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Abstract

In fair division problems with indivisible goods it is well known that one cannot have
any guarantees for the classic fairness notions of envy-freeness and proportionality.
As a result, several relaxations have been introduced, most of which in quite recent
works. We focus on four such notions, namely envy-freeness up to one good (ef),
envy-freeness up to any good (efx), maximin share fairness (mms), and pairwise
maximin share fairness (pmms). Since obtaining these relaxations also turns out to
be problematic in several scenarios, approximate versions of them have been consid-
ered. In this work, we investigate further the connections between the four notions
mentioned above and their approximate versions. We establish several tight, or al-
most tight, results concerning the approximation quality that any of these notions
guarantees for the others, providing an almost complete picture of this landscape.
Some of our findings reveal interesting and surprising consequences regarding the
power of these notions, e.g., pmms and efx provide the same worst-case guarantee
for mms, despite pmms being a strictly stronger notion than efx. We believe such
implications provide further insight on the quality of approximately fair solutions.

1 Introduction

In this work, we revisit fairness notions for allocating indivisible goods. The objective in
fair division is to allocate a set of resources to a set of agents in a way that leaves everyone
satisfied, according to their own preferences. Over the years, the field has grown along
various directions, with a substantial literature by now and with several applications. We
refer the reader to the surveys [6, 17, 21] for more recent results, and to the classic textbooks
[8, 19, 22] for an overview of the area.

To model such allocation problems, one needs to specify the preferences of the agents,
and the fairness criterion under consideration. For the preferences, we stick to the usual
assumption in the literature, of associating each agent with an additive valuation function
on the set of resources. As for fairness criteria, one of the classic desirable notions that have
been proposed is envy-freeness, meaning that no agent has a higher value for the bundle
of another agent than for her own [11, 24]. Unfortunately, for problems with indivisible
goods, this turns out to be a very strong requirement. Existence of envy-free allocations
cannot be guaranteed, and the relevant algorithmic and approximability questions are also
computationally hard [16].

Given these concerns, recent works have considered relaxations of envy-freeness that seem
more appropriate for settings with indivisible items, see, e.g., [9, 10]. Our work focuses on
four such notions, namely envy-freeness up to one good (ef), envy-freeness up to any good
(efx), maximin share fairness (mms), and pairwise maximin share fairness (pmms). All
these capture different ways of allowing envy in an allocation, albeit in a restricted way. For
instance, ef requires that no agent envies another agent’s bundle after removing from it
her most valued item.



These relaxations are still no panacea, especially since existence results have either been
elusive or simply negative. So far, we only know that ef allocations always exist, whereas
this is not true for mms allocations. As a result, this has naturally led to approximate ver-
sions of these notions, accompanied by some positive algorithmic results (see related work).
What has not been well charted yet, however, is the relation between these four notions and
their approximate counterparts, especially concerning the approximation quality that any of
these notions guarantees for the others. For example, does an mms or an approximate mms
allocation (for which we do know efficient algorithms) provide an approximation guarantee
in terms of the efx or the pmms criteria? As it turns out (Prop. 4.5, Cor. 4.9), it does not.
As another example, while we know that pmms implies efx, it is not clear if an approximate
pmms allocation is also approximately efx. In fact (Prop. 3.7 and 4.8), it is the other way
around! Such results can be conceptually helpful, as they deepen our understanding of the
similarities and differences between fairness criteria. Furthermore, this insight allows us to
either translate an approximation algorithm for one notion into an approximation algorithm
for another, or to establish that such an approach cannot yield approximability or existen-
tial results. Given the growing interest in these relaxations, we find it important to further
explore these interconnections.

Contribution. We investigate how the four notions mentioned above and their approximate
versions are related. For each one of them, we examine the approximation guarantee that
it provides in terms of the other three notions. Our results provide an almost complete
mapping of the landscape, and in most cases our approximation guarantees are tight. Some
of our results provide interesting and surprising consequences. Indicatively, some highlights
of our results include:

– pmms and efx allocations both provide the same constant approximation with respect
to the mms criterion.

– Although pmms implies efx, an approximate pmms allocation may be arbitrarily bad
in terms of approximate efx. On the contrary, an approximate efx allocation does
provide some guarantee with respect to pmms.

– While efx is a much stronger concept than ef, they both provide comparable con-
stant approximations for the pmms criterion and this degrades smoothly for approxi-
mate efx and ef allocations.

– Although exact pmms and mms are defined in a similar manner, the former implies
efx, ef, and a 4/7-approximation in terms of mms, while the latter provides no
guarantee with respect to the other notions.

– Our results also suggest a simple efficient algorithm for computing a 1/2-approximate
pmms allocation (the current best to our knowledge),1 and improvements in certain
special cases.

Some of the implications between the different notions are depicted in Figure 1.

Related Work. Regarding the several relaxations of envy-freeness, the notion of ef
originates in the work of Lipton et al. [16], where both existence and algorithmic results
are provided. The concept of mms was introduced by Budish [9], building on concepts of
Moulin [18], and later defined as considered here by Bouveret and Lemâıtre [7], who studied
a hierarchy of exact fairness concepts. Kurokawa, Procaccia and Wang [15, 14] showed that
mms allocations do not always exist even for three agents. From the computational point of
view, 2/3-approximation algorithms for mms allocations are known [15, 2, 4] and recently

1Independently, the recent work of Barman et al. [3], which concerns a stronger concept, also implies an
efficient algorithm for computing 1/2-pmms allocations.



this approximation factor has been improved to 3/4 by Ghodsi et al. [13] who also study
non-additive valuation functions. Some variants of the maximin share criterion have also
been considered for groups of agents [23]. The work of Caragiannis et al. [10] introduced the
notions of efx and pmms, and provided some initial results on how these are related to each
other as well as to mms and to ef. In particular, they established that a pmms allocation
is also an efx, ef and 1

2 -mms allocation. Barman and Krishnamurty [4] showed that when
the agents agree on the ordering of the items according to their value, then efx allocations
do exist and a specific efx allocation can be produced that is also a 2

3 -mms allocation. The
existence and computation of exact and approximate efx allocations under additive and
general valuations was studied by Plaut and Roughgarden [20], establishing the currently
best 1/2-approximation. Finally, in a recent work, Barman et al. [3] introduce two new
fairness notions that are strongly related to the notions studied here. In particular, they
introduce groupwise maximin share fairness (gmms), which is a strengthening of pmms, and
envy-freeness up to one less-preferred good (efl), which is stronger than ef but weaker
than efx. They show that efl allocations and 1

2 -gmms allocations always exist and can
be found in polynomial time. Studying how the approximate versions of gmms and efl fit
into the landscape explored here is an interesting direction for future work.

