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Abstract

Except for a few strategy-proof mechanisms on the real line, spatial social choice
mechanisms are usually manipulable. But is it wise to treat all manipulations as
equally bad? We introduce a new measure, the price of deception, to make finer
distinctions than between “strategy-proof” and “manipulable.” The price of decep-
tion, akin to but distinct from the price of anarchy in computer science, measures
how much strategic behavior can alter the cost of the social choice. We propose
it should be one of the criteria by which a selection rule is assessed. Supported
by experimental economics data, our measure employs a novel minimal dishonesty
criterion to refine the set of Nash equilibria. We calculate the price of deception for
standard spatial selection rules, including 1-Median and 1-Mean, and find significant
differences among them. We also find that a mechanism designer can significantly
lessen the impact of manipulation by altering the set of allowed points to a hyper-
rectangle. The concepts herein could be applied to other social choice scenarios in
which a publicly known mechanism relies on private information.

1 Introduction

In spatial social choice each voter and each potential candidate is represented by a point
in Rk. The cost of a candidate to a voter is the Euclidean or some other metric distance
between the two points. Spatial models are widely applied to facility location [21], preference
aggregation [1, 10], political voting and policy selection [11, 8, 26, 33]. We denote the most
preferred or ideal point of voter v as πv.

A 1-Median selection mechanism selects a point that minimizes the total distance (L1

norm) to the voters’ ideal points. Both 1-Median selection and its generalization, the p-
Median (which selects p points), have been carefully investigated for strategy-proof variants
[29, 15, 9, 16]. But there has not been much work towards understanding the quality of the
outcomes obtained when the selection rule is manipulable.

We introduce a measure of how much strategic behavior impacts the quality of the
outcome of a selection rule. We call this measure the price of deception. To illustrate the
idea, consider the 1-Median selection rule. Let the sincere distance of a point x be the
total distance from the individuals’ sincere ideal points to x. Let a sincere optimal point
be a point with the smallest sincere distance. Suppose that the sincere distance of a point
selected when individuals are strategic is at most 3 times the sincere distance of a sincere
optimal point. Then the price of deception of the 1-Median problem would be at most 3.
This kind of measure, the worst-case ratio of actual to best possible cost, has long been
standard in computer science. In particular, the price of deception has a flavor akin to the
price of anarchy [12, 3, 25] because both involve equilibria. However, they are not equivalent
[2].

We propose that the price of deception should be one of the criteria by which a spatial
social choice rule is assessed. In general, a rule can be cast as a minimizer of a social cost;
i.e. in the 1-Median problem, the selected point minimizes the distance to the ideal points.
If a point’s cost has an intrinsic correspondence to its quality, then the price of deception
has a correspondence to the capability of a selection rule to select a quality point. More
generally, the price of deception measures a selection rule’s ability to provide the expected
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sincere outcome despite fictitious play. Like the computational complexity of manipulation
[23, 34], the price of deception offers finer distinctions than simply between “manipulable”
and “non-manipulable.”

The concept of the price of deception applies not only to spatial social choice, but to
much of social choice in general. A centralized mechanism makes a decision that optimizes
a measure of social benefit or cost based on information submitted by individuals. However,
individuals have their own valuation of each possible outcome. Therefore they place a game
of deception in which they provide possibly untruthful information, and experience outcomes
in accordance with their own true valuation of the centralized decision made based on the
information they provide.

We remark that the revelation principle [35, 36] is irrelevant to the price of deception.
This is because revelation elicits sincere information only by yielding the same outcome
that strategic information would yield. The revelation principle can be a powerful tool for
analyzing outcomes. But for our purposes, the elicitation of sincere preference information
is not an end in itself.

1.1 The Minimal Dishonesty Refinement

Analyzing “games of deception” is by no means novel [18, 42, 17, 41, 20, 40, 29, 5]. Yet
the solution concept is neglected in many areas as researchers still simply label mechanisms
as “manipulable” or “strategy-proof”. While we make no attempt to describe the beliefs
or intentions of other researchers, we believe there is a good reason to neglect the Nash
equilibrium solution concept as we have described it, because the outcomes of games of
deception often make little sense.

For instance, consider the 1-Median problem in R with an odd number n ≥ 3 of voters.
The selected point will coincide with the median voter’s ideal point. Suppose every voter
most prefers the point x. Then obviously, the selected point should be x. However, the Nash
equilibrium solution concept tells us something different. If everyone lies and indicates that
they prefer y 6= x, then the selected point will be y. Furthermore, if any single individual
alters their submitted preferences then the median voter will still be located at y and
the selected point will not change. Therefore for every possible point y, there is a Nash
equilibrium where y is selected. We believe these absurd equilibria are the biggest obstacle
to understanding the effects of strategic behavior.

To overcome this obstacle, we introduce a minimal dishonesty refinement to the Strategic
Spatial Social Choice Game. An individual is minimally dishonest if any attempt to be more
honest results in a strictly worse outcome.

We argue minimal dishonesty has an intuitive explanation, has a precedent in the voting
community, show it is consistent with the current literature on strategy-proofness and cite a
large amount of experimental evidence backing our refinement. If individual v can be more
honest and get at least as good a result, then the individual would do so because lying causes
guilt and because being somewhat truthful is cognitively easier than lying spuriously. Thus,
there is some “utility” associated with being more honest. Therefore an individual that
is not minimally dishonest is not acting in their best interest. Hence, we view minimally
dishonest Nash equilibria as the set of reasonable outcomes in the Strategic Spatial Social
Choice Game.

The voting literature sets a precedent for an honesty refinement with the partial honesty
[13, 14, 24, 27, 37, 31] or truth-bias [39] refinement. This refinement assumes an individual
is completely honest unless it negatively impacts their valuation of the outcome. However,
this refinement assumes individuals evaluate honesty in a binary sense whereas later we learn
individuals have a more nuanced idea of honesty. While this refinement does eliminate some
of the absurd equilibria, it fails to eliminate some equilibria where individuals lie spuriously.
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There is however a recent variant of truth-bias [38] where individual utilities are penalized
by the size of the lie they tell. If individuals select their preference from a finite set, this
variant can be shown to be equivalent to the minimal dishonesty refinement. However,
in the setting of spatial social choice, these distorted costs can result in outcomes where
individuals behave irrationally. We show both results in Appendix D.

The assumption of minimal dishonesty is also consistent with the current literature’s
assumptions of “strategy-proof” or “non-manipulable” mechanisms. Current literature as-
sumes that if a mechanism is strategy-proof then every individual will be honest. However,
strategy-proofness only requires that the sincere profile Π be at least one of the Nash equi-
libria. It does not require Π to be the only Nash equilibrium. The set of Nash equilibria
predicts the outcome of events, yet the literature ignores all other equilibria when the mech-
anism is strategy-proof. This is reasonable because it makes little sense for people to lie
when there is not an incentive to do so. Minimal dishonesty captures this behavior; in
Section 2.2 we show that a mechanism is strategy-proof if and only if the sincere Π is the
only minimally dishonest equilibrium.

