)),

The work most related to ours is |[41/5]. As mentioned above, we use an existing frame-
work [4] for the two-sided and the total-order model. While the goal is the same: to
approximate the maximum weight matching using ordinal information, this paper is differ-

INote that many of the papers mentioned here specifically attempt to form truthful algorithms. While
RSD is certainly truthful, in this paper we attempt to quantify what can be done using ordinal information
in the presence of latent numerical utilities, and leave questions of truthfulness to future work.



ent from [4] in several aspects. [4] only considered approximating the true maximum weight
matching for non-bipartite complete graphs. We instead focus on bipartite graphs, and
especially on considering different levels of ordinal information by analyzing three models
with increasing amount of information, and also consider partial preferences. Although we
use similar techniques for parts of two-sided and total-order model analysis, they need sig-
nificant adjustments to deal with bipartite graphs and partial preferences; moreover, the
method used for analyzing the one-sided model is quite different from [4].

2 Model and Notation

For all the problems studied in this paper, we are given as input two sets of agents X
and Y with |X| = || = N. G = (X,),FE) is an undirected complete bipartite graph
with weights on the edges. We assume that the agent preferences are derived from a set
of underlying hidden edge weights w(x,y) € R>q for each edge (z,y), x € X,y € ).
w(x,y) represents the utility of the match between x and y, so if = prefers y; to ya, then it
must be that w(z,y1) > w(z,y2). w(G) of any bipartite graph G is the total edge weight
of the graph, and w(M) of any perfect matching M is the total weight of edges in the
matching. Let OPT(G) denote the complete bipartite matching that gives the maximum
total edge weights, i.e., OPT(G) = argmax,,;w(M). The approximation ratio of a perfect
matching M is the worst-case ratio between w(OPT) and w(M). If the matchings returned
by an approximation algorithm f for any instance of a setting have a approximation ratio
of at most w, we say f gives a w-approximation to this problem setting. The agents lie
in a metric space, by which we will only mean that, Vzi,zo € X,Vy1,y2 € Y, w(x1,y1) <
w(x1, y2)+w(zs, y1)+w(xe, y2). We assume this property in all sections except for Section@

For the setting of one-sided preferences, Vo € X', we are given a strict preference ordering
P, over the agents in ). When dealing with partial preferences, only top a/V agents in P,
are given to us in order. We assume aN is an integer, a € [0, 1]. Of course, when o = 0,
nothing can be done except to form a completely random matching. For two-sided partial
preferences, we are given both the top « fraction of preferences P, of agents x in X over those
in Y, and vice versa. For the total order setting, we are given the order of the highest-weight
aN? edges in the complete bipartite graph G = (X, ), E).

3 Omne-sided Ordinal Preferences

For one-sided preferences, our problem becomes essentially a house allocation problem to
maximize social welfare, see e.g., |9,/11}14]. Before we proceed, it is useful to establish a
baseline for what approximation factor is reasonable. Simply picking a matching uniformly
at random immediately results in a 3-approximation (see Theorem , and there are ex-
amples showing that this bound is tight. Other well-known algorithms, such as Top Trading
Cycle, also cannot produce better than a 3-approximation to the maximum weight matching
for our setting. Serial Dictatorship, which uses only one-sided ordinal information, is also
known to give a 3-approximation to the maximum weight matching for our problem [13].
Serial Dictatorship simply takes an arbitrary agent from z € X, assigns it x’s favorite un-
allocated agent from ), and repeats. Note that |13] used a greedy algorithm for the online
maximum weight matching problem, and the algorithm is actually SD because the arbitrary
arriving order in online problems describes how we pick agents in an arbitrary order. Unfor-
tunately, it is not difficult to show that this bound of 3 is tight. Our first major result in this
paper is to prove that Random Serial Dictatorship always gives a (/2 + 1)-approximation
in expectation, no matter what the true numerical weights are, thus giving a significant
improvement to all the algorithms mentioned above.