2
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2 -ef 1
2n−1 -mms

ef pmms efx 4
7 -mms 1

n -mms 1
3 -ef

ef 1
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Figure 1: An indicative chart of implications with envy-freeness as a starting point. All implications
shown are tight or almost tight.

2 Preliminaries

We assume we have a set of n agents, N = {1, 2, . . . , n} and a set M of m indivisible
goods. Following the usual assumptions in the majority of the fair division literature, each
agent is associated with a monotone, additive valuation function. Hence, for every S ⊆M ,
vi(S) =

∑
g∈S vi({g}). For simplicity, we will use vi(g) instead of vi({g}) for g ∈ M .

Monotonicity here implies that vi(g) ≥ 0 for every i ∈ N, g ∈M .
We are interested in solutions that allocate the whole set of goods M to the agents. An

allocation of M to the n agents is therefore a partition, A = (A1, . . . , An), where Ai∩Aj = ∅
and

⋃
iAi = M . By Πn(M) we denote the set of all partitions of a set M into n bundles.

2.1 Fairness Concepts

The classic by now notion of envy-freeness was initially suggested by Gamow and Stern [12],
and more formally by Foley [11] and Varian [24].

Definition 2.1. An allocation A = (A1, . . . , An) is envy-free (ef), if for every i, j ∈ N ,
vi(Ai) ≥ vi(Aj).

2The implications of Caragiannis et al. [10] apply only to the exact versions of the corresponding notions.



It is well known that envy-freeness is a very strict requirement in the presence of indi-
visible goods; e.g., consider any instance where all agents have large value for one specific
good and negligible value for everything else. This fact gives rise to considering relaxations
of envy-freeness, with the hope of obtaining more positive results.

We begin with two such relaxations, and their approximate versions, where an agent
may envy some other agent, but only by an amount dependent on the value of a single item
in the other agent’s bundle. Formally:

Definition 2.2. Let α ∈ [0, 1]. An allocation A = (A1, . . . , An) is an

– α-ef (α-envy-free up to one good) allocation, if for every pair of agents i, j ∈ N , with
Aj 6= ∅, there exists an item g ∈ Aj, such that vi(Ai) ≥ α · vi(Aj \ {g}).

– α-efx (α-envy-free up to any good) allocation, if vi(Ai) ≥ α · vi(Aj \ {g}) holds for
every pair i, j ∈ N , with Aj 6= ∅, and for every g ∈ Aj with vi(g) > 0.3

Note that for α = 1 in the above definitions, we obtain precisely the notions of envy-
freeness up to one good (ef) [9] and envy-freeness up to any good (efx) [10]. The difference
between these two notions is simply the quantifier regarding the item that eliminates envy
when removed from an agent’s bundle. Clearly, ef implies efx, which in turn implies ef.

We now move on to a different notion, also proposed by Budish [9]. Motivated by the
question of what we can guarantee in the worst case to the agents, the rationale is to think
of a generalization of the well-known cut-and-choose protocol to multiple agents: Suppose
that agent i is asked to partition the goods into n bundles and then the rest of the agents
choose a bundle before i. In the worst case, agent i will be left with her least valuable
bundle. Hence, a risk-averse agent would choose a partition that maximizes the minimum
value of a bundle in the partition. This gives rise to the following definition.

Definition 2.3. Given n agents, and a subset S ⊆ M of items, the n-maximin share of
agent i with respect to S is:

µi(n, S) = max
A∈Πn(S)

min
Aj∈A

vi(Aj) .

From the definition, it directly follows that n · µi(n, S) ≤ vi(S). When S = M , this
quantity is called the maximin share of agent i. We say that T ∈ Πn(M) is an n-maximin
share defining partition for agent i, if minTj∈T vi(Tj) = µi(n,M). When it is clear from
context what n and M are, we will simply write µi instead of µi(n,M). The solution
concept we are interested in, asks for a partition that gives each agent her (approximate)
maximin share.

Definition 2.4. Let α ∈ [0, 1]. An allocation A = (A1, . . . , An) is called an α-mms (α-
maximin share) allocation if vi(Ai) ≥ α · µi , for every i ∈ N .

The last notion we define is related but not directly comparable to mms. The idea is
that instead of imagining an agent i partitioning the items into n bundles, we think of
i as partitioning the combined bundle of herself and another agent into two bundles and
receiving the one she values less.

Definition 2.5. Let α ∈ [0, 1]. An allocation A = (A1, . . . , An) is called an α-pmms (α-
pairwise maximin share) allocation if for every pair of agents i, j ∈ N ,

vi(Ai) ≥ α · max
(B1,B2)

min{vi(B1), vi(B2)} ,

where (B1, B2) ∈ Π2(Ai ∪Aj).
3The requirement that vi(g) > 0 in the definition of α-efx has been dropped by Plaut and Roughgarden

[20] but several of their results hold under the assumption of all values being strictly positive.



In Definitions 2.4 and 2.5, when α = 1, we refer to the corresponding allocations as mms
and pmms allocations respectively. It has been already observed that the notion of pmms is
stronger than efx [10].

Example 1. To illustrate the relevant definitions, let us consider an instance with 3 agents
and 5 items:

a b c d e

Agent 1 3 1 1 1 4
Agent 2 4 3 3 1 4
Agent 3 3 2 1 3 4

If M = {a, b, c, d, e} is the set of items, one can see that µ1(3,M) = 3, µ2(3,M) = 4,
µ3(3,M) = 4. For example, looking at agent 1, there exists a partition so that the worst
bundle is worth a value of 3, and there is no partition where the worst bundle is better.
Similarly, agent 2 can produce a partition where the worst bundle has a value of 4 for her,
and there is no other partition that can guarantee a better worst-case value.