We’ve argued that minimal dishonesty is logically intuitive, has a precedent in the voting
literature, and that it explains the assumptions researchers make when using strategy-proof
mechanisms. Most importantly, our hypothesis is supported by a substantial body of em-
pirical evidence from the experimental economics and psychology literatures that people are
averse to lying. Gneezy [19] experimentally finds that people do not lie unless there is a
benefit. Hurkens and Kartik [22] perform additional experiments that confirm an aversion
to lying, and show their and Gneezy’s data to be consistent with the assumption that some
people never lie and others always lie if it is to their benefit. Charness and Dufwenberg
[6] experimentally find an aversion to lying and show that it is consistent with guilt avoid-
ance. Battigalli et al. [4] experimentally find some contexts in which guilt is insufficient
to explain aversion to deception. Several papers report evidence of a “pure,” i.e., context-
independent, aversion to lying [28, 7, 19, 22] that is significant but not sufficient to fully
explain experimental data.

The set of research results we have cited here is by no means exhaustive. Two others
are of particular relevance to our concept of minimal dishonesty. Mazar et al. [32] find that
“people behave dishonestly enough to profit but honestly enough to delude themselves of
their own integrity.” Lundquist et al. [30] find that people have an aversion to lying which
increases with the size of the lie. Both of these studies support our hypothesis that people
will not lie more than is necessary to achieve a desirable outcome.

Some experimental evidence is less confirmatory of our hypothesis. Several studies,
beginning with [19], have found an aversion to lying if doing so would disbenefit someone
else substantially more than the benefit one would accrue.

1.2 Results

We begin by analyzing the Spatial Social Choice problem in R – that is where the set of
points can be represented by a line segment. We analyze deterministic and random variants
for the 1-Median problem and the 1-Mean problem and find interesting differences between
them. We first show that the deterministic version of the 1-Median problem has a price of
deception of 1. This is the best possible outcome we can hope for in a manipulable decision
mechanism; while the 1-Median problem is manipulable, manipulation has no impact on
the social cost. Next we show that the 1-Median problem with random tie-breaking has a
price of deception of

√
2 – manipulation can cause social cost to increase by a factor of

√
2.

This result is striking; a small change to a decision mechanism such as a tie-breaking rule
may have significant effects on the impact of manipulation. Finally we analyze the 1-Mean
problem with n players and show that the price of deception is between n and 2n.
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Next we examine the Spatial Social Choice problem in Rk for k ≥ 2. Unlike the problem
in R, the set of possible points can take on a variety of shapes. We show that the shape of the
set of points can have significant effects on the impact of manipulation. Specifically, if there
are no restrictions on the set of points then the price of deception can be arbitrarily high.
The mechanism designer can ameliorate the impact of manipulation by changing the set of
allowed points to a hyperrectangle. In this setting we show the price of deception of the
deterministic 1-Median, random 1-Median, and 1-Mean problem with n players to be 1,

√
2,

and between n and 2n respectively. We also analyze the selection rule that minimizes the
L2 norm between the point and player’s ideal points1 and show that the price of deception
is ∞ regardless of the set of allowed points.

2 Definitions

An instance of the Spatial Social Choice problem consists of a compact convex set X ⊆ Rk
of feasible points and a set V of individuals. Each individual v ∈ V has an ideal point
πv ∈ X representing v’s preferred point. Denote by Π the collection of πv over all v ∈ V .
Π ∈ X |V | is called the preference profile. The profile Π is submitted to a selection rule r.
The outcome r(Π) corresponds to a point or a distribution of points.

The selection rule r(Π) is an optimizer of a social cost function. We consider three
mechanisms, each having a different social cost function:

C(Π, x) =
∑
v∈V
||πv − x||1 (1-Median)

C(Π, x) =
∑
v∈V
||πv − x||22 (1-Mean)

C(Π, x) =
∑
v∈V
||πv − x||2 (L2 Norm)

Only the 1-Mean problem is guaranteed a unique optimizer. For the other problems we
consider both deterministic and random tie-breaking rules.

Individual v’s cost of the point x ∈ X is given by cv(πv, x) = ||πv − x||pv =

(
∑
i(πvi − xi)pv )

1/pv for some pv ∈ (0,∞). Typically pv is taken to be 2 (the Euclidean
norm). We derive our results for any pv. In the event that the procedure r is random, we
assume that individuals are risk-neutral and that cv(πv, X) for some distribution X is equal
to its expected value.

Strategic Spatial Social Choice Game

• Each individual v has an ideal point πv ∈ X . The collection of all ideal points is the
(sincere) profile Π = {πv}v∈V .

• To play the game, individual v submits a putative ideal point π̄v ∈ X . The collection
of all submitted data is denoted Π̄ = {π̄v}v∈V .

• It is common knowledge that a central decision mechanism will select point or distri-
bution of points r(Π̄) when given input Π̄.

• Individual v evaluates r(Π̄) according to v’s sincere preferences πv. Specifically, indi-
vidual v’s cost of the distribution of outcomes r(Π̄) is cv(πv, r(Π̄)) = E(||πv−r(Π̄)||pv )
for some pv ∈ (0,∞).

1In R minimizing the L2 norm is equivalent to solving the 1-Median problem.
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A set of putative preferences Π̄ forms a pure strategy Nash equilibrium if no individual
v would obtain an outcome they sincerely prefer to r(Π̄) (with respect to πv) by altering
π̄v. Formally, Π̄ is a Nash equilibrium if and only if

cv(Π̄) ≤ cv([Π̄−v, π̄′v]) for π̄′v ∈ X and v ∈ V (Nash equilibrium)

where [Π̄−v, π̄
′
v] denotes the profile obtained from Π̄ by replacing π̄v with π̄′v.

Example 2.1. A Nash Equilibrium of the Strategic Spatial Social Choice Game.

Consider the 1-Mean problem. It is well known that the optimizer of (1-Mean) is r(Π) =∑
v∈V

πi
|V | . Consider the feasible region X = {x ∈ R2 : (0, 0) ≤ x ≤ (1, 1)} and the sincere

preferences π1 = (0, 0), π2 = (0, 1
3
) and π3 = ( 1

3
, 0). With respect to these preferences, the selected

point is located at r(Π) = ( 1
9
, 1
9
). This corresponds to a cost of C(Π, r(Π)) =

∑3
i=1 ||πi − r(Π)||22 =

4
27

. The region X and sincere preferences, Π, are given in Figure 1.

π1 = π̄1

π̄2

π̄3

r(Π̄)

r(Π)

π2

π3

Figure 1: Sincere and Putative Preferences for Example 2.1

Individual 1 would like to move the point to the lower left, individual 2 to the upper left, and
individual 3 to the lower right. A Nash equilibrium where individuals attempt to do just this is
given by π̄1 = (0, 0), π̄2 = (0, 1), and π̄3 = (1, 0). With respect to the submitted preferences Π̄, the
point is r(Π̄) = ( 1

3
, 1
3
). The central decision mechanism believes it has selected a point with cost

C(Π̄, r(Π̄)) =
∑3
i=1 ||π̄i − r(Π̄)||22 = 4

3
. However, with respect to the true preferences Π, the point

actually costs C(Π, r(Π̄)) =
∑3
i=1 ||πi − r(Π̄)||22 = 4

9
.

