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Abstract

We consider the problem of control in elections where an election chair seeks to either make
a designated candidate win, or prevent her from winning, via actions such as adding, deleting,
or partitioning either candidates or voters. These scenarios have been studied for many voting
systems and the related control problems have been classified in terms of their complexity.
However, for one of the most prominent natural voting systems, the Borda Count, complexity
results are known for only half of these cases. We settle the complexity for twelve missing
cases in the unique-winner model, leaving just one case open. We also show that Borda is
vulnerable to control for this one open case in the nonunique-winner model. An interesting
consequence is that Borda is vulnerable to another type of control in the nonunique-winner
model, yet it is resistant to it in the unique-winner model. This is one of the few known cases
where the complexity of control problems differs depending on the winner model chosen.

1 Introduction
Much work has been done in computational social choice to show that complexity can help to pro-
tect election outcomes from being tampered with by manipulation, control, and bribery attacks.
For a comprehensive overview of related results, we refer to the book chapters by Conitzer and
Walsh [5], Faliszewski and Rothe [11], and Baumeister and Rothe [3]. Here, we focus on the stan-
dard control scenarios in elections—including adding, deleting, or partitioning either candidates or
voters—introduced by Bartholdi et al. [2] and Hemaspaandra et al. [16].2 In particular, Bartholdi
et al. [2] defined constructive control scenarios where an election chair seeks to make a given can-
didate win an election, while Hemaspaandra et al. [16] introduced the corresponding destructive
control scenarios where the chair seeks to ensure that a given candidate does not win.

Each of these scenarios has been thoroughly discussed in the literature (for example, in the book
chapters mentioned above), and motivating real-world applications have been presented for each
scenario. While they have been studied intensively for many voting systems, such as for plurality,
Condorcet, approval [2, 16], Copeland [10], Bucklin [7], Schulze [27], certain variants of approval
and range voting [9, 24], and veto [23], one of the most prominent natural voting systems, the Borda
Count, is still heavily underexplored. The purpose of this paper is to fill this gap.

The eleven results previously known for control in Borda are due to Russel [29], Elkind et
al. [6], Loreggia et al. [22], Chen et al. [4], and Hemaspaandra and Schnoor [20]. Table 1 presents
an overview of their results (marked in grey) and of our twelve new results (marked in boldface).
In this table, an “R” stands for resistance (which in Section 2 is defined as NP-hardness of the
corresponding control problem) and “V” stands for vulnerability (which in Section 2 is defined as
polynomial-time solvability of the corresponding control problem). Further, we use the standard
names of the control problems that correspond to the standard control scenarios (see, e.g., [3, 11]).
For example, CCDC stands for “constructive control by deleting candidates” and DCDC denotes
the destructive variant of this problem. Each control problem for which we provide a new result
in Borda elections will be formally defined in Sections 3 and 4, and the unique-winner versus the
nonunique-winner model will be discussed in Section 2.

1This paper combines two earlier papers that appeared in the proceedings of AAAI-2017 [26] and ICTCS-2017 [25].
2To take certain restrictions (e.g., geographical constraints) into account, other models of control have been proposed and

studied by Puppe and Tasnádi [28], Erdélyi et al. [8], Lewenberg and Lev [21], and Bachrach et al. [1].
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Table 1: Control complexity in Borda elections (unique-winner model), with standard notation of
control types [3, 11]. “R” means resistance, “V” vulnerability, and “?” indicates an open question.
New results are in boldface: Thm. 1 (†), Thm. 2 (‡), Thm. 3 (♦), Thm. 4 (♣), Thm. 5 (\), Cor. 1
(¶), Thm. 6 (�), Thm. 8 (◦), Cor. 3 (4), Thm. 9 (♥), Thm. 10 (⊕), and Thm. 11 (⊗). Previously
known results are grey and due to Russel [29] (marked by §), Elkind et al. [6] ($), Loreggia et al. [22]
(£), Chen et al. [4] (d), and Hemaspaandra and Schnoor [20] (♠).

As Table 1 shows, Borda is now known to be resistant to every standard type of constructive
control, whereas it is vulnerable to most of the destructive control types (resistance is known only
for destructive control by run-off partition of candidates and by partition of voters, both in the so-
called “ties-promote” (TP) model formally defined in Section 3). One case of destructive candidate
control remains open (namely, DCPC-TP, marked by “?” in Table 1) in the unique-winner model.
Interestingly, we can show Borda to be vulnerable to this control type in the nonunique-winner
model (Theorem 7). Even more interesting is a consequence of this result (Corollary 2): In the
nonunique-winner model, Borda-DCRPC-TP (which is known to coincide with Borda-DCPC-TP
in the nonunique-winner model [15] but not to coincide with it in the unique-winner model) is in P
as well, yet it is NP-hard in the unique-winner model (Theorem 6).

2 Preliminaries
An election is a pair (C,V ) that contains a set C of candidates and a list V of votes describing the
voters’ preferences—as strict linear orders—over the candidates. We will represent a vote over C as
a string that ranks the candidates from left (most preferred) to right (least preferred); for example, if
C = {a,b,c,d}, a vote c d b a means that this voter prefers c to d, d to b, and b to a. A voting rule
determines a set of winners from each given election. Positional scoring rules are an important class
of such rules, and among those we will only consider the perhaps most prominent one, the Borda
Count, which works as follows: Given m candidates, every candidate in position i of the voters’
rankings scores m− i points, and all candidates scoring the most points win.

Let score(C,V )(x) denote the number of points candidate x obtains in a Borda election (C,V ),

and let dist(C,V )(x,y) = score(C,V )(x)− score(C,V )(y). For a subset X ⊆C of candidates,
−→
X in a vote

denotes a ranking of these candidates in an arbitrary but fixed order,
←−
X denotes their ranking in

reverse order, and we write X when the order of the candidates in X does not matter in this vote.
The control types considered here will be formally defined in Sections 3 and 4, and we refer to

the book chapters by Faliszewski and Rothe [11] and Baumeister and Rothe [3] (and to the references
therein) for all other standard control types and for real-world scenarios that motivate them.

A voting rule is said to be susceptible to a type of control (e.g., constructive control by adding
candidates) if there is some election for which the chair can reach her goal (e.g., turning a nonwin-
ning candidate into a winner) by exerting this type of control. If a voting rule is not susceptible to
a control type, it is said to be immune to it. Borda is susceptible to each standard control type, in
particular to those considered here. A voting system that is susceptible to some type of control is
said to be vulnerable to it if the associated control problem can be solved in polynomial time, and it
is said to be resistant to it if the associated control problem is NP-hard.



Our control problems will be defined in Sections 3 and 4 in the unique-winner model (see also
Table 1). That is, a constructive (destructive) control action is viewed as being successful only if
the designated candidate can be made a unique winner (not a unique winner) by this action. We
note, however, that using essentially the same constructions and slightly modifying the arguments
in our proofs, most of our results also work in the nonunique-winner model, which means that for
a constructive (destructive) control action to be successful, it is enough to make the designated
candidate only a winner (she can be made not even a winner) by this action. The only exception
is destructive control by run-off partition of candidates in the ties-promote model (to be defined in
Section 3) to which Borda will be shown resistant in the unique-winner model (Theorem 6), yet
vulnerable in the nonunique-winner model (Corollary 2).3

In our proofs, we will sometimes use the following result due to Hemaspaandra et al. [15] (see
their technical report [14] for the proof of Fact 1), which shows that some of the destructive control
cases (to be defined in the next section) can collapse depending on the chosen winner model.

Fact 1 (Hemaspaandra et al. [15]) DCRPC-TE = DCPC-TE in the unique-winner model and
DCRPC-TE = DCPC-TE and DCRPC-TP = DCPC-TP in the nonunique-winner model.