Algorithm 1: Random Serial Dictatorship for Perfect Matching of one-sided ordering.
Initialize M =0, G = (X, ), E) ;
while F # () do
Pick an agent z uniformly at random from X ;
Let y denote x’s most preferred agent in ) ;
Take e = (z,y) from E and add it to M ;
Remove z, y, and all edges containing = or y from the graph G ;

end
Final Output: Return M.

Theorem 3.1 Suppose G = (X,V, E) is a complete bipartite graph on the set of nodes
X, Y with i\,’| = |Y| = N. Then, the expected weight of the perfect matching M returned by

Algorithm |1| is E[w(M)]Z\/El_Hw(OPT(G)).

Proof Sketch. We give a proof sketch here; full proofs for all our results can be found in
the full version of this paper at http://www.cs.rpi.edu/~eanshel/. Let Min(G) denote a
minimum weight perfect matching on G, and RSD(G) denote the expected weight returned
by Algorithm [1}on graph G. For any x € X, we use A(z) to denote the edge between x and
its most preferred agent in ). Define R(z) as the remaining graph after removing x, z’s
most preferred agent, and all the edges containing x or z’s most preferred agent from G.
We now state the main technical lemma which allows us to prove the result. This lemma
gives a bound on the maximum weight matching in terms of the quantities defined above.

Lemma 3.2 For any given graph G = (X,V, E), one of the following two cases must be
true:

Case 1: w(OPT(G)) < ﬁ > wex WOPT(R(z))) + */lz‘?l Y ozex WA (T))

Case 2: w(OPT(Q)) < (V2 + Dw(Min(G))

We will prove this lemma below, but first we discuss how the rest of the proof proceeds.
When Case 1 above holds, we know that at any step of the algorithm, the change in the
weight of the optimum solution in the remaining graph is not that different from the weight
of the edge selected by our algorithm. This allows us to compare the weight of OPT with
the weight of the matching returned by our algorithm. In fact, this is the technique used
in a previous paper [5| to analyze RSD for complete graphs (i.e., non-bipartite graphs),
and show that RSD gives a 2-approximation for perfect matching on complete graphs. It is
important to note here that this does not work for bipartite graphs. In bipartite matching,
there are examples in which using only this method will not give an approximation ratio
better than 3. We get around this problem by adding Case 2 to our lemma, and then using
this to prove the theorem.

Proof Sketch of Lemma|3.4 For any fixed x € X', denote z’s most preferred agent in ) as y
(so AM(z) = (z,y)). In OPT(G), suppose x is matched to b € ), and y is matched to a € X.
In Min(G), suppose b is matched to m € X. Va € X, there exist y, a, b, m as described
above. Denote edge (z,y) by A(z), (z,b) by P(z), (a,y) by P(x), and (a,b) by D(z).
We'll prove Lemma by showing that if Case 2 is not true, then Case 1 must be
true. Suppose Case 2 is not true, i.e., w(OPT(G)) > (v/2 + 1)w(Min(G)). Suppose
that random serial dictatorship picks € X. Then OPT(R(x)) is at least as good as the
matching obtained by removing P(x) and P(z), and adding D(z) to OPT(G) (the rest stay

the same):

w(OPT(R(x))) = w(OPT(G)) — w(P(x)) — w(P(x)) + w(D())


http://www.cs.rpi.edu/~eanshel/

Summing this up over all nodes x, we obtain:

o7 2 w(OPT(R@) = (1= ) w(OPT(@) = g 3 (w(P(a) —w(D(E) (1)

reX’ TEX’

By the triangle mequahty, we know that w(a,y) < w(a,b) + w(m,b) + w(m,y) Because
A(m) is the edge to m’s most preferred agent, w(m,y) < w(A(m)), and thus w(P(z)) <
w(D(x)) + w(m, b) + w(A(m)).