Let us examine the allocation A = ({e}, {b, c}, {a, d}). Clearly, this is an ef allocation,
and hence it is also an efx, ef, mms, and pmms allocation. Consider now the allocation
B = ({a}, {b, e}, {c, d}). This is no longer ef and it is also neither efx nor pmms. However,
it is an ef as well as an mms allocation. Clearly, each agent i receives a value of at least
µi(3,M). To see why it is ef, note that agents 1 and 3 envy agent 2 but removing item e
from the bundle of agent 2 eliminates the envy from either agent. We can also see that B
is a 3

4 -efx allocation. To verify this, we can look at agent 1, and compare the value of her
bundle to the bundle of agent 2 when we remove either item b or e. Finally, it is not hard
to check that B is also a 3

4 -pmms allocation.

3 EFX and EF1 Allocations

We begin our exposition with the more direct relaxations of envy-freeness, ef and efx.
Within this section, we always start with either an α-ef or α-efx allocation, for some
α ∈ (0, 1], and explore the implications and fairness guarantees that can be derived. We
also pay particular attention to the case of exact efx or ef allocations, i.e., for α = 1. Due
to lack of space, several of our proofs, are deferred to the appendix.

We already know that efx is stronger than ef. Our first warm-up proposition states
that this also holds in an approximation preserving sense. We complement this by the fact
that ef allocations cannot provide any approximation to efx.

Proposition 3.1. For n ≥ 2, any α-efx allocation is also an α-ef allocation for any
α ∈ (0, 1]. On the other hand, an ef allocation is not necessarily an α-efx allocation for
any α ∈ (0, 1].

Proof. Start with an α-efx allocation A = (A1, . . . , An). This means that for any i, j ∈ N
we have that vi(Ai) ≥ α · vj(Aj g), where g ∈ arg minh∈Aj ,vi(h)>0 vi(h). However this also
means that for any i, j ∈ N , there exists some g ∈ Aj , such that vi(Ai) ≥ α · vj(Aj g).
Thus A is also an α-ef allocation.

Now regarding the second part of the statement, consider the following simple example:
Suppose that we have 2 agents and 3 items, g1, g2, g3. The agents have identical values over
the items, specifically vi(g1) = V, vi(g2) = 1 and vi(g3) = α, for i ∈ {1, 2}, α ∈ (0, 1] and
V � 1. We now consider the allocation A = ({g1, g2}, {g3}). It is easy to see that this is
an α-ef allocation but also an 1

V -efx allocation, and 1
V can be made arbitrarily small.

By adding any number of dummy agents and an equal number of dummy items, so that



g1, g2, g3 have no value for the dummy agents and the jth dummy item has nonzero value
only for the jth dummy agent, this instance can be easily generalized to any number of
agents.

Notice that an equivalent way of stating the ef 6⇒ α-efx part of Proposition 3.1 would
be: an α-ef allocation is not necessarily a β-efx allocation for any α, β ∈ (0, 1].

Before proving guarantees in terms of mms and pmms, we state a useful technical lemma
which generalizes both (the k = 1 case of) Lemma 1 of Bouveret and Lemâıtre [7] and
Lemma 3.4 of Amanatidis et al. [2]. In its simplest form, the lemma states that removing
any item, together with any agent, does not decrease the maximin share of the remaining
agents. In general, it allows to remove appropriately chosen subsets of items, while reducing
the number of agents by 1, so that the maximin share of a specific agent does not decrease.

Lemma 3.2. Suppose T ∈ Πn(M) is an n-maximin share defining partition for agent i,
i.e., minTj∈T vi(Tj) = µi(n,M). Then, for any set of goods S, such that there exists some
j with S ⊆ Tj, it holds that

µi(n− 1,M S) ≥ µi(n,M) .

In particular, for any item g, µi(n− 1,M {g}) ≥ µi(n,M).

Next we study efx allocations in terms of the mms guarantees they can provide, starting
with the case of a small number of agents.

Proposition 3.3. For n ∈ {2, 3}, an efx allocation is also a 2
3 -mms allocation. Moreover,

this guarantee is tight.

Proof. We prove the statement for n = 2. The proof for the case of three agents is slightly
more complex but of similar flavor.

Suppose that we have an efx allocation A = (A1, A2). We show that for agent 1 we have
v1(A1) ≥ 2

3µ1(2,M). The case of agent 2 is symmetric. Since items of no value for agent
1 are completely irrelevant for her view of both efx and mms allocations, we can assume
without loss of generality, that v1(g) > 0 for all g ∈M .

In the sequel, we write µ1 instead of µ1(n,M). If A2 = ∅, then clearly v1(A1) = v1(M) ≥
µ1, so we may assume |A2| ≥ 1. If |A2| = {g}, then v1(A1) = v1(M {g}) = µ1(1,M {g}) ≥
µ1(2,M) = µ1, where the inequality follows from Lemma 3.2. The remaining case is when
|A2| ≥ 2. Suppose, towards a contradiction, that v1(A1) < 2

3µ1. Since A is an efx
allocation, we have that

v1(A2) ≤ v1(A1) + v1(g) , (1)

where g ∈ arg minh∈A2
v1(h). Since A2 contains at least two items, we have

v1(g) ≤ 1

2
v1(A2) . (2)

Combining (1) and (2) we get v1(g) ≤ v1(A1). Again by (1), this implies that v1(A2) < 4
3µ1.

But then, v1(M) = v1(A1) + v1(A2) < 6
3µ1 = 2µ1, a contradiction, since by definition, we

know that vi(M) ≥ n · µi for every i ∈ N .
Regarding tightness, consider the following simple example. Suppose that we have 2

agents and 4 items, a, b, c, d. The agents have identical values over the items, specifically
vi(a) = vi(b) = 2 and vi(c) = vi(d) = 1, for i ∈ {1, 2}. We now look at the allocation
A = ({a, b}, {c, d}). It is easy to see that µ1 = µ2 = 3 and that A an efx allocation.
However v2({c, d}) = 2 = 2

3µ2. By adding an arbitrary number of copies of agent 2 and
an equal number of items of value 3, this instance can be generalized to any number of
agents.



Beyond three agents, the picture gets somewhat more complicated. The next result is
one of the main highlights of our work. When moving from the case of n ≤ 3, to a higher
number of agents, the approximation guarantee achieved, in terms of mms, degrades from
2/3 to a quantity between 4/7 = 0.5714 and 0.5914. Surprisingly, the same happens to the
mms guarantee of a pmms allocation, as we show in the next section.