3 Candidate Control in Borda Elections
We solve all open problems for candidate control in Borda elections except one, starting with con-
structive control by adding an unlimited number of candidates.
Borda-CCAUC and Borda-DCAUC. Elkind et al. [6] showed that Borda is resistant to constructive
control by adding a limited number of candidates (i.e., a bound k on the number of candidates
that may be added is part of the problem instance), and Loreggia et al. [22] showed that Borda is
vulnerable to the destructive variant of this control type (see Table 1). Originally, however, Bartholdi
et al. [2] defined control by adding candidates in an unlimited variant where no such bound is given.
The definition of the limited variant is due to Faliszewski et al. [10], who also proved that the two
variants of the problem can have different complexity: Two special cases of Copelandα elections
(namely, Copeland0 and Copeland1, the latter a.k.a. Llull elections) are resistant to the constructive,
limited variant (the corresponding problem denoted by CCAC), whereas they are vulnerable to the
constructive, unlimited variant, which we define below.

In the problem Borda-CONSTRUCTIVE-CONTROL-BY-ADDING-AN-UNLIMITED-NUMBER-
OF-CANDIDATES (Borda-CCAUC) we ask, given a set C of candidates, an additional set A of
candidates, C∩A = /0, a set V of voters with preferences over C∪A, and a distinguished candidate
p ∈C, whether there is a subset A′ ⊆ A such that p is the unique Borda winner of (C∪A′,V ).4 The
proof of Theorem 1 makes use of a reduction from X3C to Borda-CCAUC. First, Lemma 1 below,
which was proven by Elkind et al. [6, Lemma B.3],5 allows us to construct votes conveniently.

Lemma 1 (Elkind et al. [6]) Let C = {c1, . . . ,c2t−1,d}, t ≥ 2, be a set of candidates and let
A = {a1, . . . ,as} be a set of spoiler candidates. Let L = 2t−1. Then there is a polynomial-time com-
putable preference profile R = (R1, . . . ,R2L) over C∪A such that for each A′ ⊆ A the Borda scores
in the election (C∪A′,R) are as follows: (a) For each ci ∈ C, score(ci) = L(2|A′|+ |C|− 1)+ 1;
(b) score(d) = L(2|A′|+ |C|−1)−L; and (c) for each ai ∈ A′, score(ai)≤ L(2|A′|+ |C|−1)−2L.

Theorem 1 Borda is resistant to constructive control by adding an unlimited number of candidates.
3Our only other result explicitly shown in the nonunique-winner model is Theorem 7: Borda is vulnerable to destructive

control by partition of candidates in the ties-promote model. The corresponding case in the unique-winner model is still open
(again, see Table 1).

4For convenience, whenever we have a list V of votes over a set C∪A and then consider an election with fewer candidates,
C∪A′ with A′ ⊂ A, we use (C∪A′,V ) to denote the election with the votes in V tacitly assumed to be restricted to C∪A′.

5The original lemma by Elkind et al. [6] is slightly more general in that they consider nonnegative integers `1, . . . , `2t−1
with L = ∑

2t−1
i=1 `i. For our purpose, it is enough to set `1 = · · ·= `2t−1 = 1, so L = 2t−1.



Proof. To show NP-hardness, we provide a reduction from X3C to Borda-CCAUC. Let (X ,S )
be a given X3C instance with X = {x1, . . . ,xm}, m = 3k, k > 1, and S = {S1, . . . ,Sn} with Si ⊆ X
and |Si|= 3 for each i, 1≤ i≤ n. Without loss of generality, we assume that k is even and k > 2 (this
can be achieved by duplicating the instance if necessary). Construct from (X ,S ) a Borda-CCAUC
instance ((C,V ), p,k) as follows. Let C = X ∪{u, p} with p being the distinguished candidate and
A = {a1, . . . ,an} a set of spoiler candidates. Define V to consist of the following votes:

1. For each i, 1≤ i≤ n, there are two votes:
−→
Si u p

−−−→
X \Si A and

←−−−
X \Si p u ai

←−
Si A\{ai}.

2. Three times, there are two votes of the form u
−→
A p
−→
X and

←−
X p u

←−
A .

3. All votes we obtain by applying Lemma 1 to the candidate set C with each xi taking the role of
a ci, p that of c3k+1, and u that of d. (Here, we need k to be even.)

We claim that (X ,S ) is a yes-instance of X3C if and only if (C,A,V, p) is a yes-instance of
Borda-CCAUC.

From left to right, suppose there is an exact cover S ′ ⊆S . Let A′ = {a j ∈ A | S j ∈S ′}.6 Then
we have dist(p,xi) = |{a j ∈ A′ | xi ∈ S j}| = 1 for every xi ∈ X , since every xi ∈ X is contained in
one element of the exact cover S ′ of X exactly once. Furthermore, we have k = |S ′|= |A′|. Thus
dist(p,u) = 3k+2−3k = 2, so p defeats every candidate and is the only Borda winner of (C∪A′,V ).

From right to left, suppose that p can be made the only Borda winner by adding the candidates
of a subset A′ ∈ A. Therefore, p defeats every candidate in (C∪A′,V ), so we have dist(p,u)> 0 and
dist(p,xi)> 0 for every xi ∈ X (recall that p always defeats every a j ∈ A′). Since dist(p,xi) = |{a j ∈
A′ | xi ∈ S j}| > 0 for every xi ∈ X , the subfamily S ′ = {S j ∈ S | a j ∈ A′} covers X . Thus we have
|S ′| ≥ k, as there are 3k elements in X and every subset of S contains three elements. Furthermore,
we have dist(p,u) = 3k+2−3|A′|> 0, so |S ′|= |A′| ≤ k. Overall, we have that S ′ covers X and
|S ′|= k, which means that S ′ is an exact cover of X . q

For the destructive variant, we provide a polynomial-time algorithm to show that Borda-
DCAUC is in P.

Theorem 2 Borda is vulnerable to destructive control by adding an unlimited number of candidates.

Proof. The following polynomial-time algorithm solves the problem Borda-DCAUC. Given a
Borda-DCAUC instance (C,A,V, p), the algorithm works as follows. If p is not a unique Borda win-
ner of (C∪A,V ), accept. Otherwise, do the following steps:

for all candidates x ∈ (C∪A)\{p} do
distdiff (x)← 0
D = /0
for all candidates y ∈ A\{x} do

Let wx,y be the number of votes with · · · p · · · y · · · x · · ·
Let `x,y be the number of votes with · · · x · · · y · · · p · · ·
deldiff (x,y)← wx,y− `x,y

end for
for i← 1 to |A\{x}| do

y← argmax
a∈A\(D∪{x})

deldiff (x,a)

if deldiff (x,y)> 0 then
6Note that p ranks ahead of every a j ∈ A′ in all but three votes in the second group of voters. The point deficit from those

three votes is always offset by the other votes in this group, so we can disregard the points of every a j ∈ A′ from now on, since
p always defeats them. For the point differences of p to the other candidates in the election (C∪A′,V ) for any A′ ⊆ A, we
have dist(p,u) = 3k+2−3|A′| and dist(p,xi) = |{a j ∈ A′ | xi ∈ S j}|. If A′ = /0, we have dist(p,xi) = 0, so p is not winning
(C,V ) alone.