To see that Π̄ corresponds to a Nash equilibrium, first consider individual 1. If individual 1

alters her submitted ideal point π̄1, then she must move it up or to the right. Such an action

causes the point to move up or to the right respectively. Both possibilities cause the point to move

further away from π1 and therefore individual 1 cannot alter her submitted preferences to get a

better result. Individual 2 and Individual 3 are giving best responses by symmetric reasoning and Π̄

is a pure strategy Nash equilibrium.

Example 2.1 demonstrates that manipulation in the 1-Mean problem can cause the social
cost to increase from 4

27 to 4
9 – a cost that is 3 times worse.

2.1 The Price of Deception

The price of deception is a worst-case analysis of how much manipulation can impact the
social cost.
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Definition 2.2. Let r be a selection rule that minimizes the real-valued cost function C.
Let NE(Π) denote the set of equilibria of the Strategic Spatial Social Choice Game with
procedure r given the sincere profile Π. Then the price of deception of r is

sup
Π∈P

sup
Π̄∈NE(Π)

E(C(Π, r(Π̄)))

C(Π, r(Π))
(The Price of Deception)

Proving that the price of deception is u requires two parts. First, there must be an
instance (or family of instances) showing that manipulation can cause social cost to increase
by a factor of u (arbitrarily close to u) indicating the price of deception is at least u. Second,
there cannot be an instance where manipulation can cause social cost to increase by a factor
more than u indicating the price of deception is at most u.

For instance, Example 2.1 demonstrated that in the 1-Mean problem with 3 individuals
may result in the social cost increasing by a factor of 3 and therefore the price of deception
is at least 3. To show a price of deception of 3 we would also have to provide a proof that
manipulation cannot cause social cost to increase by a factor more than 3.

2.2 The Minimally Dishonest Refinement

The necessity of a refinement on the set of Nash equilibria was established in Section 1.1.
We’ve also shown that our minimally dishonest refinement is intuitive, has a precedent in
the voting literature, and is backed by a large amount of experimental evidence. In this
section, we formally define the minimally dishonest refinement and show that it is consistent
with the literature’s assumption of honesty in strategy-proof mechanisms.

Definition 2.3. Let Π be the sincere preferences and let Π̄ be a Nash equilibrium in the
Strategic Spatial Social Choice Game. An individual v is minimally dishonest if ||πv− π̄′v|| <
||πv − π̄v|| implies cv(πv, r([Π̄−v, π̄

′
v)]) > cv(πv, r(Π̄)).

An individual is minimally dishonest if being more honest always results in a strictly
worse outcome for the individual. A minimally dishonest Nash equilibrium is a Nash equi-
librium where every individual is minimally dishonest.

Definition 2.4. A mechanism is strategy-proof if the sincere πv is always a best response
to Π−v for all v ∈ V and Π.

Theorem 2.5. A mechanism is strategy-proof if and only if Π is the only minimally dis-
honest equilibrium for any sincere Π.

Proof. For the first direction, since the mechanism is strategy-proof, it is always a best re-
sponse for individual v to submit the honest πv regardless of all other preferences. Therefore
πv is the unique minimally dishonest best response for individual v. This holds for all v and
therefore Π is the unique minimally dishonest Nash equilibrium.

For the second direction, let Π be an arbitrary set of sincere preferences. Since Π is a
minimally dishonest equilibrium for the sincere profile Π, πv is a best response to Π−v for
all v. This holds for all πv and Π−v and therefore honesty is always a best response and the
mechanism is strategy-proof.

3 Prices of Deception for Selection Rules in R
3.1 The 1-Median Problem with Deterministic Tie-Breaking

We begin by breaking ties deterministically. Let a(Π)i = argmin{πvi : |{v′ : πv′i ≤ πvi}| ≥
|V |/2} and b(Π)i = argmax{πvi : |{v′ : πv′i ≥ πvi}| ≥ |V |/2}. It is now straightforward to
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verify that x minimizes (1-Median) if and only if x ∈ [a(Π), b(Π)]. Using this notation, we
can now define the λ-1-Median problem.

Definition 3.1. Let λ ∈ [0, 1]k. For the profile Π, let {x ∈ Rk : a(Π) ≤ x ≤ b(Π)} be
the set of optimal points in the 1-Median problem. The λ-1-Median problem selects point
r(Π) = (1− λ)a(Π) + λb(Π).

Theorem 3.2. When individuals are minimally dishonest, the price of deception for the
λ-1-Median problem in R is 1.

Proof of Theorem 3.2. Let Π and Π̄ be sincere and submitted preferences where Π̄ is a
minimally dishonest Nash equilibrium. It suffices to show r(Π̄) = (1 − λ)a(Π̄) + λb(Π̄) ∈
[a(Π), b(Π)] since every x ∈ [a(Π), b(Π)] is an optimal solution to the 1-Median problem
for preferences Π. For contradiction and without loss of generality, suppose (1 − λ)a(Π̄) +
λb(Π̄) < a(Π).

First we claim that if πv ≥ b(Π) then π̄v ≥ b(Π). For contradiction suppose there exists
a v where πv ≥ b(Π) but π̄v < b(Π). If v instead submits π̄′v = π̄v + ε for some ε > 0 then
r([Π̄−v, π̄

′
v]) ≥ r(Π̄). Moreover, (1-Median) is continuous and therefore ε can be selected

sufficiently small so that r(Π̄) ≤ r([Π̄−v, π̄′v]) ≤ πv. Therefore, v can submit the more honest
π̄′v and obtain at least as good an outcome contradicting minimal dishonesty. Therefore the
claim holds.

By our claim, |{v : π̄v ≥ b(Π)}| ≥ |{v : πv ≥ b(Π)}| ≥ |V |
2 . If |{v : πv ≥ b(Π)}| > |V |

2

then |{v : π̄v < b(Π)}| < |V |
2 implying a(Π̄) ≥ b(Π), a contradiction. Therefore |{v : πv ≥

b(Π)}| = |V |
2 implying |V | is even. This completes the proof when |V | is odd and implies

a(Π) < b(Π) when |V | is even.
Let v′ be such that πv′ = a(Π). If π̄v ≥ a(Π) then |{v : π̄v ≥ a(Π)}| ≥ |{v : πv ≥

b(Π)}| + 1 ≥ n
2 + 1 implying |{v : π̄v < a(Π)}| < n

2 and a(Π̄) ≥ a(Π), a contradiction.
Therefore π̄v < a(Π). Now suppose instead v′ submits π̄′v = π̄v′ + ε for some ε > 0. Similar
to before, ε can be selected sufficiently small so that r(Π̄) ≤ r([Π̄−v′ , π̄′v′ ]) ≤ πv′ . Therefore,
v′ can submit the more honest π̄′v′ and obtain a least as good of an outcome contradicting
minimal dishonesty completing the proof of the theorem.

Theorem 3.2 shows that manipulation may alter the outcome of the decision mechanism
but manipulation will not impact the social cost. Furthermore, we can select λ such that
the mechanism is not manipulable. Specifically, for λ ∈ {0, 1}, the λ-1-Median problem is
strategy-proof.

Theorem 3.3. Fix λ ∈ {0, 1}. The λ-1-Median problem in R is strategy-proof.