Summing this up for all z € X, note that each z is matched to a unique b in OPT(G),
and each b is matched to a unique m in Min(G), so each agent in ) appears as b exactly
once and each agent in X' appears as m exactly once.

Y (w(P(2)) = w(D(x)) < w(Min(G)) + Y w (2)

rzeX reX

Combining Inequality [I] and Inequality

1 1
[ 2 WOPT(R@) = (1= ) w(OPT(G)) = 3 [w(Min(@) + 3 w(r@)] (3

reX zeX

w(P(z)) < w(A(z)) since A(z) is the most preferred edge of z, so it is obvious that
w(OPT(G)) < > cxw(Az)). Combining this with our assumption about Min(G), we
obtain the desired result. For detailed proof, see the full version.

Partial One-sided Ordinal Preferences

In this section, we consider the case when we are given even less information than in the
previous one, i.e., only partial preferences. We begin by establishing the following easy
result for the completely random algorithm.

Theorem 3.3 The uniformly random perfect matching is a 3-approximation to the
mazximum-weight matching.

Algorithm 2: Algorithm for Perfect Matching given partial one-sided ordering.

Run Algorithm [I} stop when |M| = aN, then form random matches until all agents
are matched. Return M.

Theorem 3.4 Suppose G = (X, ), E) is a complete bipartite graph on the set of nodes X,
with |X| = |Y| = N. There is a strict preference ordering P, over the agents in Y for each
agent x € X. We are only given top alN agents in P, in order. Then, the expected weight
of the perfect matching M returned by Algorithml% is Elw(M)] > mw(OPT(G)),
as shown in Figure[]]

Proof Sketch. We establish a linear tradeoff as « increases. Note that this would not work
for combining any two arbitrary algorithms. The key insight which makes this proof work
is that, at every step, the expected weight of RSD is higher than in the following step, and
that RSD always produces an edge weight which is better than random in expectation.



4 Two-sided Ordinal Preferences

For two-sided preferences, we give separate algorithms for the cases when a > % and when
a< %, as these require somewhat different techniques.

a > % While for the case when a < % new techniques are necessary to obtain a good
approximation, the approach for the case when a > % is essentially the same as the one
used in [4]. We adopt this approach to deal with bipartite graphs and with partial pref-
erences, giving us a 1.8-approximation for « = 1. To do this, we re-state the definition of
Undominated Edges from [4], and a standard greedy algorithm for forming a matching of

size k.

Definition 4.1 (Undominated Edges) Given a set E of edges, (x,y) € E is said to be an
undominated edge if for all (z,a) and (y,b) in E, w(z,y) > w(z,a) and w(z,y) > w(y,b).

Note that an undominated edge must always exist: either there are two nodes x and y
such that they are each other’s top preferences (and so (z,y) is undominated), or there is a
cycle 1, o, ... in which z;11 is the top preference of z;, in which case all edges in the cycle
must be the same weight, and thus all edges in the cycle are undominated. This also gives
us an algorithm for determining if an edge (x, y) is undominated: either z and y prefer each
other over all other agents, or it is part of such a cycle of top preferences.

Algorithm 3: Greedy Algorithm for Max k-Matching of two-sided ordering.
Given bipartite graph G = (X, ), E), and k, initialize a matching M = ). Pick an
arbitrary undominated edge e = (x,y) from E and add it to M. Remove z, y, and all
edges containing x or y from E. Repeat until |M| = k. Return M.