D = D∪{y}
distdiff (x)← distdiff (x)+deldiff (x,y)

end if
end for
if dist(C∪A,V )(p,x)≤ distdiff (x) then

print control possible
end if

end for
print control impossible

If the output is “control possible,” accept the input, else reject it. The algorithm runs in
polynomial-time with runtime O((|C|+ |A|) · |A| · |V |) and is correct. Correctness of step 1 is obvi-
ous. For step 2, the algorithm tries to find a candidate x ∈ C∪A that can defeat or tie p, if some
candidates of A are deleted from the election (C∪A,V ). To do that, for every candidate y ∈ A\{x},
it computes how a deletion of y would affect the point balance of p and x. If there is a vote of the
form · · · p · · · y · · · x · · · , p would lose a point with respect to x by deleting y, and for every vote
of the form · · · x · · · y · · · p · · · , p would gain a point with respect to x by deleting y. For all other
votes, deleting y would cause both p and x to either lose a point or gain a point. Note that this
is independent of who else from A is participating in the election. Then the algorithm deletes all
candidates of A that after deletion change the point balance of p and x in favor of x (let D be the set
of those candidates) and checks whether x ties or defeats p in (C∪ (A\D)). If this is true, p can be
tied or defeated by adding the candidates of A\D. If it is false for all candidates x ∈C∪A, p always
wins alone. q

Borda-CCRPC-TE and Borda-CCPC-TE. In the problem Borda-CONSTRUCTIVE-CONTROL-
BY-RUN-OFF-PARTITION-OF-CANDIDATES-TE (Borda-CCRPC-TE) we ask, given an election
(C,V ) and a distinguished candidate p ∈C, whether the candidate set C can be partitioned into two
subsets C1 and C2 such that p is the unique Borda winner of the final run-off among the Borda
winners of subelections (C1,V ) and (C2,V ), where only unique subelection winners move forward
in the ties-eliminate (TE) model. The proof of Theorem 3 below makes use of a reduction from
the standard NP-complete satisfiability problem (3SAT) [12]: Given a boolean formula ϕ in 3-CNF
(i.e., with exactly three literals per clause), does there exist a satisfying truth assignment to ϕ? For a
boolean formula ϕ , we denote by #i the number of literals occurring in the ith clause that are negated
variables.

Theorem 3 Borda is resistant to constructive control by run-off partition of candidates in the ties-
eliminate model.

Proof. To show NP-hardness, we now provide a reduction from 3SAT to Borda-CCRPC-TE.
Given a 3SAT instance ϕ(x1, . . . ,xn), construct a Borda-CCRPC-TE instance ((C,V ), p) as follows.
Let X = {x1,x2, . . . ,xn} be the set of variables and let K = {K1, . . . ,Km} be the set of clauses of ϕ ,
where Ki = (`

(1)
i ∨ `

(2)
i ∨ `

(3)
i ), 1 ≤ i ≤ m. Furthermore, let D = {d1, . . . ,d6} and Di = {d j | 1 ≤

j ≤ i} ⊆ D. Define the candidate set by C = X ∪K ∪{p,r,r∗}∪D with p being the distinguished
candidate the chair wants to make a unique winner. Define V to consist of the following votes:

1. For each i, 1 ≤ i ≤ m, there are two votes:
−−−−−−−−−−→
C \ ({p,Ki}∪D) p D2#i Ki D \ D2#i and

Ki d6 p
←−−−−−−−−−−
C \ ({p,Ki}∪D) D5.

2. For each i, 1 ≤ i ≤ m, and for each literal `(1)i , `(2)i , and `
(3)
i , there are four votes: either twice

Ki x j p
−−−−−−−−−−−−−→
C \ ({Ki,x j, p}∪D) D and twice

←−−−−−−−−−−−−−
C \ ({Ki,x j, p}∪D) p Ki x j D if `k

i = x j is a negated

variable, or twice
−−−−−−−−−−−−−→
C \ ({Ki,x j, p}∪D) p x j Ki D and twice Ki p

←−−−−−−−−−−−−−
C \ ({Ki,x j, p}∪D) x j D if

`k
i = x j is a positive variable.



3. There are m votes of the form r∗ r
−→
K
−→
D p X and m votes of the form r p

←−
D
←−
K r∗ X .

Since dist(C,V )(p,r) = m(−6−m− 2) = −m(m+ 8) < 0, p does not win in (C,V ). Note that
p and r score the same number of points in the first two groups of votes. Later on, we will also
need the following argument. Consider a clause candidate Ki. In the first group of votes, p scores
2#i− 1 points more than candidate Ki, with #i being the number of negated variables in clause Ki.
In the second group of votes, p gains two more points with respect to candidate Ki for each positive
variable in clause Ki, and p loses two points with respect to candidate Ki for each negated variable
in clause Ki. Since p and Ki score the same number of points in the third group of votes, we have
dist(C,V )(p,Ki) = −2#i + 2(3− #i)+ (2#i− 1) = 5− 2#i. Assuming that one variable candidate x j
is assigned to the other subelection than p and Ki, if x j is a negated variable in clause Ki then p
gains two points with respect to candidate Ki, and if x j is a positive variable in clause Ki then p loses
two points with respect to Ki. Further, if C′ is the set of candidates obtained by removing from C all
variable candidates corresponding to positive variables in clause Ki, then dist(C′,V )(p,Ki) = 5−2#i−
2(3−#i) =−1 because p is losing as many points with respect to Ki as there are positive variables
in clause Ki. That is, p is defeated by Ki in their subelection if all variable candidates corresponding
to positive variables in clause Ki are removed from the subelection containing p and Ki (and are
assigned to the other subelection) and all variable candidates corresponding to negated variables
in clause Ki remain in the subelection with p and Ki. For p to defeat Ki, either the subelection
containing them also contains at least one variable candidate corresponding to a positive variable
in clause Ki, or the other subelection contains at least one variable candidate corresponding to a
negated variable in clause Ki, or both.

We show that ϕ is a yes-instance of 3SAT if and only if ((C,V ), p) is a yes-instance of Borda-
CCRPC-TE.

From left to right, suppose there is a satisfying truth assignment to the variables of ϕ(x1, . . . ,xn),
say α . Let X+ ⊆ X denote the set of variables set to true under α , and let X− ⊆ X denote the set of
variables set to false under α . Partition C into C1 = {p}∪D∪K ∪X+ and C2 = {r,r∗}∪X−. The
Borda winners of subelection (C2,V ) are r and r∗, since they score more points than the candidates in
X− due to the third voter group and the same number of points in the other two voter groups. Due to
TE, no candidate proceeds to the final run-off from this subelection. In subelection (C1,V ), p defeats
all candidates from D, since p scores more points than these candidates in the first voter group and
the same number of points in the other two voter groups. p also defeats all candidates from X+,
since p scores at least m(m+ 5) points more than any candidate in X+ in the third voter group, at
most m points fewer than any candidate from X+ in the second voter group (which is the case if
some positive variable occurs in all clauses), and the same number of points in the first voter group.
What about the clause candidates? The truth assignment (giving rise to X+ and X−) satisfies ϕ , so
each clause Ki of ϕ is satisfied. Thus, for every i, 1 ≤ i ≤ m, at least one positive variable in Ki is
assigned to true or at least one negated variable in Ki is assigned to false. In the former case, the
corresponding variable candidate is in X+ and thus in the same subelection as p; in the latter case,
the corresponding variable candidate is in X− and thus not in the same subelection as p. By the
above argument, p scores more points than Ki. Summing up, since p defeats all other candidates in
her subelection and no one moves forward to the final run-off from the other subelection, p alone is
the overall Borda winner.

From right to left, suppose that p is the unique overall Borda winner for some partition of the
candidates. This implies that p also is the unique Borda winner of one subelection. Since r scores
more points than p due to the third voter group, p and r must be in different subelections (regardless
of who else participates in them). Without loss of generality, assume that p is in C1 and r is in C2.
Consider C2 first. r cannot be the unique Borda winner in subelection (C2,V ), since otherwise p
would not win the run-off. Therefore, there must be candidates that either tie or defeat r in (C2,V ).
Clause candidates, variable candidates, and candidates from D lose too many points in the third
voter group (that cannot be made up for in the first and second voter groups) to tie-or-defeat r. Only
candidate r∗ remains. However, r∗ cannot be the unique Borda winner of subelection (C2,V ), since



p and r∗ would score the same number of points in the run-off, contradicting that p is the unique
run-off winner. Thus there must be a tie between r and r∗ in (C2,V ), which prevents them both from
proceeding to the run-off due to the TE model. Therefore, neither candidates from D nor from K can
be in C2, for otherwise the balance of points between r and r∗ would be perturbed due to the third
voter group. Variable candidates, however, may be in C2, since they get fewer points than either r
and r∗ and would not interfere with their point balance. Thus C1 contains p and all candidates from D
and K and some variable candidates. Let X+ denote the set of variable candidates in C1. Note that p
defeats the candidates in D by the first voter group and the candidates in X+ by the third voter group.
Since p also defeats each clause candidate Ki, the variable candidates must be distributed among
C1 and C2 according to the argument given earlier. Now, if we assign the value true to all variables
corresponding to variable candidates in X+ and the value false to all variables corresponding to
variable candidates not in X+, we obtain a satisfying truth assignment to ϕ(x1, . . . ,xn). q

Borda-CONSTRUCTIVE-CONTROL-BY-PARTITION-OF-CANDIDATES-TE (Borda-CCPC-TE)
is defined as follows. Given an election (C,V ) and a distinguished candidate p ∈C, we ask whether
the candidate set C can be partitioned into two subsets C1 and C2 such that p is the unique Borda
winner of the final election in which the Borda winner of subelection (C1,V )—if there exists one
(again, in model TE, only unique subelection winners move forward)—faces all candidates from C2.