Proof. By definition of strategy-proof, we need to show that the sincere πv is a best response
to Π−v for all v and Π−v. By symmetry, assume λ = 1 and r(Π) = b(Π). If πv = b(Π)
then it trivially a best response for v to be honest. If πv > b(Π), then v can only change
the outcome by submitting π̄v < b(Π) resulting in r([Π−v, π̄v]) ≤ r(Π) < πv. However, this
solution is no better for v and therefore πv is a best response. Symmetrically, πv is a best
response if πv < b(Π) completing the proof of the theorem.

When |V | is odd, a(Π̄) = b(Π̄) and the tie-breaking rule is never invoked. Therefore the
1-Median problem is strategy-proof with an odd number of voters.

Corollary 3.4. When |V | is odd the 1-Median problem in R is strategy-proof.
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3.2 The 1-Median Problem with Random Tie-Breaking

Next, we consider breaking ties uniformly at random. If |V | is odd then there are no ties
and the 1-Median problem is strategy-proof. When there is an even number of voters we
show that the price of deception is

√
2. First we characterize an individual’s best response.

Lemma 3.5. Suppose |V | = 2 and each voter must submit a location in the interval X =
[l, u] for the 1-Median problem when breaking ties uniformly at random. If π̄1 ≤ π2, then
voter 2’s unique minimally dishonest best response is π̄2 = min{u, π̄1 +

√
2(π2 − π̄1)}.

The proof of Lemma 3.5 is deferred to Appendix A.

Theorem 3.6. Let |V | = 2. When both individuals are minimally dishonest and ties are
broken uniformly at random, the price of deception for the 1-Median problem in R is

√
2.

Proof. Without loss of generality π1 ≤ π2. First we consider π1 = π2. Following from
Lemma 3.5, the only minimally dishonest Nash equilibrium is Π̄ = Π. In this setting
manipulation has no impact on social cost and we assume π1 < π2.

By scaling, translating, and reflecting we may assume π1 = −1 and π2 = 1 and that
u ≥ −l. The sincere outcome r(Π̄) selects a point uniformly at random in [−1, 1] with
cost U(Π, r(Π)) = 2. Again let Π̄ be a minimally dishonest Nash equilibrium. By Lemma
A.1 of Appendix A, π̄1 ≤ π2. Therefore by Lemma 3.5 π̄2 = min{u, π̄1 +

√
2(1 − π̄1)}.

Symmetrically, π̄1 = max{l, π̄2 +
√

2(−1− π̄2)}.
Observe that if π̄2 = u then

π̄2 +
√

2(−1− π̄2) = (1−
√

2)u−
√

2 (1)

≤ (
√

2− 1)l −
√

2 < l (2)

This implies that if π̄2 = u then π̄1 = l. Therefore we can break the problem into two cases:
π̄1 > l, π̄2 < u; and π̄1 = l.

Case 1: π̄1 > l, π̄2 < u. For brevity, let C = C(Π, r(Π̄)). Therefore

E(C) =
π̄2

2 + π̄2
1 + 2

π̄2 − π̄1
. (3)

By Lemma 3.5

π̄2 = (1−
√

2)π̄1 +
√

2 (4)

π̄1 = (1−
√

2)π̄2 −
√

2 (5)

which has the unique solution π̄2 = −π̄1 = 1 +
√

2 yielding E(C) = 2
√

2. When everyone is
sincere C(Π, r(Π)) = 2 and the price of deception is at most

√
2.

Case 2: π̄1 = l. By Lemma 3.5, l ≥ (1−
√

2)π̄2−
√

2 and π̄2 ≤ (1−
√

2)l+
√

2. Combining
both inequalities, l ≥ −

√
2− 1. Combining the last two inequalities, π̄2 ≤

√
2 + 1.

The function (z2 + y2 + 2)/(z − y) is increasing on the interval 0 ≤ z ≤
√

2 + 1 when
y ∈ [−

√
2 − 1, 0] and decreasing on the interval −

√
2 − 1 ≤ y ≤ 0 when z ∈ [0,

√
2 + 1].

Therefore

E(C) =
π̄2

2 + π̄2
1 + 2

π̄2 − π̄1
≤ (
√

2 + 1)2 + (−
√

2− 1)2 + 2

(
√

2 + 1)− (−
√

2− 1)
= 2
√

2. (6)

As in Case 1, the cost of the sincere outcome is 2 and the price of deception is at most√
2. An instance showing the price of deception is at least

√
2 follows from Case 1 with u

and l sufficiently large completing the proof of the theorem.
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Theorem 3.7. Suppose |V | is even. When individuals are minimally dishonest and ties are
broken uniformly at random, the price of deception for the 1-Median problem in R is

√
2.

We prove Theorem 3.7 by ordering the individuals so that π−n ≤ π−n+1 ≤ ... ≤ π−1 ≤
π1 ≤ π2 ≤ ...πn. We then reduce the |V |-player game to a 2-player game between players
−1 and 1 and show manipulation impacts social cost in the 2-player game at least as much
as it impacts social cost in the |V |-player game. Theorem 3.7 then follows from Theorem
3.6. The full details of the proof can be found in Appendix A.

3.3 The 1-Mean Problem

Theorem 3.8. The price of deception of the 1-Mean problem in R is between |V | and 2|V |.

Proof. First we show an upper bound of 2|V |. Let Π̄ be a Nash equilibrium for the sincere
profile Π. Let [a, b] be the smallest interval such that Π ∈ [a, b]. Without loss of generality
we may assume a = 0. As established, the decision mechanism selects r(Π) =

∑
v∈V

πv

|V | to

minimize
∑
||πi − x||22 and therefore rj(Π) ∈ [0, b]. We then have∑

v∈V
||πv − r(Π)||22 =

∑
v∈V

(πv − r(Π))2 (7)

≥ min
v∈V

(πv − r(Π))2 + max
v∈V

(πv − r(Π))2 (8)

= r(Π)2 + (b− r(Π))2 (9)

≥
(
b

2

)2

+

(
b− b

2

)2

=
b2

2
(10)

and therefore the sincere cost of the point is at least b2

2 .
Next we claim r(Π̄) ∈ [0, b]. Suppose instead r(Π̄) < 0 and there exists an individual v

that submits π̄v ≤ r(Π̄) < 0. If v instead submits the location 0, then the selected point
moves closer to 0, a strict improvement for every individual contradicting that Π̄ is a Nash
equilibrium. Therefore r(Π̄) ≥ 0. Symmetrically r(Π̄) ≤ b completing the claim.

Since r(Π̄) ∈ [0, b] and πv ∈ [0, b] for all v, the sincere cost for the point is∑
v∈V
||πv − r(Π̄)||22 =

∑
v∈V

(πv − r(Π̄))2 (11)

≤
∑
v∈V

b2 = |V |b2. (12)

Therefore, the manipulation causes the social cost to increase by a factor of∑
v∈V ||π̄i − r(Π)||22∑
v∈V ||πi − r(Π)||22

≤ |V |b
2

b2

2

= 2|V | (13)

We now present an instance with a price of deception of |V |. Let X = [0, |V |]. Let π1 = 1
and πv = 0 for all v ∈ V \ {1}. If everyone is sincere, then the selected point is r(Π) = 1

|V |

with a social cost of |V |−1
|V | .