It is interesting to note that recently Barman and Krishnamurty [4] obtained a simple
2/3-approximation algorithm for mms by showing that when agents agree on the ordering of
the values of the items, then there exists a particular efx allocation that is also a 2/3-mms
allocation. As indicated by the proof of the following proposition, this is not true for all
efx allocations, even when the agents are identical.

Proposition 3.4. For n ≥ 4, any efx allocation is also a 4
7 -mms allocation. On the other

hand, an efx allocation is not necessarily an α-mms allocation for α > 8
13 and, as n grows

large, for α > 0.5914.

Proof. Let A = (A1, . . . , An) be an efx allocation. Suppose, towards a contradiction, that
A is not a 4

7 -mms allocation, i.e., there exists some j so that vj(Aj) <
4
7µj(n,M). Without

loss of generality, we assume that agent 1 is such an agent, and write µ1 instead of µ1(n,M).
Note that we may remove any agent, other than agent 1, that receives exactly one good,
and still end up with an efx allocation that is not a 4

7 -mms allocation. Indeed, if |Ai| = 1
for some i > 1, then (A1, . . . , Ai−1, Ai+1, . . . , An) is an efx allocation of M Ai to N {i}
and, by Lemma 3.2, µ1(n − 1,M Ai) ≥ µ1(n,M). Thus, v1(A1) < 4

7µ1(n − 1,M Ai).
Therefore, again without loss of generality, we may assume that |Ai| > 1 for all i > 1 in the
initial allocation A.

Given A, we say that a bundle Aj is bad if j > 1, |Aj | = 2, and ming∈Aj v1(g) > 1
2v1(A1).

An item is bad if it belongs to a bad bundle, while a bundle is good if it is not bad. Let B
be the set of all bad items.

It is not hard to show that if Ai is good, then v1(A1) ≥ 2
3v1(Ai). When i = 1 this is

straightforward; otherwise we consider two cases. First assume that |Ai| = 2. Then, by
definition, we have ming∈Ai

v1(g) ≤ 1
2v1(A1) and, since A is efx, we have maxg∈Ai

v1(g) ≤
v1(A1). Thus, v1(Ai) ≤ 3

2v1(A1). Next, assume that |Ai| ≥ 3. Then, ming∈Ai v1(g) ≤
1
3v1(Ai) and, since A is efx, we have v1(Ai) − ming∈Ai v1(g) ≤ v1(A1). Thus, we get
v1(A1) ≥ v1(Ai)− 1

3v1(Ai) = 2
3v1(Ai).

Now we are going to show that v1(A1) ≥ 4
7µ1(n′,M ′) for a reduced instance that we

get by possibly removing some of the items of B, i.e., bad items. We do so in a way that
ensures that µ1(n′,M ′) ≥ µ1, thus contradicting the choices of A and A1. We consider an
n-maximin share defining partition T for agent 1, i.e., minTi∈T v1(Ti) = µ1. If there is a
bundle of T containing two items of B, g1, g2, then we remove those two items and reduce
the number of agents by one. By Lemma 3.2, we have that µ1(n − 1,M {g1, g2}) ≥ µ1.
We repeat as many times as necessary to get a reduced instance with n′ ≤ n agents and a
set of items M ′ ⊆M for which there is an n′-maximin share defining partition T ′ for agent
1, such that no bundle contains more than 1 item of B. By repeatedly using Lemma 3.2,
we have µ1(n′,M ′) ≥ µ1.

Let x be the number of items of B in the reduced instance (recall that these items are
defined w.r.t. A, hence they belong to a bundle of size 2 in A and have value at least 1

2v1(A1)
for agent 1). Clearly, x cannot be greater than n′, or some bundle of T ′ would contain at
least 2 bad items. Further, if |B| = y, i.e., the number of bad items in the original instance,
then we know that the number of good bundles in A was n − y

2 , and that the number of

agents was reduced y−x
2 times, i.e., n′ = n − y−x

2 . Hence, we may express the number of
good bundles in the original instance in terms of n′ and x only, as n′ − x

2 .
Recall that µ1 ≤ µ1(n′,M ′) and, by the definition of maximin share, µ1(n′,M ′) ≤



1
n′ v1(M ′). Thus

µ1 ≤
1

n′
v1(M ′) . (3)

In order to upper bound v1(M ′), notice that M ′ contains all the items of all the good
bundles of A plus x bad items. As discussed above, the value (with respect to agent 1) of
each good bundle is upper bounded by 3

2v1(A1). On the other hand, A being efx implies
that maxg∈Ai

v1(g) ≤ v1(A1) for any bad bundle Ai. That is, any bad item’s value is upper
bounded by v1(A1). So, we have

v1(M ′) ≤ x · v1(A1) +
(
n′ − x

2
− 1
) 3

2
v1(A1) + v1(A1)

=

(
3n′

2
+
x

4
− 1

2

)
v1(A1)

≤
(

3n′

2
+
n′

4
− 1

2

)
v1(A1)

=
7n′ − 2

4
v1(A1) . (4)

We combine (3) and (4) to get v1(A1) ≥ 4n′

7n′−2µ1 ≥ 4
7µ1, which contradicts the choices

of A and A1.
This establishes the positive part of the theorem. To see that efx does not imply

anything stronger than 8
13 -mms, notice that for n′ = n = 4 the above analysis can be

tight. On one hand, 4n′

7n′−2 = 8
13 in this case, while on the other hand the following instance

indicates that this is the best one can guarantee for 4 agents. Suppose that we have 12
items with the following values for agent 1:

v1(gi) =

 1/8 1 ≤ i ≤ 4
1/2 5 ≤ i ≤ 8
1 9 ≤ i ≤ 12

It is not hard to see that µ1 = 1 + 1
2 + 1

8 = 13
8 in this instance. Now consider the allocation

A = ({g1, . . . , g5}, {g6, g7, g8}, {g9, g10}, {g11, g12}). Assuming that agents 2, 3 and 4 are
identical to agent 1, it is not hard to check that this is an efx allocation. Yet, v1(A1) =
1 = 8

13µ1. By adding an arbitrary number of copies of agent 4 and her bundle, this instance
can be generalized to any number of agents.