The proof of Theorem 4 is deferred to the appendix and so are the upcoming proofs of Theo-
rems 6 and 11.

Theorem 4 Borda is resistant to constructive control by partition of candidates in the ties-eliminate
model.

Borda-DCPC-TE and Borda-DCRPC-TE. We now turn to the destructive variants of the previous
two problems. Unlike in the constructive case, we can give a polynomial-time algorithm for Borda-
DCPC-TE. By Fact 1, Borda-DCPC-TE is the same as Borda-DCRPC-TE in the unique-winner
model, which gives Corollary 1.

Theorem 5 Borda is vulnerable to destructive control by partition of candidates in the ties-
eliminate model.

Proof. Our algorithm uses the result of Loreggia et al. [22] that Borda-DCDC is in P (see Table 1).
Given an election (C,V ) and a distinguished candidate p ∈C the algorithm works as follows: If p
is not a unique Borda winner, accept because control is possible via the partition (C, /0). If |C| = 1,
control is impossible since p is the only candidate and always wins, so reject. Let k = |V | − 2. If
((C,V ), p,k)) is a yes-instance of BORDA-DCDC, which can be checked in polynomial time [22],
accept; otherwise, reject.

This algorithm runs in polynomial time and is correct. In step 1, if p is not a unique Borda
winner, p is at most tied with some candidates, so she can be either beaten or eliminated by the
tie-handling rule in a subelection. Correctness of step 2 is obvious. For step 3, if the constructed
instance is a yes-instance, there is a subset C′ ⊆C, |C′| ≤ k = |V |− 2, p /∈C′, so that p is at most
tied in the election (C \C′,V ). Therefore, we can eliminate p in the subelection by partitioning C
into C \C′ and C′, so control is possible. If the instance is a no-instance, p cannot be beaten or
tied even if all but one candidate other than p are deleted from the election. That means for every
C′ ⊆C, |C′| ≤ k = |V |−2, p /∈C′, that p is the sole winner of (C \C′,V ), so p cannot be eliminated
in a subelection. In this case, p wins any subelection and reaches the run-off. There may be a set
of other candidates that reached the final, say C? ⊆C, p /∈C?. If some of those candidates beat or
at least tie p in this run-off, destructive control would have still been achieved. But this will never
happen because then p could have been eliminated in a subelection by partitioning C into {p}∪C?

and C\ ({p}∪C?). As stated above, this is impossible since the constructed Borda-DCDC instance
is a no-instance, so p alone wins the run-off and control is impossible. q



Corollary 1 Borda is vulnerable to destructive control by run-off partition of candidates in the
ties-eliminate model.

Borda-DCPC-TP and Borda-DCRPC-TP. Next, we consider the same two problems as above
but with the ties-promote (TP) instead of the ties-eliminate rule, which means that all subelection
winners move forward to the final round. The proof of Theorem 6 is deferred to the appendix.

Theorem 6 Borda is resistant to destructive control by run-off partition of candidates in the ties-
promote model.

Borda-DCPC-TP is the only problem considered here (see Table 1) whose complexity in the
unique-winner model remains open. However, we can show the following in the nonunique-winner
model.

Theorem 7 In the nonunique-winner model, Borda is vulnerable to destructive control by partition
of candidates in the ties-promote model.

Proof. To prove P membership of the problem, the algorithm from the proof of Theorem 5 can
be used with some slight modifications. Let (C,V ) be a given election and p ∈C the distinguished
candidate. Apart from the trivial cases, we only need to check whether there is a candidate who
beats p in an election with a subset of candidates C′ ⊆ C \ {p}, which can be done in polynomial
time by slightly modifying an algorithm of Loreggia et al. [22]. If this is the case, we can prevent p
from winning by eliminating her in the subelection (C′∪{p},V ). Otherwise, p is a winner in every
election (C′∪{p},V ) with C′ ⊆C \{p}, so control is impossible. q

By Fact 1, Borda-DCPC-TP and Borda-DCRPC-TP are identical in the nonunique-winner
model. Therefore, Theorem 7 implies Corollary 2. In light of Theorem 6, this is somewhat surpris-
ing, as it shows that the complexity of Borda-DCRPC-TP starkly differs depending on the winner
model.

Corollary 2 In the nonunique-winner model, Borda is vulnerable to destructive control by run-off
partition of candidates in the ties-promote model.

Borda-CCPC-TP and Borda-CCRPC-TP. Finally, we turn to the constructive variants of the above
two problems. Note that a slight modification of the proof of Theorem 8 yields Corollary 3.

Theorem 8 Borda is resistant to constructive control by partition of candidates in the ties-promote
model.

Proof. To show NP-hardness, we provide a reduction from X3C to Borda-CCPC-TP. Let (X ,S )
be a given X3C instance with X = {x1, . . . ,xm}, m = 3k, k > 1, and S = {S1, . . . ,Sn} with Si ⊆ X
and |Si|= 3 for each i, 1≤ i≤ n. Again we assume that every xi ∈ X appears in exactly three subsets
S j ∈S , so n = 3k. Construct from (X ,S ) a Borda-CCPC-TP instance ((C,V ), p) as follows. Let
C = {p,r,r∗}∪X ∪S with p being the distinguished candidate. Define V to consist of the following
votes:

1. There are 2k votes of the form r
−→
X p r∗

−→
S and 2k votes of the form r

←−
X p r∗

←−
S .

2. There are 2 votes r∗
−→
S r p

−→
X and r∗

←−
S r p

←−
X .

3. For every Si = {x′,x′′,x′′′} ∈ S , there are (2k − 1)(3k + 3) + 1 votes of the form
−−−→
X \Si r r∗ p Si x′ x′′ x′′′

−−−−−→
S \{Si} and (2k − 1)(3k + 3) + 1 votes of the form

x′′′ x′′ x′ p r∗ r Si
←−−−
X \Si

←−−−−−
S \{Si}.



It is easy to see that p is beaten by r in every possible subelection and therefore is not winning
in (C,V ).

We claim that (X ,S ) is a yes-instance of X3C if and only if (C,V ), p) is a yes-instance of
Borda-CCPC-TP.