Now consider the putative preferences Π̄ where π̄1 = |V | and π̄v = πv for all other v.
With respect to these preferences, the selected point is r(Π̄) = 1 for a sincere social cost
of |V | − 1. It is straightforward to verify that Π̄ is a minimally dishonest Nash equilibrium
and therefore manipulation can cause the social cost to increase by a factor of |V |. Thus,
the price of deception is between |V | and 2|V | completing the proof of the theorem.
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4 Prices of Deception for Selection Rules in Rk for k ≥ 2

4.1 The 1-Median Problem with Deterministic Tie-Breaking

Since the 1-Median problem is separable we might expect that Theorems 3.2 and 3.7 hold
in higher dimensions. However, while determining r(Π) might be separable, determining
a minimally dishonest best response π̄v is not. Regrettably, the lack of separability in
determining a best response can lead to a large price of deception in higher dimensions.

Theorem 4.1. Suppose λ1 ∈ (0, 1)k and |V | is even. When individuals are minimally
dishonest, the price of deception of the λ-1-Median problem in Rk is ∞ for k ≥ 2.

Proof. It suffices to show the result for k = 2 since the bad example can always be placed in
higher dimensions. Let |V | = 2n for some integer n ≥ 2. The sincere preferences are πv = 0
for all v. The set of feasible points is X = conv.hull(π1, a, b) as shown in Figure 2 where
conv.hull(S) is the convex hull of S.

πv = (0, 0)

b = (1, 1)a = (λ1−1
λ1

, 1)

Figure 2: Preferences Showing the Price of Deception is ∞ for the λ-1-Median Problem.

If everyone is honest, then the selected point is r(Π) = (0, 0) with total cost 0. Suppose
half the voters submit π̄v = a and half the voters submit π̄v = b. Then r(Π̄) = λa+(1−λ)b =
(0, 1) with a sincere cost of |V |. If Π̄ is a minimally dishonest Nash equilibrium, then the
price of deception is ∞.

We now show that Π̄ is a minimally dishonest Nash equilibrium. Consider voter v that
submits π̄v = b. Regardless of how she alters her submitted information, more than half
the voters submit a height of 1 and therefore she cannot change the height of the point.
Moreover, if she alters her preferences at all then the point moves to the left corresponding
to a worse outcome for her. Therefore v is providing a minimally dishonest best response.
Symmetrically voter v submitting π̄v = a is providing a minimally dishonest best response
and Π̄ is a minimally dishonest Nash equilibrium.

Theorem 4.1 shows there are sets of possible locations such that the price of deception
is arbitrarily large. As mechanism designers, we may alter X such that we obtain more
desirable results. Specifically, we show that if X = {x ∈ Rk : l ≤ x ≤ u} then manipulation
does not impact social cost in the λ-1-Median problem.

Theorem 4.2. Suppose X = {x ∈ Rk : l ≤ x ≤ u}. When individuals are minimally
dishonest, the price of deception of the λ-1-Median problem is 1 for all λ ∈ [0, 1]k.

Unlike the instance shown in Figure 2, selecting jth coordinate of π̄v places no restrictions
on the remainder of π̄v and therefore the a minimally dishonest best response is a separable
problem. Thus, the k-dimensional case reduces to the 1-dimensional case and Theorems 4.2

10



holds by Theorem 3.3. Moreover, we also immediately obtain a variety of strategy-proof
mechanisms regardless of X .

Theorem 4.3. Fix λ ∈ {0, 1}k and X = {x ∈ Rk : l ≤ x ≤ u}. The λ-1-Median problem is
strategy-proof.

Given the description of X , determining a best response is again separable. Therefore it
suffices to show the result holds for the one dimensional case and Theorem 4.3 follows from
Theorem 3.3.

Theorem 4.4. Fix λ ∈ {0, 1}k and let X be arbitrary. The λ-1-Median problem is strategy-
proof.

Proof. We begin by defining a second voting procedure by expanding X . Let l, u ∈ Rk be
such that X ⊆ X ′ = {x ∈ Rk : l ≤ x ≤ u}. Consider the λ-1-Median problem on the set X ′
with sincere preferences Π. By Theorem 4.3, πv ∈ X is a best response for each voter v.

Since X ⊆ X ′ and πv ∈ X for all v, πv must also be a best response in the original
procedure with the smaller feasible set X completing the proof of the theorem.

Corollary 4.5. Let X be arbitrary. When |V | is odd, the 1-Median problem is strategy-
proof.

As with Corollary 3.4, Corollary 4.5 immediately holds because there are never any ties
when |V | is odd.

4.2 The 1-Median Problem with Random Tie-Breaking

Theorem 4.6. When individuals are minimally dishonest and ties are broken uniformly at
random, the price of deception of the 1-Median problem in Rk is ∞ for k ≥ 2.

The proof of Theorem 4.6 is similar to the proof of Theorem 4.1 and is deferred to
Appendix B. Thus once again the price of deception may be arbitrarily high when no
restrictions are placed on the set of allowed points X .

Theorem 4.7. Suppose |V | is even and X = {x ∈ Rk : l ≤ x ≤ u}. When individuals are
minimally dishonest and ties are broken uniformly at random, the price of deception of the
1-Median problem is

√
2.

Finding a minimally dishonest best response is again a separable problem and Theorem
4.7 follows directly from Theorem 3.7.

4.3 The 1-Mean Problem

Theorem 4.8. The price of deception of the 1-Mean problem in Rk for k ≥ 2 is ∞.

The proof of Theorem 4.8 is similar to the proofs of Theorems 4.1 and 4.6 and is deferred
to Appendix C.

Theorem 4.9. Suppose the set of feasible points is X = {x ∈ Rk : l ≤ x ≤ u}. Then the
price of deception of of the 1-Mean problem is between |V | and 2|V |.

The proof of Theorem 4.9 follows identically to Theorem 3.8.
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4.4 Minimizing L2 Norm

Theorem 4.10. Let X be an arbitrary set that contains an open two-dimensional subspace.
When individuals are minimally dishonest and ties are broken by selecting the center point or
uniformly at random, the price of deception when minimizing the sum of L2 norm distances
is ∞.

Proof. It suffices to show this is true in R2. By scaling and shifting X we may assume
{(0, 0), (−1, 1), (1, 1)} ∈ X . Let |V | ≥ 4 be even and suppose πv = (0, 0) for all v. If everyone
is honest then the selected point is r(Π) = (0, 0) with a social cost of 0. Suppose instead
that the players submit Π̄ where half the voters submit (−1, 1) and the other half submits
(1, 1). With respect to these preferences, the point is either (0, 1) or selected uniformly at
random between (−1, 1) and (1, 1) with a sincere cost of at least 1. Furthermore, if Π̄ is a
minimally dishonest Nash equilibrium, then the price of deception of this instance is ∞.

We now show Π̄ is a minimally dishonest Nash equilibrium. It suffices to examine player
v that submits π̄v = (−1, 1). If player v instead submits π̄′v = (π̄′v1, π̄

′
v2) where π̄′v2 6= π̄v2,

then r([Π̄−1, π̄
′
1]) = (1, 1) yielding a worse outcome for player v. If π̄′v is directly to the left

of π̄v, then the outcome does not change and player v is less honest. If player v submits
π̄′v = (w, 1) for some w ∈ (−1, 1), then the point is either ( 1+w

2 ≥ 0, 1) or selected uniformly
at random between (w, 1) and (1, 1). Both correspond to worse outcomes for player v.
Finally, if player v submits π̄′v = (w, 1) for some w ≥ 1, then r([Π̄−1, π̄

′
1]) = (1, 1) yielding a

worse outcome for player v. All possibilities yield either worse outcomes for player v or cause
player v to be less honest without any benefit. Thus player v is giving the unique minimally
dishonest best response and Π̄ is a minimally dishonest Nash equilibrium. Therefore the
price of deception when minimizing the L2 norm is ∞.