The stronger bound for α as n grows large follows by Propositions 4.1 and 4.3.

By following a similar analysis as in the proof of Proposition 3.3, it can be shown that
for any number of agents α-efx implies at least α

2 -mms. The actual guarantee, moreover,
cannot be much better than this.

Proposition 3.5. For n ≥ 2 and α ∈ (0, 1), any α-efx allocation is also an αn
α+2n−2 -mms

allocation but not necessarily a β-mms allocation, for any β > 2α
2+α . For n ≥ 4, the upper

bound is improved to max{ α
1+α ,

8α
11+2α}.

In contrast to efx, α-ef allocations provide a much weaker approximation of maximin
shares, namely a ratio of O( 1

n ) for constant α. The following proposition generalizes a result
of Caragiannis et al. [10].4

Proposition 3.6. For n ≥ 2, any α-ef allocation is also an α
n−1+α -mms allocation for

any α ∈ (0, 1], and this is tight.

4The bound by Caragiannis et al. [10] is for α = 1 and for allocations that are both ef and Pareto
optimal. It follows by their proof, however, that it holds even when Pareto optimality is dropped.



Finally, we investigate the implications that can be derived for efx and ef allocations,
in terms of pmms guarantees. Despite Proposition 3.1 suggesting that (approximate) ef
is much weaker than (approximate) efx, the two notions give comparable guarantees with
respect to pmms. In particular, the guarantee implied by α-efx can be at most 4/3 times
the guarantee implied by α-ef.

Proposition 3.7. For n ≥ 2, any α-efx allocation is also a 2α
2+α -pmms allocation for any

α ∈ (0, 1], and this is tight.

Proof. Let A = (A1, . . . , An) be an α-efx allocation and consider agents i and j. We
focus on agent i. Notice that when |Aj | = 1 we have vi(Ai) ≥ µi(2, Ai ∪ Aj) by the
definition of maximin share; so assume that |Aj | ≥ 2. If g ∈ arg minh∈Aj

vi(h), then we
have vi(Ai) ≥ α(vi(Aj)−vi(g)) but also vi(g) ≤ 0.5vi(Aj). Combining these two inequalities
we get vi(Ai) ≥ α

2 vi(Aj). Thus

2µi(2, Ai ∪Aj) ≤ vi(Ai ∪Aj) = vi(Ai) + vi(Aj) ≤
2 + α

α
vi(Ai) ,

which directly implies

vi(Ai) ≥
2α

2 + α
µi(2, Ai ∪Aj) .

Regarding tightness, consider the following example: We have an instance with n ≥ 2
identical agents and 2n items. Let α ∈ (0, 1]. For every agent i we have

vi(gj) =

{
α
2 j = 1, 2
1 3 ≤ j ≤ 2n

Now consider A = (A1, . . . , An) = ({g1, g2}, {g3, g4, }, {g5, g6}, . . . , {g2n−1, g2n}). It is easy
to see that this is an α-efx allocation which is also an 2α

2+α -pmms allocation.

Proposition 3.8. For n ≥ 3, any α-ef allocation is also an α
1+α -pmms allocation for any

α ∈ (0, 1], and this is tight.

Proof. Let A = (A1, . . . , An) be an α-ef allocation and consider agents i, j. We focus on
agent i and we assume that g is an item in Aj so that vi(Ai) ≥ α(vi(Aj)− vi(g)). We split
the proof into two cases:

Case 1: If vi(g) > vi((Ai ∪ Aj) {g}), then ({g}, (Ai ∪ Aj) {g}) is a 2-maximin share
defining partition for agent i. That is, µi(2, Ai ∪Aj) = vi(Ai) + vi(Aj)− vi(g). Therefore,
µi(2, Ai ∪Aj) ≤ vi(Ai) + 1

αvi(Ai), or equivalently, vi(Ai) ≥ α
1+αµi(2, Ai ∪Aj).

Case 2: If vi(g) ≤ vi((Ai ∪Aj) {g}), then

2µi(2, Ai ∪Aj) ≤ vi(Ai ∪Aj) = vi(Ai) + vi(Aj {g}) + vi(g)

≤ 2vi(Ai) + 2vi(Aj {g}) ≤
(

2 +
2

α

)
vi(Ai) ,

or equivalently, vi(Ai) ≥ α
1+αµi(2, Ai ∪Aj).

Regarding tightness, consider the following example: We have an instance with n ≥ 3
agents and n+ 1 items. Let α ∈ (0, 1) and V � 1 + α. We focus on agent i and we have

v1(gj) =

 α j = 1 or 4 ≤ j ≤ n+ 1
1 j = 2
V j = 3

Now consider A = (A1, . . . , An) = ({g1}, {g2, g3}, {g5}, . . . , {gn+4}) and assume that agents
2 ≤ i ≤ n are not envious. It is easy to see that accoriding to agent 1, this is an α-ef
allocation which is also an α

1+α -pmms allocation.



Algorithmic Implications for PMMS. The last two propositions also have further
consequences. First of all, it is known that for additive valuations, ef allocations can be
computed efficiently by a simple round-robin algorithm [16, 10]. Hence Proposition 3.8 yields
a 1/2-pmms allocation in polynomial time. Moreover, exact efx allocations can be computed
efficiently when agents have the same ordering on the values of the goods [4, 20], i.e., when
all agents have the same ordinal preferences (but possibly different cardinal values). This
implies a 2/3-approximation by Proposition 3.7. These facts are summarized below.

Corollary 3.9. For n ≥ 3,

(1) the round-robin algorithm, where each agent picks in her turn her favorite available
item, produces a 1

2 -pmms allocation.

(2) we can compute in polynomial time a 2
3 -pmms allocation when all agents agree on the

ordering of the goods with respect to their value.

It is an interesting open problem to compute a better than 1/2-pmms allocation for
additive valuations. So far, the existence of 0.618-pmms allocations has been established
but without an efficient algorithm [10].

4 PMMS and MMS allocations

We now explore analogous questions with Section 3, but starting now with (approximate)
mms or pmms allocations. We begin with the guarantees that pmms allocations imply for
mms and vice versa. In order to proceed, we will make use of the following observation, that
pmms implies efx.

Proposition 4.1 (Caragiannis et al. [10]). For n ≥ 2, any pmms allocation is also an efx
allocation.