From left to right, suppose there is an exact cover S ′ ⊆ S . Then partition C into C1 =
{r,r∗} ∪S \S ′ and C2 = {p} ∪S ′ ∪ X . All candidates in C2 are directly qualified for the
final election. Furthermore, r∗ is the unique Borda winner of the subelection (C1,V ), since
dist(C1,V )(r∗,r) = −4k + 4k + 2 = 2 and dist(C1,V )(r∗,Si) > 0 for every Si ∈ S \S ′. In the final
election (C′,V ) with C′ = {p,r∗}∪S ′ ∪X , we have that p beats every candidate in S ′ and the
candidate r, since dist(C′,V )(p,r∗) = 4k−2k−2 > 0 (recall that we required k > 1). Because S ′ is
an exact cover, every xi is contained in exactly one element of S ′. Therefore,

dist(C′,V )(p,xi) =−2k(3k+1)+(3k+1)+(2k−1)(3k+1)+1 = 1

and p is the unique Borda winner of the final election.
From right to left, suppose that p can be made the only Borda winner by partitioning the

candidates. Since p is beaten by r in every possible subelection, r and p need to be in differ-
ent parts of the partition (say, r is in (C1,V )), and r needs to be eliminated in the subelection
(C1,V ). It is easy to see that r beats all candidates from X and S in all possible subelections
as well. Therefore, r∗ ∈ C1. For subsets X ′ ⊆ X and S ′ ⊆ S , the point balance of r∗ and r is
dist({r,r∗}∪X ′∪S ′,V )(r∗,r) =−4k|X ′|−4k+2|S ′|+2. In order for r∗ to beat r, no candidate from X
may be in the subelection and at least 2k candidates from S need to participate in it. This leaves
candidates C1 = {r∗, p}∪X ∪S ′ with S ′ ⊆S and |S ′| ≤ k in the final election. Note that p beats
all candidates in S ′ and the candidate r∗, since |S ′| ≤ k. Without any Si ∈S ′, p has a point deficit
of −2k(3k+1)+(3k+1) on every x j ∈ X . For every Si ∈S ′, p gains (2k−1)(3k+1)+1 points
on every x j ∈ Si. Therefore, for p to beat all candidates in X , every xi ∈ X needs to be in at least one
element of S ′. Since |S ′| ≤ k, we have that S ′ is an exact cover. q

Corollary 3 Borda is resistant to constructive control by run-off partition of candidates in the ties-
promote model.

4 Control by Partition of Voters in Borda Elections
In this section we solve the only three problems that still were open for voter control in Borda elec-
tions (recall Table 1): constructive control by partition of voters when ties promote or ties eliminate
and destructive control by partition of voters when ties promote.

In Borda-CONSTRUCTIVE-CONTROL-BY-PARTITION-OF-VOTERS-TE (E -CCPV-TE) we
ask, given an election (C,V ) and a candidate p in C, whether V can be partitioned into V1 and
V2 such that p is the unique Borda winner of the two-stage election where only unique Borda win-
ners of subelections (C,V1) and (C,V2) proceed to the final run-off. We will make use of a reduction
from the well-known NP-complete problem PARTITION [12]: Given a set A = {1, . . . ,n} and a list
s = (s1, . . . ,sn) of nonnegative integers, can A be partitioned into two subsets A1 and A2 such that
∑i∈A1

si = ∑i∈A2
si?

Theorem 9 Borda is resistant to constructive control by partition of voters in the ties-eliminate
model.

Proof. To prove NP-hardness, we now provide a reduction from PARTITION to Borda-CCPV-
TE. Given a PARTITION instance (A,s) with A = {1, . . . ,n}, a list s = (s1, . . . ,sn) of nonnegative
integers, and K = ∑i∈A si, construct a Borda-CCPV-TE instance ((C,V ), p) as follows. Let C =
B(1) ∪ ·· · ∪ B(n) ∪D∪ T ∪ {p,r,r∗} (with p being the distinguished candidate the chair wants to



make a unique winner) contain n sets B(i) = {b(i)1 , . . . ,b(i)2si−1}, 1 ≤ i ≤ n, a set D = {d1, . . . ,d2K},
and a set T = {t1, . . . , t2K+2}.

As a notation, we write Di, j = {di,di+1, . . . ,d j−1,d j}, where 1 ≤ i ≤ j ≤ 2K. Construct V to
consist of n+2 votes:

vi = r B(i) r∗ p T D B(1) · · · B(i−1) B(i+1) · · · B(n), i ∈ A,

vn+1 = p D1,K r∗ DK+1,2K r T B(1) · · · B(n),

vn+2 = r∗ D1,K−1 r T p DK,2K B(1) · · · B(n).

Since dist(C,V )(p,r) = 2K + 2− (2K + 3)− (2K + 2n) < 0, p is not a Borda winner of (C,V ).
We claim that (A,s) is in PARTITION if and only if ((C,V ), p) is in Borda-CCPV-TE.

From left to right, suppose there is a partition of A into two sets, A1 and A2, such that ∑i∈A j si =
K/2 for j ∈ {1,2}. Assign vn+1 to V1 and vn+2 to V2. Add vi to V1 for each i ∈ A1, and add the
remaining votes v j with j ∈ A2 to V2.

In subelection (C,V1), p scores K +1 points more than r∗ and 2K +2 points more than r due to
vote vn+1 alone. Candidate r∗ scores at most n− 1 points more than p by the other votes in V1, so
dist(C,V1)(p,r∗)≥ K +1− (n−1)> 0, since K ≥ n (if s1 = · · ·= sn = 1, we have K = n, otherwise
we have K > n.) And r scores 2si points more than p for each vote vi ∈ V1 with 1 ≤ i ≤ n. Since
∑i∈A1

si = K/2, dist(C,V1)(p,r) = 2K + 2− 2K/2 = K + 2 > 0, so p scores more points than r and r∗

in (C,V1). Note also that p is preferred to all candidates of D and T in the votes of V1. A candidate
b(i)j is preferred to p in at most one vote in V1 and thus can score at most 2maxi∈A{si} points more

than p. However, p scores at least |T |= 2K +2 points more than b(i)j in vn+1 and thus has a higher

score in total than b(i)j in (C,V1) because K ≥ maxi∈A{si}. It follows that p is the unique Borda
winner of subelection (C,V1) and proceeds to the final run-off.

In subelection (C,V2), r∗ scores K points more than r due to vote vn+2 alone. By the other votes
in V2, however, r scores 2K/2 = K points more than r∗, since ∑i∈A2

si = K/2. Thus dist(C,V2)(r,r
∗) =

K−K = 0, so r and r∗ are tied in (C,V2). In the votes from V2, (a) both r and r∗ are preferred to p and
to all candidates from T , (b) r is preferred to each b(i)j ∈ B(i), and (c) r∗ is preferred to each d j ∈ D.
Overall, both r and r∗ win subelection (C,V2) and thus are both eliminated by the tie-handling rule.
It follows that no candidate moves forward to the final run-off from subelection (C,V2).

Being the only participant, p alone wins the run-off.
From right to left, suppose now that p can be made the only Borda winner by some partition

of V into V1 and V2. Thus p is the only Borda winner of at least one of the subelections (C,V1)
and (C,V2). Without the vote vn+1, however, p cannot win a subelection, since both r and r∗ are
preferred to p in all other votes. Let (C,V1) be the subelection (with vn+1 ∈ V1) that p is the only
Borda winner of. Note that vn+2 /∈ V1, since otherwise p would lose too many points compared to
r and r∗ that cannot be regained via votes vi, 1 ≤ i ≤ n. Thus vn+2 ∈ V2. Due to the tie-handling
rule, at most two candidates can take part in the final run-off. In direct comparison, p is defeated
by r and r∗, since dist({p,r},V )(p,r) =−n and dist({p,r∗},V )(p,r∗) =−n. Therefore, also some votes
vi, 1≤ i≤ n, must belong to V2, for otherwise r∗ would win (C,V2) and would then defeat p in the
run-off. Since neither candidates from D nor T nor some b(i)j ∈ B(i) can win (C,V2) by adding votes
vi, 1≤ i≤ n, to V2, r and r∗ must tie so as to make sure that no candidate can proceed from (C,V2)
to the final run-off. We have dist(C,{vn+2})(r,r

∗) = −K and dist(C,{vi})(r,r
∗) = 2si for each i, 1 ≤

i≤ n. Thus we need to have dist(C,V2)(r,r
∗) =−K +∑vi∈V2

2si. Hence, dist(C,V2)(r,r
∗) = 0 requires

∑vi∈V2
2si = 2∑vi∈V2

si = 2K/2 = K to hold. Let A2 = {i | vi ∈V2}, so ∑i∈A2
si = ∑vi∈V2

si = K/2, and
with A1 = A\A2 we obtain a partition of A such that ∑i∈A1

si = ∑i∈A2
si = K/2. q

Borda-CCPV-TP and Borda-DCPV-TP. Lastly, we consider the same problem as above, but with
the ties-promote (TP) instead of the ties-eliminate rule and its destructive variant also with the ties-
promote (TP) rule.