5 Conclusion

Our results show that strategic behavior impacts the outcomes of different decision mecha-
nisms in very different ways. In the case of deterministic variants of the 1-Median problem,
we show that while the selection rule is manipulable, strategic behavior has no impact on
the quality of the outcome. However, if we make a small change to the 1-Median problem
and break ties randomly instead, then the manipulation has a much larger impact on social
cost. For the 1-Mean problem we see that the impact of manipulation scales linearly with
the number of voters and when minimizing the L2 norm manipulation can always lead to
arbitrarily poor outcomes. We also show that the mechanism designer can ameliorate the
impact of manipulation simply by altering the set of allowed outcomes. Importantly, the
price of deception successfully captures this behavior and thus we recommend that it be one
of the criteria in which a decision mechanism is assessed.
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Procaccia. Handbook of Computational Social Choice. Cambridge University Press,
2016.

[35] Roger B Myerson. Game theory. Harvard university press, 2013.

[36] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. Algorithmic Game
Theory. Cambridge University Press, New York, NY, USA, 2007.

[37] Mat́ıas Núñez and Jean-François Laslier. Bargaining through approval. Journal of
Mathematical Economics, 60:63 – 73, 2015.

14



[38] Svetlana Obraztsova, Omer Lev, Evangelos Markakis, Zinovi Rabinovich, and Jeffrey S.
Rosenschein. Distant truth: Bias under vote distortion costs. In Proceedings of the
16th Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’17, pages
885–892, Richland, SC, 2017. International Foundation for Autonomous Agents and
Multiagent Systems.

[39] Svetlana Obraztsova, Evangelos Markakis, and David R. M. Thompson. Plurality voting
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A Proofs for the 1-Median Problem in R with Random-
Breaking

Proof of Lemma 3.5. Trivially if π̄1 = π2 then the best response for player 2 is π̄1 +
√

2(π2−
π̄1) = π2. Otherwise π̄1 < π2. By scaling and translating we may assume π̄1 = 0 and π2 = 1
and show that player 2’s best response is min{u,

√
2}. It is straightforward to show that

voter 2 should submit a location x ≥ 1. The point Y is selected uniformly at random from
[0, x] and voter 2 has an expected cost of

E(|Y − 1|) = P (Y ≤ 1)E(1− Y |Y ≤ 1) + P (Y ≥ 1)E(Y − 1|Y ≥ 1) (14)

=
1

x
· 1

2
+
x− 1

x
· x− 1

2
(15)

=
x2 − 2x+ 2

2x
(16)

It is straightforward to verify that this function is uniquely minimized at x =
√

2 on
the domain [1,∞]. Therefore if u ≥

√
2 the unique best response for player 2 is

√
2. If

u <
√

2 then it is easily verified that E(|Y − 1|) is strictly decreasing on the interval [1, u]
and therefore player 2’s unique best response is x = u. Either way, player 2’s unique
best response is min{u,

√
2}. By the uniqueness of the best response, any more honest π̄2

yields a worse outcome for player 2 and therefore min{u,
√

2} is player 2’s unique minimally
dishonest best response.

Prior to proving Theorem 3.7 we need to establish a few properties for a minimally
dishonest Nash equilibrium Π̄.

Lemma A.1. Suppose |V | = 2 and let Π̄ be a minimally dishonest Nash equilibrium for
the 1-Median problem when breaking ties uniformly at random given the sincere profile Π.
If π1 ≤ π2, then π̄1 ≤ π2 and π1 ≤ π̄2.

Proof. For contradiction, suppose π̄1 > π2. If π̄2 ≥ π1, then player 1 can obtain a strictly
better outcome by being honest resulting in the point being selected uniformly at random
from [π1, π̄2] instead of [π̄2, π̄1] contradicting minimal dishonesty. Therefore π̄2 < π1. If
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player 1 instead submits the honest π1 then the point is selected uniformly at random from
[π̄2, π1]. Moreover, if π1 − π̄2 ≤ π̄1 − π1 then player 1 likes this outcome at least as much as
r(Π̄). Therefore by minimal dishonesty

π1 − π̄2 > π̄1 − π1 = π̄1 − π2 + π2 − π1. (17)

Following from a symmetric argument for player 2,

π̄1 − π2 > π2 − π̄2 = π2 − π1 + π1 − π̄2. (18)

Combining both inequalities we obtain

π1 − π̄2 > 2(π2 − π1) + π1 − π̄2 > π1 − π̄2 (19)

a contradiction completing the proof of the lemma.

Lemma A.1 is need to know how to apply Lemma 3.5. When combined with Lemma 3.5
we actually obtain the expected π̄1 ≤ π1 ≤ π2 ≤ π̄2.

Lemma A.2. Suppose |V | is even and the point is selected with the 1-Median problem while
breaking ties uniformly at random. Let Π̄ be a minimally dishonest Nash equilibrium given
the sincere profile Π . Then a(Π̄) ≤ a(Π) ≤ b(Π) ≤ b(Π̄)

Proof. By symmetry, it suffices to show b(Π) ≤ b(Π̄). For contradiction suppose b(Π̄) <
b(Π). Let v be a voter such that πv ≥ b(Π). If π̄v < b(Π) then π̄v can obtain at least
as good of an outcome by submitting b(Π) contradicting minimal dishonesty. Therefore

π̄v ≥ b(Π). This implies |{v : π̄v ≥ b(Π)}| ≥ |{v : πv ≥ b(Π)}| ≥ |V |
2 and therefore

b(Π̄) ≥ b(Π), a contradiction completing the proof of the lemma.

Lemma A.3. Suppose |V | is even and the point is selected with the 1-Median problem while
breaking ties uniformly at random. Let Π̄ be a minimally dishonest Nash equilibrium given
the sincere profile Π . If πw ≥ b(Π) then π̄w ≥ b(Π̄).

Proof. For contradiction, suppose π̄w < b(Π̄) implying π̄w ≤ a(Π̄). By Lemma A.2, a(Π̄) ≤
a(Π) ≤ πw. Voter w does not change the outcome if she submits π̄′w = a(Π̄) and therefore

by minimal dishonesty, a(Π̄) = π̄w < b(Π̄). Since |{v : π̄v ≥ b(Π̄)}| ≥ |V |2 , there must also be
a voter y such that πy ≤ a(Π) but π̄w ≥ b(Π̄). Through a symmetric argument π̄y = b(Π̄).

Let u = minv∈|V |:v 6=y{π̄v : π̄v ≥ b(Π̄)} and l = maxv∈|V |:v 6=w{π̄v : π̄y ≤ a(Π̄)}. Finding
the best responses π̄w and π̄y is now equivalent to the 2-player game with sincere preferences
π′w = min{u, πw} and π′w = max{l, πw} where X = [l, u]. By Lemmas 3.5 and A.1,
π̄y ≤ π′y ≤ π′w ≤ π̄w contradicting that π̄w = a(Π̄) < b(Π̄) = π̄y completing the proof of the
lemma.