<

Algorithm 4: Algorithm for two-sided matching with partial ordinal information (%

a< %)
Input : X,), top aN of P(X), top aN of P())
Output: Perfect Bipartite Matching M
Initialize E to be complete bipartite graph on X,), and M; = My =0 ;
Let My be the output returned by Algorithm [3|for E, k = aN ;
Let Xt be the set of nodes in X matched in My, V7 be the set of nodes in )) matched
in My, and T be the complete bipartite graph on X7, Vr ;
Let X = X\Xr, Y5 = Y\Vr, and B be the complete bipartite graph on Xg, Vp;
First Algorithm;
My = MyU (Uniformly random perfect matching on B);
Second Algorithm;
Choose (2a — 1)N edges from My uniformly at random and add them to My ;
Let X 4 be the set of nodes in X1 and not in Ms, Y4 be the set of nodes in Yy and
not in Ms;
Let Eap be the edges of the complete bipartite graph (X4, Yp) and E’, 5 be the
edges of the complete bipartite graph (X5, Y4) ;
Run random bipartite matching on the set of edges in E4p and E, 5 separately to
obtain perfect bipartite matchings and add the edges returned by the algorithm to
Mo;
Final Output: Return M; with probability 337_25 and Mz with probability 2.

Note that for o > % this algorithm does not seem to provide better guarantees than for

o= %. Because of this, for a > %, we simply run the same algorithm for a = %.



Theorem 4.1 Algom'thm returns a %

perfect matching given two-sided ordering when % <a< %

-approxzimation to the maximum-weight

a< % Unlike the case for o > %, this case requires different techniques than in [4]. While
the techniques above would still work, they will not give us a bound as good as the one we
form below. The idea in this section is to do something similar to our one-sided algorithm
for partial preferences: run the greedy algorithm for a while, and then switch to random.
Unfortunately, if we simply run the greedy Algorithm [3]without any changes and then switch
to random, this will not form a good approximation. The reason why this is true is that
an undominated edge which is picked by the greedy algorithm may be much worse than
the average weight of an edge, and so the approximation factor of the random algorithm
will dominate, giving only a 3-approximation. Even taking an undominated edge uniformly
at random has this problem. We can fix this, however, by picking each undominated edge
with an appropriate probability, as described below. Such an algorithm results in matchings
which are guaranteed to be better than either RSD or Random, thus allowing us to prove
the result.

Algorithm 5: Algorithm for two-sided matching with partial ordinal information (0 <
a< %)
Input : X,), top aN of P(X) and P())
Initialize M =0, G = (X, ), E) ;
while F # () do
Pick an agent z uniformly at random from X ;
Let y denote z’s most preferred agent in Y ;
T1 4T, Y1 Y, C< Yn;
while (z1,y1) is not an undominated edge do
if ¢ = y; then
r1 < y1’s most preferred agent in X ;
C < 21,
else
y1 < x1’s most preferred agent in ) ;
C< Y1
end

end
Take (z1,y1) from E and add it to M ;
Remove x1, y1, and all edges containing x; or y; from the graph G ;
if [IM| = aN then
‘ break;
end
end
Run the uniform random matching algorithm for the remaining graph G, add the
edges returned by the algorithm to M. Final Output: Return M.

This algorithm guarantees that an undominated edge is chosen for any z in any bi-
partite graph G. Now, before we reach an undominated edge, the weights of edges are
non-decreasing in the order they are checked. Thus whenever a node z is picked, the al-
gorithm adds an undominated edge (z1,y1) to the matching which is guaranteed to have
higher weight than all edges leaving z.

Theorem 4.2 Algorithm@ returns a (3 — a)-approximation to the mazimum-weight perfect
matching given two-sided ordering when 0 < a < %



Proof Sketch. We use a similar method and the same notation as in Section [3| to prove
this theorem. Essentially, because we are always picking undominated edges, we can form
a linear interpolation between a factor of 2 and a factor of 3 for random matching, instead
of between factors v/2 + 1 and 3 as for one-sided preferences. The reason why we are
able to form such an interpolation is entirely because of the probabilities with which we
choose the undominated edges; if we simply chose arbitrary undominated edges or choose
them uniformly at random, then there are examples where the random edge weights will
dominate and result in a poor approximation, since undominated edges are only guaranteed
to be within a factor of 3 of the average edge weight.