Theorem 10 Borda is resistant to constructive control by partition of voters in the ties-promote
model.

Proof. To show NP-hardness, we provide a reduction from X3C to Borda-CCPV-TP. Let (X ,S )
be a given X3C instance with X = {x1, . . . ,xm}, m = 3k, k > 1, and S = {S1, . . . ,Sn} with Si ⊆ X
and |Si| = 3 for each i, 1 ≤ i ≤ n. Note that we again assume that every xi ∈ X appears in exactly
three subsets S j ∈S . From this restriction it follows that n = 3k. Construct from (X ,S ) a Borda-
CCPV-TP instance ((C,V ), p) as follows. First we construct a large but polynomial number of buffer
candidates B=B1∪B2∪·· ·∪B6k+3 with B2i, 1≤ i≤ 3k, containing 6k(3k+2)−1 candidates; B2i−1,
1 ≤ i ≤ 3k, containing 9k(3k+ 2)+ 4 candidates; B6k+1 containing 6k(3k+ 2)(2k− 1) candidates;
B6k+2 containing 3k(9k(3k+2)+4+6k(3k+2)) candidates; and B6k+3 containing 6k(3k+2)(k+
1)− 1 candidates. Note that all Bi, 1 ≤ i ≤ 6k+ 3 are pairwise disjunct. Let C = {p,r,r∗}∪X ∪B
with p being the distinguished candidate. Define V to consist of the following groups votes V1, V2,
V3, and V4:

1. V1 contains a single vote of the form r B6k+1 r∗ B6k+2 p
−→
X B\ (B6k+1∪B6k+2).

2. V2 contains a single vote of the form r B6k+3 r∗
←−
X p B\B6k+3.

3. V3 contains a vote v j of the form X \ Si p B2 j−1 r∗ B2 j r x′ x′′ x′′′ B \ (B2 j−1 ∪B2 j) for every
S j = {x′,x′′,x′′′} ∈S .

4. V4 contains 3k votes of the form r
←−
X p r∗ B.

Note that in the way these votes are set up, every buffer candidate b j ∈ B is behind some candi-
date from C\B in every vote (as a matter of fact, b j is behind every candidate from C\B in all votes
but one). This lets us conveniently disregard all buffer candidates, since they are eliminated in all
possible subelection and can never reach the final.

Note that p is not winning in (C,V ), since dist(C,V )(p,r)≤−(3k(9k(3k+2)+4+6k(3k+2))+
1)+ 3k(6k(3k+ 2)+ 9k(3k+ 2)+ 4) < 0. We claim that (X ,S ) is a yes-instance of X3C if and
only if (C,A,V, p) is a yes-instance of Borda-CCPV-TP.

Suppose there exists an exact cover S ′ ⊆S . Let V̂ = {v j | S j ∈S ′}. Partition V into V ′ =
V1∪ (V3 \ V̂ )∪V4 and V ′′ =V2∪ V̂ . In the subelection (C,V ′), r∗ beats every other candidate, since
dist(C,V ′)(r∗,r) = 3k(3k+2)−1−(3k+2)> 0, dist(C,V ′)(r∗, p) = 3k(9k(3k+2)+6k(3k+2)+5)−
2k(9k(3k+2)+5)−3k > 0, and dist(C,V ′)(r∗,xi)≥ dist(C,V ′)(r∗, p)+1−(2k−2)(3k−3)−9k2 > 0
for every xi ∈X . In the other subelection (C,V ′′), p is the only Borda winner, since dist(C,V ′′)(p,r∗)=
k(9k(3k+2)+5)−(3k+1)> 0, dist(C,V ′′)(p,r) =−6k(k+1)(3k+2)−(3k+1)+5k(3k(3k+2)+
1) > 0 and dist(C,V ′′)(p,xi) ≥ −3k− (k− 1)(3k− 3) + 15k(3k + 2) + 6 > 0. In the final election
({p,r∗},V ), p is the only Borda winner, since dist({p,r∗},V )(p,r∗) = 6k−2 > 0.

For the converse, suppose there is no exact cover. We now show that p cannot be made the only
Borda winner by partitioning the votes. Since no buffer candidate reaches the final, for a subset X ′ ⊆
X only the following final elections with p participating are possible: ({p,r,r∗}∪X ′,V ),({p,r}∪
X ′,V ),({p,r∗}∪X ′,V ) and ({p}∪X ′,V ). It is easy to see that p wins alone only if r∗ participates
and X ′ = /0. Without loss of generality, assume that V1 ⊆ V ′. Then p cannot win (C,V ′), since the
deficit of 2k(6k(3k+ 2))+ 3k(15k(3k+ 2)+ 5) to r cannot be made up for, not even with all the
votes from V3. Therefore, p can only win (C,V ′′). For p to beat every xi ∈ X in (C,V ′′), there need
to be votes V̂ ⊆V3 in V ′′ so that for every xi ∈ X there is a v j ∈ V̂ with xi ∈ S j. Otherwise, p would be
behind xi in every vote of V ′′. Since there is no exact cover, we need at least k+1 to ensure that p is
not beaten by a candidate xi ∈ X in (C,V ′′). Now, for r∗ to reach the final, she needs to either tie with
p in (C,V ′′) or win (C,V ′). Since V̂ ⊆V3, r∗ cannot make up the deficit of at least k(9k(3k+2)+4)
points to p, as she is ahead of r∗ in all votes of V4 and the vote of V2 would give r∗ only 3k+1 points
more than p. So r∗ needs to win (C,V ′). With V1 ⊆ V ′, it follows that V2 ⊆ V ′′, or else the point
deficit of r∗ to r in (C,V ′) from votes of V1 and V2 cannot be made up for by at most 2k−1 votes from



V3, since −(6k(3k+2)(2k−1)+1)− (6k(3k+2)(k+1))+6k(3k+2)(2k−1)< 0. But still, with
only 2k− 1 votes of V3 in V ′ and any number of votes from V4 in V ′, we have dist(C,V ′)(r∗,r) < 0,
so r∗ is not winning in (C,V ′) and cannot reach the final. Therefore, without an exact cover, either
p or r∗ cannot reach the final. q

The proof of Theorem 11, again, is deferred to the appendix.

Theorem 11 Borda is resistant to destructive control by partition of voters in the ties-promote
model.

5 Conclusions and Future Work
We have solved twelve open problems about the complexity of standard control scenarios in Borda
elections (recall Table 1), leaving just one case open: destructive control by partition of candidates
in the ties-promote model. In particular, complementing previous results, we have now shown that
Borda is resistant to every standard type of constructive control, whereas it is vulnerable to most of
the destructive control types. We have also identified one of the rare cases where the complexity
of a control problem in the unique-winner model parts company from that in the nonunique-winner
model.

As future work for control in Borda elections, we propose (a) to solve the one open question
mentioned above, (b) to provide a parameterized complexity analysis of the cases where resistance
is known, and (c) to study online control for sequential Borda elections (see Hemaspaandra et al. [18,
19] for the model of online control in sequential elections). Another challenging task is to settle the
complexity of control for all scoring rules, ideally by establishing dichotomy results in the style of
Hemaspaandra et al. [17, 20].
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A Deferred Proofs
Proof of Theorem 4. To show NP-hardness, since instances of Borda-CCRPC-TE and Borda-
CCPC-TE are defined identically, we can use the same construction as in the proof of Theo-
rem 3 that yields a reduction from 3SAT to Borda-CCRPC-TE. That is, given a 3SAT instance
ϕ(x1, . . . ,xn), construct the same candidates and votes as in the proof of Theorem 3. Note that the
argument on the point balance of p and a clause candidate Ki (after the construction in that proof)
still holds.