Proof of Theorem 3.7. The lower bound is given by Theorem 3.6.
Let Π be a set of sincere preferences and Π̄ be a corresponding minimally dishonest Nash

equilibrium. Given a game with |V | players we show how to reduce the game to 2 players
that yields the same r(Π̄). Finally we show that the price of deception of the 2-player game
is at least as large as the price of deception of the |V |-player game. Therefore the price of
deception is at most

√
2 by Theorem 3.6.

Let |V | = 2n and index players so that π−n ≤ π−n+1 ≤ ... ≤ π−1 ≤ π1 ≤ ... ≤ πn.
Using Lemma A.3, it is straightforward to show that if πv ≥ b(Π) then π̄v = max{b(Π̄), πv}.
Therefore if Π̄ is a minimally dishonest Nash equilibrium then π̄−n ≤ π̄−n+1 ≤ ... ≤ π̄−1 ≤
π̄1 ≤ ... ≤ π̄n and players 1 and −1 are median voters with respect to Π and Π̄. Construct
the following 2-player game. Let u = π̄2 and l = π̄−2. Similar to Theorem 3.3, u ≥ b(Π) = π1
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and l ≤ a(Π) = π−1. Players 1 and −1 have preferences π′v = πv. This is a valid game since
l ≤ π′−1 ≤ π′1 ≤ u. It immediately follows that Π̄′ = {π̄−1, π̄1} is a minimally dishonest
Nash equilibrium for Π′ with the same outcome as Π̄ since otherwise Π̄ is not a minimally
dishonest Nash equilibrium for Π.

Let Cv(Π, x) = ||πv − x||1 be v’s contribution to the social cost C(Π, x) given location
πi and point x. Thus E[C(Π, r(Π̄))] =

∑
v E[Cv(Π, r(Π̄))]. Since b(Π) = π1 ≤ πv for v ≥ 1,

Cv(Π, r(Π)) = C1(Π, r(Π)) + πv − π1 ∀v ≥ 1. (20)

= UC1(Π′, r(Π′)) + πv − π1 ∀v ≥ 1. (21)

By the triangle inequality,

E[Cv(Π, r(Π̄))] ≤ E[C1(Π, r(Π̄))] + πv − π1 ∀v ≥ 1. (22)

= E[C1(Π′, r(Π̄′))] + πv − π1 ∀v ≥ 1. (23)

Symmetrically,

Cv(Π, r(Π)) = C−1(Π′, r(Π′)) + π−1 − πv ∀v ≤ −1. (24)

E[Cv(Π, r(Π̄))] ≤ E[C−1(Π′, r(Π̄′))] + π−1 − πv ∀v ≤ −1. (25)

We proceed by bounding the price of deception by grouping players v and −v. Observe
that for m1,m2, d1, d2 ≥ 0 that m1+m2

d1+d2
≤ max{m1

d1
, m2

d2
} where 0

0 = 1 and x
0 =∞ for x > 0.

Therefore

E[Cv(Π, r(Π̄))] + E[C−v(Π, r(Π̄))]

Cv(Π, r(Π)) + C−v(Π, r(Π))
(26)

≤E[C1(Π′, r(Π̄′))] + E[C−1(Π′, r(Π̄′))] + πv − π1 + π−1 − π−v
C1(Π′, r(Π′))] + C−1(Π′, r(Π′))] + πv − π1 + π−1 − π−v

(27)

≤max
{
E[C1(Π′, r(Π̄′))] + E[C−1(Π′, r(Π̄′))]

C1(Π′, r(Π′))] + C−1(Π′, r(Π′))]
,
πv − π1 + π−1 − π−v
πv − π1 + π−1 − π−v

}
(28)

≤max{
√

2, 1} =
√

2 (29)

by Theorem 3.6 since Π′ and Π̄′ are from a 2-player game.
Thus the price of deception is

E[C(Π, r(Π̄))]

U(Π, r(Π))
=

∑
v E[Cv(Π, r(Π̄))]∑
v Cv(Π, r(Π))

(30)

=

∑
v∈[n]

(
E[Cv(Π, r(Π̄)) + E[C−v(Π, r(Π̄))]

)
∑
v∈[n]

(
Cv(Π, r(Π)) + C−v(Π, r(Π))

) (31)

≤ maxv∈[n]
E[Cv(Π, r(Π̄)) + E[C−v(Π, r(Π̄))]

Cv(Π, r(Π)) + C−v(Π, r(Π))
(32)

≤
√

2 (33)

completing the proof of the theorem.

B Proof of Theorem 4.6

The proof is similar identical to Theorem 4.6. Let |V | = 2n for some integer n ≥ 2.
The sincere preferences are πv = (−1, 0) for odd indexed voters and let πv = (1, 0) for
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π1 = (−1, 0)π2 = (1, 0)

b = (1 +
√

2, h)a = (−1−
√

2, h)

Figure 3: Preferences Showing the Price of Deception is ∞ for the 1-Median Problem with
Random Tie-Breaking.

even indexed voters. Fix h > 0 and let a = (−1 −
√

2, h) and b = (1 +
√

2, h) and let
X = conv.hull(π1, a, b) as shown in Figure 3.

If everyone is honest then the selected point is r(Π) = (0, 0) with total cost 2|V |. Suppose
the odd indexed voters submit π̄v = a and the even indexed voters submit π̄v = b. Then the
point is selected uniformly at random from [a, b] with total cost 2

√
2|V |+h→∞ as h→∞.

Therefore if Π̄ is a minimally dishonest Nash equilibrium then the price of deception is ∞.
We now show that Π̄ is a minimally dishonest Nash equilibrium. By symmetry consider

voter 2. As in Theorem 4.1 more than half the voters submit a height of h and therefore voter
2 cannot change the height of the point. If voter 2 submits π̄′2 = (x, y) then the point will be
selected uniformly at random between (−1−

√
2, h) and (x, h). Let X ∼ Unif(−1,

√
2, x).

Then voter 2’s cost of the outcome is

c2(π2, r([Π̄−2, π̄
′
2])) = p2

√
E(|X − 1|)p2 + hp2 (34)

which is minimized when E(|X − 1|) is minimized since h is a constant. Therefore the
2-dimensional game reduces to a 1-dimensional game. By Lemma 3.5, voter 2’s minimally
dishonest best response is to submit x = 1 +

√
2 which requires y = h. Therefore voter

2 is submitting a minimally dishonest best response and Π̄ is a minimally dishonest Nash
equilibrium. Thus the price of deception is ∞.

C Proof of Theorem 4.8

We show the result for pv = 2 for all v and explain how to generalize the result at the end.
Consider the three points π̄1 = (0, 0), π̄2 = ( 3

2sin(α) ,
3

2cos(α) ), and π̄3 = (− 3
2sin(α) ,

3
2cos(α) )

where α < π
2 . Define X = conv.hull(π̄1, π̄2, π̄3). Suppose the sincere ideal points are given

by π1 = (0, 0), π2 = (cos(α), sin(α)), and π3 = (−cos(α), sin(α)) as shown in Figure 4.