For two agents, it is clear by their definition that the notions of mms and pmms are
identical. For more agents, by Propositions 3.3, 3.4 and 4.1, we have the following corollary.

Corollary 4.2. For n = 3, a pmms allocation is also a 2
3 -mms allocation. Moreover, for

n ≥ 4, a pmms allocation is also a 4
7 -mms allocation.

Moreover, the guarantees of Corollary 4.2 are tight for a small number of agents and
almost tight for bigger instances.

Proposition 4.3. For n ≥ 3, a pmms allocation is not necessarily an α-mms allocation for
α > 2

3 and, as n grows large, for α ≥ 0.5914.

Proof. Suppose that we have the following instance with 3 agents and 6 items. The items
have the following values for agent 1:

v1(gi) =

{
1/2 1 ≤ i ≤ 3
1 4 ≤ i ≤ 6

Clearly, µ1 = 3
2 . Consider the allocation A = ({g4}, {g1, g2, g3}, {g5, g6}). Assuming that

agents 2 and 3 have large value for their bundles and negligible value for everything else, it
is easy to check that A is a pmms allocation. However, v1(A1) = 1 = 2

3µ1. By adding an
arbitrary number of copies of agent 3 and her bundle, this instance can be generalized to
any number of agents.

Next, we show a stronger bound as n grows large. The construction below achieves the
desired bound for n ≥ 3·7·43·1806 = 1, 631, 721. However, there is a smooth transition from



2/3 to that; e.g., already for n ≥ 21 we get a bound of 3/5, which worsens as n increases. We
are going to consider the suggested allocation from the viewpoint of agent 1, while assuming
that agents 2 through n have large value for their bundles and negligible value for everything
else. Since there is a large number of items, we are not going to define v1(·) explicitly, but
implicitly through the different types of bundles the agents get. So consider the allocation
A where:

– agent 1 receives 1 item of value 1,

–
⌊
n
3

⌋
agents receive 3 items of value 1

2 each,

–
⌊
n
7

⌋
agents receive 7 items of value 1

6 each,

–
⌊
n
43

⌋
agents receive 43 items of value 1

42 each,

–
⌊

n
1807

⌋
agents receive 1807 items of value 1

1806 each,

– the remaining (at least n−1
2 ) agents receive 2 items of value 1 each.

It is easy to see that A is efx. What may not be obvious is that the number of agents
receiving 2 items is at least n−1

2 . However, it is a matter of simple calculations to check
that

(⌊
n
3

⌋
+
⌊
n
7

⌋
+
⌊
n
43

⌋
+
⌊

n
1807

⌋)
+1 ≤ n+1

2 for n ≥ 3. We show now how to get the bound
for n = 1, 631, 721 (in which case the agents receiving 2 items are exactly n−1

2 ). Then, this
instance can be generalized to any number of agents by just adding more agents who receive
2 items of value 1 each.

Calculating now µ1 is straightforward: in an n-maximin share defining partition for agent
1, each agent would receive exactly one item of each type. That is, µ1 = 1+ 1

2 + 1
6 + 1

42 + 1
1806 ,

and v1(A1) = 1 < 0.5914 · µ1.

We continue with the worst-case guarantee we can get for mms by an α-pmms allocation,
with α < 1. Notice that now the guarantee degrades with n.

Proposition 4.4. For n ≥ 3 and α ∈ (0, 1), any α-pmms allocation is also an
α

2(n−1)−α(n−2) -mms allocation but not necessarily a β-mms allocation, for any β >
α

n−1−α(n−2) .

The next result exhibits a sharp contrast between pmms and mms. Although pmms
allocations (exact or approximate) imply some mms guarantee, even exact mms allocations
do not imply any approximation with respect to pmms.

Proposition 4.5. For n ≥ 3, an α-mms allocation is not necessarily a β-pmms allocation
for any α, β ∈ (0, 1].

We conclude this section by discussing the guarantees of mms and pmms with respect
to ef and efx. Even for ef, we see that mms and pmms differ significantly in what they
can achieve.

Proposition 4.6. For n ≥ 2, an α-pmms allocation is also an α
2−α -ef allocation for any

α ∈ (0, 1), and this is tight.

Proposition 4.7. For n ≥ 3, an α-mms allocation is not necessarily a β-ef allocation for
any α, β ∈ (0, 1].

Proof. We may use the same example as in Proposition 4.5. Like before, A is an mms
allocation but only a γ-ef allocation for γ ≤ ε. To see this, notice that v1(A2 {g}) =
n− 2 ≥ 1 for any g ∈ A2.



When one focuses on guarantees in terms of efx, there are only negative results. In
fact, it is rather surprising that even though pmms implies efx, an α-pmms allocation with
α < 1 does not imply any approximation in terms of efx.

Proposition 4.8. For n ≥ 2, an α-pmms allocation is not necessarily a β-efx allocation
for any α, β ∈ (0, 1).

Proof. Consider an instance with n ≥ 2 identical agents and n+ 1 items. Let α ∈ (0, 1) and
V � max{1, 1

α − 1}. For every agent i we have

vi(gj) =

 V j = 1
1
α − 1 j = 2
1 3 ≤ i ≤ n+ 1

We examine the allocation A = (A1, . . . , An) = ({g1, g2}, {g3}, {g4}, . . . , {gn+1}). For any
i 6= 1, we focus on agents i and 1 from i’s viewpoint. It is easy to see that µi(2, A1 ∪Ai) =
1
α − 1 + 1 = 1

α . Since vi(Ai) = 1, we get vi(Ai) = αµi(2, A1 ∪ Ai). As it is straightforward
to see that for any other pair of agents that there is no envy, we have that A is an α-pmms
allocation. On the other hand, every agent i ∈ N {1} envies agent 1 up to any item by a
factor γ = 1

V which can become arbitrarily small for sufficiently large V .

By Propositions 4.8, 4.7, and 3.1, we also have the corresponding result for approximate
mms allocations.

Corollary 4.9. For n ≥ 2, an α-mms allocation is not necessarily a β-efx allocation for
any α, β ∈ (0, 1).