To show correctness of the construction, we only outline the most important arguments to high-
light the slight differences to the argumentation in that proof. To prove the equivalence from left to
right, suppose there is a satisfying truth assignment α to the variables of ϕ(x1, . . . ,xn). Partition C
into C1 and C2 so that C1 contains r, r∗, and all variable candidates that are set to false in α , and
C2 contains all the other candidates. r and r∗ tie in subelection (C1,V ) and are eliminated by the
tie-handling rule. Candidates in C2 get a bye to the final run-off in which p then beats all other
candidates (in particular, the clause candidates) from C2 because α is a satisfying truth assignment.

For the right-to-left direction, suppose that p is the unique overall Borda winner for some parti-
tion of the candidates. r had to be eliminated in the subelection; otherwise, r would have beaten p
in the run-off. This can only be achieved by r∗, who can tie (but not beat) r in the subelection if the
candidates in D, K, and p are not participating.

Thus C1 contains r, r∗, and some variable candidates, and C2 contains p and all candidates
from D, K, p, and the remaining variable candidates. All candidates from C2 advance directly
to the run-off, and in subelection (C1,V ) all winners are tieing and, therefore, are eliminated by
the tie-handling rule. Since p beats all clause candidates in the run-off, the variable candidates
must have been distributed among C1 and C2 according to the above argument. This leads to a
satisfying truth assignment if every variable candidate in C2 is assigned to true, and all the others to
false. q Theorem 4

Proof of Theorem 6. To show NP-hardness we provide a reduction from X3C to Borda-DCRPC-
TP. Let (X ,S ) be a given X3C instance with X = {x1, . . . ,xm}, m= 3k, k > 1, and S = {S1, . . . ,Sn}
with Si ⊆ X and |Si| = 3 for each i, 1 ≤ i ≤ n. Note that we assume that every xi ∈ X appears in
exactly three subsets S j ∈S (thus n = 3k). This restricted version of X3C was proven to be NP-
complete by Gonzalez [13]. Construct from (X ,S ) a Borda-DCRPC-TP instance ((C,V ), p) as
follows. Let C = {p,r} ∪X ∪ S with p being the distinguished candidate. For every xi ∈ X , let
Sxi = {S j | xi ∈ S j}. Note that |Sxi |= 3 for every xi ∈ X . Define V to consist of the following votes:

1. There are 3k+1 votes of the form p
−→
S r
−→
X and 3k+1 votes of the form p

←−
S r
←−
X .

2. There is a vote r
−→
X p
−→
S and a vote r

←−
X p
←−
S .

3. For every xi, there are (3k + 1)(3k + 2) votes xi Sxi

−−−−→
X \{xi} r p

−−−−→
S \Sxi and there are (3k +

1)(3k+2) votes p Sxi

←−−−−
S \Sxi r

←−−−−
X \{xi} xi.

4. There are 3k(3k+1)(3k+2) votes p
−→
X r
−→
S and 3k(3k+1)(3k+2) votes r

←−
X p
←−
S .

Before we proceed to prove that the reduction is correct, we need the following.

Lemma 2 For subsets X ′ ⊆ X and S ′ ⊆S , p is the unique Borda winner of the election (C′,V )
with C′ = {p,r}∪X ′∪S ′ if |X ′|< 3k or |S ′|> 0, and a Borda winner only tied with r otherwise.

Proof. For subsets X ′ ⊆ X and S ′ ⊆ S we have the following point balances in the election
(C′,V ) with C′ = {p,r}∪X ′∪S ′:

• dist(C′,V )(p,r) = (2|S ′|+2)(3k+1)−2(|X ′|+1).



• For each xi ∈ X ′, dist(C′,V )(p,xi)≥ (3k+1)(2|S ′|+2)+3k(|X ′|+1)> 0.

• For each S j ∈S ′, dist(C′,V )(p,S j)≥ (3k+1)(3k+2)((3k−3)|X ′|+6k+3k|S ′|−9)> 0.

We can see that p always beats all xi ∈ X ′ and S j ∈S ′ and ties r only if X ′ = X and S ′ = /0. Note
that even when r is removed from the election, p is the only Borda winner for any X ′ ⊆ X and
S ′ ⊆S . q Lemma 2

From Lemma 2 we see that p is the only Borda winner of election (C,V ).

Lemma 3 For subsets X ′ ⊆ X and S ′ ⊆S , p is the unique Borda winner of the election (C′,V )
with C′ = {p}∪X ′∪S ′.

Proof. For subsets X ′ ⊆ X and S ′ ⊆ S we have the following point balances in the election
(C′,V ) with C′ = {p,r}∪X ′∪S ′:

• For each xi ∈ X ′, dist(C′,V )(p,xi)≥ (3k+1)(2|S ′|)+3k(|X ′|+1)> 0.

• For each S j ∈S ′, dist(C′,V )(p,S j)≥ (3k+1)(3k+2)((3k−3)|X ′|+3k+3k|S ′|−6)> 0.

We can see that p always beats all xi ∈ X ′ and S j ∈S ′. q Lemma 3

We claim that (X ,S ) is a yes-instance of X3C if and only if (C,A,V, p) is a yes-instance of
Borda-DCRPC-TP.

From left to right, suppose there is an exact cover S ′ ⊆S . We partition C into C1 = {p}∪(S \
S ′) and C2 = {r}∪X ∪S ′. From Lemma 3, p is the only Borda winner of (C1,V ) and reaches
the final. In the second subelection, r ties every xi ∈ X , since dist(C2,V )(r,xi) = (3k+ 1)2 +(3k+
1)− (3k + 1)(3k + 2) = 0. Furthermore, r beats every S j ∈ S ′, since dist(C2,V )(r,S j) > −(3k +
1)(3k+ 2)(4k)+ 3k(3k+ 1)(3k+ 2)(5k) > 0. Due to the ties-promote model, r and every xi ∈ X
reach the final. Since p, r, and all candidates in X participate in the final, but no candidates in S do,
from Lemma 2 we can conclude that p is tied with r and thus prevented from being a unique Borda
winner.

From right to left, suppose that p can be prevented from being the unique Borda winner by par-
titioning the set of candidates. From Lemma 2 and Lemma 3 we can conclude that r, all candidates
in X and no candidate in S reach the final. Furthermore, p cannot participate in a subelection with
r or some candidates X as it would prevent at least one of them from reaching the final. Without loss
of generality, assume that p ∈C1 and {r}∪X ⊆C2. It is easy to see that p is the only Borda winner
of (C1,V ) and so reaches the final. In (({r}∪X),V ), r beats every xi ∈ X by (3k+1)(3k+2) points.
For every S j ∈ S that is added to C2, every xi ∈ S j gains (3k + 1)(3k + 2) onto r. For r and all
candidates from X to proceed to the final, candidates S ′ ∈S need to be added to C2 so that every
xi ∈ X is contained in exactly one element of S ′. Therefore, S ′ is an exact cover of X . Note also
that r beats all those candidates S ′ in (C2,V ). q Theorem 6

Proof of Theorem 11. To show NP-hardness, we provide a reduction from X3C to Borda-DCPV-
TP. Let (X ,S ) be a given X3C instance with X = {x1, . . . ,xm}, m= 3k, k > 1, and S = {S1, . . . ,Sn}
with Si ⊆ X and |Si|= 3 for each i, 1≤ i≤ n. Again, we assume that every xi ∈ X appears in exactly
three subsets S j ∈S (recall that this implies n = 3k). Construct from (X ,S ) a Borda-DCPV-TP
instance ((C,V ), p) as follows.

We start by constructing a large but polynomial number of buffer candidates B = B1∪B2∪·· ·∪
B3k+2∪{b̂1, b̂2, b̂3} with Bi, where 1≤ i≤ 3k and Si = {xp,xq,xr} with p < q < r, containing rk−3
candidates; B3k+1 containing 6k+3 candidates; and B3k+2 containing 9k2 candidates. Note that all
Bi, 1≤ i≤ 3k+2, and {b̂1, b̂2, b̂3} are pairwise disjoint.