5 Total Ordering of Edge Weights

For the setting in which we are given the top aN? edges of G, we prove that for o = %,

can obtain an approximation of % in expectation. For larger «, however, more information
does not seem to help, and so we simply use the algorithm for o = % for any o > %.

we

Algorithm 6: Algorithm for Max k-Matching with total ordering of edge weights.
Given bipartite graph G = (X, Y, E), and k, initialize a matching M = . Pick the
heaviest edge e = (z,y) from F and add it to M. Remove z, y, and all edges
containing z or y from E. Repeat until |M| = k. Return M.

The algorithm for bipartite matching with partial ordinal information is similar to that
with partial two-sided ordinal information, except that we only need to consider the case
that k£ < %N, a< %.

Algorithm 7: Algorithm for matching given partial total ordering.

Input : X,), order of the top aN? edges in the graph.

Output: Perfect Bipartite Matching M

Initialize E to be complete bipartite graph on X,Y, and M; = My = ;

Let My be the output returned by Algorithm @ for B, k=(1—-+1—a)N. Let

a1 =1—+/1—qa, then k =a1 N ;

Let Xt be the set of nodes in X matched in My, Yr be the set of nodes in )) matched
in My, and T be the complete bipartite graph on X7, Vr ;

Let Xp be the set of nodes in X not matched in My, Vg be the set of nodes in Y not
matched in My, and B is the complete bipartite graph on X'z, Vp;

First Algorithm;

M; = MpU (Uniformly random perfect matching on B);

Second Algorithm:;

Choose (1 — 2a1)N nodes both from X'p and Vg uniformly at random, get the
perfect matching output by the uniform random algorithm on these nodes and add
the results to My ;

Let X 4 be the set of nodes in X and not in Ms, Y4 be the set of nodes in Vg and
not in Mo;

Let Ear be the edges of the complete bipartite graph (X4, Yr) and E’;1 be the
edges of the complete bipartite graph (X7,Y4) ;

Run random bipartite matching on the set of edges in Ear and E’;, separately to
obtain perfect bipartite matchings and add the edges returned by the algorithm to
Ms;

Final Output: Return M; with probability ﬁ and M> with probability

Vi«
24++/1—a "




2+/1—

o 1_2 -approximation to the mazimum-weight
as shown in Figure .

Theorem 5.1 Algorithm Ij returns a

3
47

i

matching in expectation for a <

6 One-sided Preferences with Restricted Edge Weights

In previous sections, we made the assumption that the agents lie in a metric space, and
thus the edge weights, although unknown to us, must follow the triangle inequality. In
this section we once again consider the most restrictive type of agent preferences — that
of one-sided preferences — but now instead of assuming that agents lie in a metric space,
we instead consider settings where edges weights cannot be infinitely different from each
other. This applies to settings where the agents are at least somewhat indifferent and the
items are somewhat similar; the least-preferred agent and the most-preferred items differ
only by a constant factor to any agent. Indeed, when for example purchasing a house in a
reasonable market (i.e., once houses that almost no one would buy have been removed from
consideration), it is unlikely that any agent would like house x so much more than house y
that they would be willing to pay hundreds of times more for x than for y.

More formally, for each agent ¢ € X', we are given a strict preference ordering P; over
the agents in ). In this section we assume that the highest weight edge €,,4, is at most
5 times of the lowest weight edge €,,;,. We normalize the lowest weight edge e, in the
graph to w(emin) = 1; then for any edge e € E, w(e) < . We use similar analysis as
in Section [3| except that instead of getting bounds by using the triangle inequality, the
relationships among edge weights are bounded by our assumption of the highest and lowest
weight edge ratio. As stated above, we no longer assume the agents lie in a metric space in
this section.

Theorem 6.1 Suppose G = (X, ), E) is a complete bipartite graph on the set of nodes X,
with |[X| = Y| = N. w(emin) =1, Ve € E, w(e) < B. The expected weight of the perfect

matching returned by Algom'thm is w(M) > ﬁw(OPT) (see plot and proof in the
—it3

full version,).
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