5 Discussion

The main purpose of this work is to provide a deeper understanding of the connections
between the exact and the approximate versions of four prominent fairness notions used
in discrete models of fair division. In most cases we give tight, or almost tight, results,
providing therefore a close to complete picture on the status of these questions. Some of
our findings also strike as counter-intuitive, given what was known for the exact versions of
these notions.

A direct implication of our results is the non-existence of truthful allocation mechanisms
for two agents that achieve any constant approximation of pmms efx, or even ef. This
follows from the corresponding negative result of Amanatidis et al. [1] for mms and Propo-
sitions 3.5, 3.6, and 4.4. We defer a more detailed discussion on this to the full version of
the paper.

Aside from the questions raised here, there is an abundance of interesting open problems
for future research. Deciding the existence of exact efx or exact pmms allocations seem
to be two of the most puzzling such problems. Furthermore, obtaining (algorithmically
or existentially) allocations with better approximation ratios is another class of equally
intriguing problems. So far, we know there exist allocations with ratios of 0.75, 0.618, and
0.5, for mms, pmms, and efx respectively, out of which, the result for pmms is existential; our
Corollary 3.9 only yields a 0.5-approximation in polynomial-time. Finally, the combination
of fairness with other desired objectives, like Pareto optimality, creates further algorithmic
challenges, even for the seemingly easier notion of ef [5].

Interestingly enough, our results suggest that improving the current state of the art
in the approximation of one of these notions does not imply an immediate improvement
on the best approximation ratio for the others, with the notable exception of α-efx. An
algorithmic result with α > 2/3 or an existential result with α > 0.895 for α-efx would
imply an improved algorithmic or existential result for β-pmms.
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A Missing Proofs

Proof of Lemma 3.2. Let us look at agent i, and consider a partition of M that attains
her maximin share. Let T = (T1, . . . , Tn) and assume, without loss of generality, that
S ⊆ Tn. Consider the remaining partition (T1, . . . , Tn−1) enhanced in an arbitrary way by
the items of Tn S. This is an (n− 1)-partition of M S, where the value of agent i for any
bundle is at least µi(n,M). Thus, we have µi(n− 1,M S) ≥ µi(n,M).

Proof of Proposition 3.5. Let A = (A1, . . . , An) be an α-efx allocation and focus on
agent 1. By Lemma 3.2, we may assume, without loss of generality, that for every i ≥ 2 we
have that |Ai| ≥ 2. Thus, for all i ≥ 2, there exists some gi ∈ arg minh∈Ai

v1(h) so that
v1(A1) ≥ α(v1(Ai)− v1(gi)) and v1(gi) ≤ v1(Ai gi). Then

v1(Ai) ≤
1

α
v1(A1) + v1(gi) ≤

1

α
v1(A1) + v1(Ai gi)

≤ 1

α
v1(A1) +

1

α
v1(A1) =

2

α
v1(A1) .

So, we have that

nµ1 ≤ v(M) = v(A1) +
∑
i≥2

v(Ai)

≤ v(A1) +
∑
i≥2

2

α
v1(A1) =

α+ 2(n− 1)

α
v1(A1) ,

and finally we can conclude

v1(A1) ≥ αn

α+ 2n− 2
µ1 .



Regarding the upper bound, fix any α ∈ (0, 1) and suppose that we have 2 agents and 4
items: a, b, c, d. The agents have identical valuation functions, in particular vi(a) = vi(b) = 1
and vi(c) = vi(d) = α

2 , for i ∈ {1, 2}. We now look at the allocation A = ({a, b}, {c, d}). It
is easy to see that this an α-efx allocation which, however, is only an 2α

2+α -mms allocation.
For the case of n ≥ 4, consider the following example. We define an instance with n = 4

identical agents and k + 7 items. Let α ∈ (0, 1]. For every agent i we have

vi(gj) =


α
k 1 ≤ j ≤ k
1
2 k + 1 ≤ j ≤ k + 3
1 k + 4 ≤ j ≤ k + 7

Let A = (A1, . . . , A4) = ({g1, g2, . . . , gk}, {gk+1, gk+2, gk+3, }, {gk+4, gk+5}, {gk+6, gk+7}). It
is easy to see that this is an α-efx allocation which is only an α

1+α -mms allocation when

α < 1
2 , and is only an 8α

11+2α -mms allocation when α ≥ 1
2 and k is large.

It is not hard to see that both instances above can be generalized to any number of
agents.

Proof of Proposition 3.6. Let A = (A1, . . . , An) be an α-ef allocation and fix some
agent i. The case where at least one of the bundles is empty is straightforward, so we may
assume that the bundles are all non-empty. For all agents j ∈ N {i}, there exists an item
gj ∈ Aj such that vi(Ai) ≥ α(vi(Aj) − vi(gj)). By summing up over N {i} and adding
αvi(Ai) to both sides, we have

(n− 1)vi(Ai) + αvi(Ai) ≥ α
(
vi(Ai) +

∑
j 6=i

vi(Aj)−
∑
j 6=i

vi(gj)

)
= α

(
vi(M)−

∑
j 6=i

vi(gj)

)
,

and thus,

vi(Ai) ≥
α
(
vi(M)−

∑
j 6=i vi(gj)

)
n− 1 + α

≥ αµi
n− 1 + α

.

To see why the last inequality holds, notice that in any n-maximin share defining partition
for agent i, the bundle that does not contain any of the gjs, has value at most vi(M) −∑
j 6=i vi(gj); therefore, µi is also upper bounded by this quantity.
Regarding tightness, consider the following example. We have an instance with n ≥ 2

identical agents and 3n− 2 items. Let α ∈ (0, 1) and V � 1. For every agent i we have

vi(gj) =

 α j = 1 or j = 3k − 1, 1 ≤ k ≤ n− 1
1− α j = 3k, 1 ≤ k ≤ n− 1
V j = 3k + 1, 1 ≤ k ≤ n− 1

Now consider A = (A1, . . . , An) = ({g1}, {g2, g3, g4}, {g5, g6, g7}, . . . , {g3n−4, g3n−3, g3n−2}).
It is easy to see that this is an α-ef allocation which is, however, only an α

n−1+α -mms
allocation.

Proof of Proposition 4.4. The positive result is a direct corollary of Propositions 4.6
and 3.6.