Let C = {p,r,r∗} ∪ X ∪ B with p being the distinguished candidate. For a more convenient
construction of votes, we introduce additional notation. If we write

−−−−−−→
X|{xi,x j ,x`} for some {xi,x j,x`} ⊆



X , the candidates of X appear in the vote in the usual order but xi, x j, and x` are replaced with b̂1,
b̂2, and b̂3. It is important to note that when

−→
X appears in a vote, the candidates of X are ordered

from lowest to highest index, whereas they are ordered from highest to lowest index in case of
←−
X .

Now, define V to consist of the following groups of votes V1, V2, V3, and V4:

1. V1 contains 3k+2 votes of the form p B3k+2 r
←−
X B\B3k+2.

2. V2 contains two votes of the form r b̂1
−→
X p B\{b̂1}.

3. For every S j = {xp,xq,xr} ∈ S with p < q < r, V3 contains a vote v j that is constructed in
the following way: Set xr on position one, then (r− q)k− 1 buffer candidates from B j, then
xq (at position (r− q)k+ 1), then (q− p)k− 1 buffer candidates from B j, then xp (at position
(r− p)k + 1), then the remaining pk− 1 buffer candidates from B j, and from position rk + 1
onwards the vote has the form p r

−−−−−−→
X|{xp,xq,xr} B\ (B j ∪{b̂1, b̂2, b̂3}).

4. V4 contains 3k + 1 votes of the form r p B3k+2
−→
X B \ B3k+2 and 3k + 1 votes of the form

p r B3k+2
←−
X B\B3k+2.

The votes in V3 are set up in a way so that for a vote v j ∈ V3, if xi ∈ S j then dist(C,{v j})(r,xi) =

−(ik+1), and if xi /∈ S j then dist(C,{v j})(r,xi) = i.
Note that every buffer candidate bi ∈B is behind one candidate from C\B in all votes. Therefore,

no buffer candidate bi ever survives a subelection and we can disregard their scores.

Lemma 4 For any partition of votes (V ′,V ′′), p always is the unique Borda winner of one subelec-
tion.

Proof. Let (V ′,V ′′) be a partition of V . Since V1 contains 3k+2 votes, there is at least one part of
the partition with at least k votes of V1, let us say V ′. From these votes, p is ahead of r by at least
k(6k+4) points and ahead of every xi ∈ X by at least k(6k+5) points in (C,V ′). Even if the other
votes in V ′ all rank r ahead of p, r can only gain at most 3k+ 1+ 6k+ 4 points on p, which is not
enough to at least tie p. For each xi ∈ X , if the other votes in V ′ all rank xi ahead of p then xi can
only gain at most 2+3k2 +1 points on p, which is not enough to at least tie p. Therefore, p is the
unique Borda winner of (C,V ′). q Lemma 4

In election (C,V ), p is the unique Borda winner because dist(C,V )(p,r) = (3k + 2)(6k + 4)−
2(3k+2)+3k > 0 and dist(C,V )(p,xi)≥ (3k+2)(6k+5)−2−3(3k2)+(3k+1)(18k2+3k+2)> 0
for every xi ∈ X .

We claim that (X ,S ) is a yes-instance of X3C if and only if (C,A,V, p) is a yes-instance of
Borda-DCPV-TP.

From left to right, suppose there is an exact cover Ŝ ⊆S . Let V̂ = {v j ∈V3 | S j ∈ Ŝ }. Partition
V into V ′ =V1∪V̂ ∪V4 and V ′′ =V2∪ (V3 \V̂ )

In (C,V ′′), dist(C,V ′′)(r, p) = 6k + 4− 2k = 4k + 4 > 0 and dist(C,V ′′)(r,xi) = 2i + 2− 2(ik +

1) + (2k− 2)i = 0 for every xi ∈ X , since Ŝ is an exact cover, so every xi ∈ X is covered ex-
actly twice in S \ Ŝ . Therefore, r and all xi ∈ X tie and proceed to the final according to the
TP rule. From Lemma 4 it follows that p wins (C,V ′) alone. r ties p in the final election, since
dist({p,r}∪X ,V )(p,r) = 2 ·3k− (2|X |) = 0.

From right to left, suppose that p can be made the only Borda winner by partitioning the votes.
From Lemma 4 it follows that p always reaches the final election. Since no buffer candidate survives
the subelections, for a subset X ′ ⊆ X the only possible final elections are ({p,r}∪X ′,V ) and ({p}∪
X ′,V ). In ({p,r}∪X ′,V ), dist({p,r}∪X ′,V )(p,r) = 2 ·3k− (2|X ′|) and dist({p,xi}∪X ′,V )(p,xi)≥ 2(3k+
2)− 11 > 0 for every xi ∈ X ′. Therefore, p is not the only winner if r and all candidates in X



reach the final. In ({p} ∪X ′,V ), dist({p,xi}∪X ′,V )(p,xi) ≥ (3k + 2)− 11+ (3k + 1) > 0 for every
xi ∈ X ′. Therefore, p wins the final election alone if r or any xi fail to reach the final. From
Lemma 4 it follows that r and all xi ∈ X need to tie in one subelection. Without loss of generality,
assume that this subelection is (C,V ′). Then no vote from V1 can be in V ′ (or else p would beat r),
and no vote from V4 can be in V ′ (or else p would beat at least one xi ∈ X). Thus V ′ consists of
votes from V2 and V3. If there is no vote from V2 in V ′ then r is beaten by p; otherwise, r always
beats p. If V ′ contains one vote from V2 then r scores i+ 1 points more than every xi ∈ X . To
tie r and all xi, there need to be votes V̂ ⊆ V3 in V ′. Let Ŝ = {S j | v j ∈ V̂} and Sxi = {S j ∈ Ŝ |
xi ∈ S j}. If |Sxi | = 0 for a xi ∈ X then dist(C,V ′)(r,xi) > 0. Therefore, |V̂ | = |Ŝ| ≥ k. If |Sxi | = 3
then dist(C,V ′)(r,xi) = −3(ik+ 1)+ i+ 1+(|Ŝ| − 3)i ≤ −(3k− 1)i− 2+(3k− 3)i = −2i− 2 < 0.
If |Sxi | = 2 then dist(C,V ′)(r,xi) = −2(ik + 1)+ i+ 1+(|Ŝ| − 2)i = −(2k− 1)i− 1+(Ŝ− 2)i 6= 0
for i 6= 1. If |Sxi | = 1 then dist(C,V ′)(r,xi) = −(ik+ 1)+ i+ 1+(|Ŝ|− 1)i = 0 for |Ŝ| = k and all i.
Therefore, if V ′ consists of one vote of V2, r and all xi ∈ X can only tie if there exists an exact cover.

If V ′ contains both votes from V2 then r scores 2i+2 points more than every xi ∈X . If |Sxi |= 0 for
a xi ∈ X then dist(C,V ′)(r,xi)> 0. If |Sxi |= 3 then dist(C,V ′)(r,xi) =−3(ik+1)+2i+2+(|Ŝ|−3)i≤
−(3k− 2)i− 1+(3k− 3)i = −i− 1 < 0. If |Sxi | = 2 then dist(C,V ′)(r,xi) = −2(ik+ 1)+ 2i+ 2+
(|Ŝ|−2)i =−(2k−2)i+(|Ŝ|−2)i = 0 for |Ŝ|= 2k and all i. This would mean that S \ Ŝ is an exact
cover. If |Sxi |= 1 then dist(C,V ′)(r,xi) =−(ik+1)+2i+2+(|Ŝ|−1)i =−(k−2)i+1+(|Ŝ|−1)i≥
−(k−2)i+1+(k−1)i = 1+ i > 0. Therefore, if V ′ consists of two votes of V2, r and all xi ∈ X can
only tie if there exists an exact cover. q Theorem 11