For the upper bound, suppose that we have n ≥ 3 agents and 2n − 1 items. We focus
on agent 1 and her values

v1(gj) =

 α j = 1
1− α j = 2k, 1 ≤ k ≤ n− 1
V j = 2k + 1, 1 ≤ k ≤ n− 1



where α ∈ (0, 1) and V � 1. Now consider A = (A1, . . . , A4) = ({g1}, {g2, g3}, {g4, g5}, . . . ,
{g2n−2, g2n−1, }). That is, every agent i > 1 gets one item of value 1 − α and one item of
value V . It is easy to see that this is an α-pmms allocation, given that all agents, other
than agent 1, have large value for their bundles and negligible value for everything else.
However, µ1(n,M) = α + (n − 1)(1 − α) = n − 1 − α(n − 2), and therefore A ia only an

α
n−1−α(n−2) -mms allocation.

Proof of Proposition 4.5. It suffices to prove the proposition for α = 1. Consider an
instance with n ≥ 3 agents and 2n− 2 items. We focus on agent 1 and her values

v1(gj) =

 ε j = 1
1 2 ≤ j ≤ n
0 n+ 1 ≤ j ≤ 2n− 2

where ε > 0 is arbitrarily small. That is, agent 1 views n − 1 items as “large”, 1 item as
“very small”, and everything else as “worthless”. As a consequence µ1(n,M) = ε. Now
consider the allocation A = (A1, . . . , An) = ({g1}, {g2, . . . , gn}, {gn+1}, . . . , {g2n−2}) and
assume any agent i 6= 1 has large value for her bundle and negligible value for everything
else. It is easy to see that A is an mms allocation. However µ1(2, A1 ∪ A2) ≥

⌊
n−1

2

⌋
≥ 1

and thus this is only a γ-pmms allocation for γ ≤ ε.

Proof of Proposition 4.6. Let A = (A1, . . . , An) be an α-pmms allocation. Consider
agents i, j and let vi(Ai) = γµi(2, Ai∪Aj) for some γ ≥ α. We focus on agent i, so, without
loss of generality, we may assume that there is no item h such that vi(h) = 0. Notice that
when |Aj | ≤ 1, either there is nothing to check or we need to check that agent i does not
envy the empty bundle (which is, of course, true). So, we assume that |Aj | ≥ 2. Also, we
may assume that γ ≤ 1, or else vi(Aj) < µi(2, Ai ∪ Aj) and agent i does not envy agent j
anyway. Suppose that g ∈ arg maxh∈Aj

vi(h) and consider the following two cases:

Case 1 : vi(g) ≥ µi(2, Ai∪Aj). Notice that by the definition of µi(2, Ai∪Aj), we must have
that µi(2, Ai∪Aj) = vi(Ai)+vi(Aj)−vi(g). Thus, vi(Aj)−vi(g) = µi(2, Ai∪Aj)−vi(Ai) =
(1− γ)µi(2, Ai ∪Aj). If γ = 1 then clearly vi(Ai) ≥ vi(Aj)− vi(g) = 0. Otherwise, we have

vi(Ai) = γµi(2, Ai ∪Aj) =
γ

1− γ
(vi(Aj)− vi(g)) ≥ α

1− α
(vi(Aj)− vi(g)) .

Case 2 : vi(g) = β < µi(2, Ai ∪Aj). Initially we prove that vi(Aj) ≤ β + 2µi(2, Ai ∪Aj)−
γµi(2, Ai∪Aj). Suppose for a contradiction that vi(Aj) > β+ 2µi(2, Ai∪Aj)−γµi(2, Ai∪
Aj).

Now we sort the items in Aj in an increasing order according to their value regarding
agent i, say h1, h2, . . . , hk = g. Start with set Ai and add items from set Aj , one at a time,
until the value exceeds µi(2, Ai∪Aj), i.e., find an index l such that vi(Ai∪{h1, h2, . . . , hl}) >
µi(2, Ai ∪ Aj) but vi(Ai ∪ {h1, h2, . . . , hl−1}) ≤ µi(2, Ai ∪ Aj) (slightly abusing notation
here, {h1, . . . , hl−1} denotes the empty set when l = 1). Let S = Ai∪{h1, h2, . . . , hl}. Since
vi(S {hl}) ≤ µi(2, Ai ∪Aj) and vi(hl) ≤ vi(g) = β we have that vi(S) ≤ µi(2, Ai ∪Aj) +β
and thus vi({h1, h2, . . . , hl}) ≤ µi(2, Ai ∪Aj) + β − vi(Ai). Therefore

vi(Aj S) = vi(Aj)− vi({h1, h2, . . . , hl}) ≥ vi(Aj)− µi(2, Ai ∪Aj)− β + vi(Ai)

> 2µi(2, Ai ∪Aj) + β − γµi(2, Ai ∪Aj)− µi(2, Ai ∪Aj)− β + vi(Ai)

= µi(2, Ai ∪Aj) .



This means that in the partition (S,Aj S) both sets are strictly better than µi(2, Ai ∪Aj)
for agent i; this contradicts the definition of µi(2, Ai ∪Aj).

So it must be the case where vi(Aj) ≤ β + 2µi(2, Ai ∪Aj)− γµi(2, Ai ∪Aj). Therefore
vi(Aj)− vi(g) = vi(Aj)− β ≤ (2− γ)µi(2, Ai ∪Aj), and so

vi(Ai) = γµi(2, Ai ∪Aj) ≥
γ

2− γ
(vi(Aj)− vi(g)) ≥ α

2− α
(vi(Aj)− vi(g)) .

We conclude that an α-pmms allocation leads to an α
2−α -ef allocation since α

2−α ≤
α

1−α
for any α ∈ (0, 1).

Regarding tightness, consider the following example: We have an instance with n = 2
agents and 2k + 1 ≥ 5 items. Let α ∈ (0, 1). We focus on agent 1 and we have

v1(gj) =


α
k 1 ≤ j ≤ k
2−α
k k + 1 ≤ j ≤ 2k

ε j = 2k + 1

where ε is an arbitrarily small positive amount. Now consider A = (A1, . . . , An) =
({g1, . . . , gk}, {gk+1, . . . g2k+1}) and assume that agents 2 is not envious. It is easy to see that
accoriding to agent 1, this is an α-pmms allocation which is also however, only an α

2−α -ef
allocation. It is straightforward to generalize this instance to any number of agents.