With respect to the sincere data, the selected point is r(Π) = (0, 2sin(α)
3 ) with social cost

C(Π, r(Π)) =

3∑
i=1

||r(Π)− πi||22 =
2sin(α)

3
+ 2

√
1− 8sin2(α)

9
≤ 2 (35)

Now consider the putative preferences given by Π̄ = (π̄1, π̄2, π̄3). With respect to Π̄ the
selected point is r(Π̄) = (0, 1

cos(α) ). With respect to the sincere preferences Π, this has a
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r(Π̄)

π2

π̄2

π3

π̄3

π1 = π̄1

2α

Figure 4: Preferences for Theorem 4.8

social cost of

C(Π, r(Π̄)) =

3∑
i=1

||r(Π̄)− πi||22 =
1

cos(α)
+ 2

√
cos2(α) +

(
1

cos(α)
− sin(α)

)2

≥ 1

cos(α)
.

(36)

If Π̄ corresponds to a minimally dishonest Nash equilibrium of Π, then the price of deception
is at least

C(Π, r(Π̄))

C(Π, r(Π))
≥ 1

2cos(α)
→∞ as α→ π

2
. (37)

It remains to show that Π̄ is a minimally dishonest Nash equilibrium. To do this, it
suffices to show that any change to π̄i yields a worse outcome for individual i. Start with
i = 1. Suppose player 1 changes her preferences to π̄′1 = π̄1 + d where ||d|| 6= 0. The
location π̄′1 is in X and therefore d2 > 0. After updating her preferences the point moves to
r([Π̄−1, π̄

′
1]) = r(Π̄) + 1

3d. This causes the point to move up and possibly to the left or the
right. Regardless of p1 this is worse for player 1 and therefore she is reporting a minimally
dishonest best response.

The idea is similar to show players 2 and 3 are providing minimally dishonest best
responses. By symmetry, it suffices to consider player 2. Suppose player 2 updates her
preferences to π̄′2 = π̄2 − d. Since π̄′2 ∈ X , d ∈ cone ((1, 0), (π2)). After updating her
preferences, the selected point will be r([Π̄−2, π̄

′
2]) = r(Π̄)− 1

3d. Let B2 = {x : ||x− π2||2 ≤
||π2 − r(Π̄)||2 be the set of points player 2 prefers to r(Π̄). By construction, {x ∈ R :
r(Π̄)− 1

3dx} is tangent to B2 as shown in Figure 5 hence for all d where ||d|| > 0, reporting
π̄2 − d would yield a worse solution for player 2. Thus she has given a minimally dishonest
best response. This implies that Π̄ is a minimally dishonest Nash equilibrium and therefore
the price of deception converges to ∞ as α approaches π

2 .
We now consider other pv ∈ (0,∞). As observed previously, player 1 is minimally

dishonest. In the construction given in Figure 4, π̄2 is placed such A = {x ∈ R : r(Π̄)− 1
3dx}

is tangent to B2 ensuring that voter 2 cannot alter her preferences to get a better outcome.
However, if p2 6= 2 then the non-euclidean ball B = {x : ||π2 − x||p2 ≤ ||π2 − r(Π̄)||p2} may
overlap with A. However, if Figure 5 is stretched horizontally, then the set A converges to
a horizontal line. Therefore for any finite norm, we can stretch the set of allowed feasible
locations such that no individual can alter their preferences to get a better outcome.

D The Partially Honesty Refinement

Another refinement in the voting literature if the partial honesty or truth-bias refinement.
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r(Π̄)

π2

π̄2

π̄′2
([Π̄−2, π̄

′
2]) Possible Locations

for r([Π̄−2, π̄
′
2])

B2

Figure 5: Possible Locations for r([Π̄−2, π̄
′
2])

Definition D.1. Let Π be the sincere preferences and let Π̄ be a Nash equilibrium
in the Strategic Spatial Social Choice Game. An individual v is partially dishonest if
cv(πv, r([Π̄−v, πv)]) > cv(πv, r(Π̄)).

A partially honest Nash equilibrium is a Nash equilibrium where all individuals are
partially honest. By definition, a minimally dishonest Nash equilibrium is a partially honest
Nash equilibrium. However, the reverse does not hold.

Theorem D.2. There exist instances where a partially honest Nash equilibrium is not a
minimally dishonest Nash equilibrium.

Proof. Let X = [0, 1]2, |V | = 2k for some k ≥ 2, and πv = (.5, 0) for all v and suppose r(·)
is determined using the λ-1-Median problem with λ = (.5, .5). By unanimity, r(Π) = (.5, 0).
From Theorem 4.2, it is straightforward to show that Π i s the only minimally dishonest
Nash equilibrium. However, it is not the only partially honest Nash equilibrium.

Consider π̄v = (1, 1) for half the voters and π̄v = (0, 1) for the other half. With these
preferences r(Π̄) = (.5, 1). Moreover, Π̄ is a partially honest Nash equilibrium; If a voter
v instead submits the honest πv = (0, 0) then the outcome moves to either (0, 1) or (1, 1).
Both outcomes are worse for voter v and therefore v is partially honest completing the proof
of the theorem.

The partially honest equilibrium given in the proof of Theorem D.2 is unnatural. Every
individual is lying about their πv2 coordinate despite there being no advantage to do so.
This runs contrary to the experimental evidence discussed in 1.1 and thus we view partial
honesty as ill-suited for examining the Strategic Spatial Social Choice Game.

Another approach to an honesty refinement is distorting utilities by penalizing individ-
uals for being dishonest.

Definition D.3. Let ε > 0. The ε-distorted cost of the point x with respect to sincere
strategy πv and submitted strategy π̄v is c̄v(πv, x, π̄v) = cv(πv, x) + ε||π̄v − πv||pv = ||πv −
x||pv + ε||π̄v − πv||pv .

It is straightforward to show that applying distorted costs results in minimally dishonest
equilibria if players select their strategies from a finite set or more generally if {cv(πv, x) :
x ∈ X} is finite and ||π̄v − πv|| is bounded. However in the setting of spatial social choice,
using ε-distorted costs is not even a refinement on the set of Nash equilibria; applying these
distorted costs can result in outcomes where individuals behave irrationally.

Theorem D.4. Using ε-distorted costs in the Strategic Spatial Social Choice Game can
result in irrational behavior.
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Proof. Let X = conv.hull ((±1, 1/ε), (0, 0)), V = {1, 2, ..., 2k} for some integer k ≥ 2, and
suppose r(·) is determined using the λ-1-Median problem with λ = (.5, .5). Let π1 = (0, 0),
πv = (−1, 1/ε) for 2 ≤ v ≤ k, and πv = (1, 1/ε) for k + 1 ≤ v ≤ 2k and let pv = 1 for all v.

We begin by showing that Π is a Nash equilibrium when using ε-distorted costs. It is
straightforward to verify that voter v is submitting a best response for all v ≥ 2. If Voter 1
instead submits π̄1 = (π̄11, π̄22) then her ε-distorted cost is

||πv − r([π̄1,Π−1])||pv + ε||π̄v − πv||pv =
π̄11 − 1

2
+

1

ε
+ ε(π̄11 + π̄12) (38)

By definition of X , |π̄11| ≤ επ̄12. Therefore (38) is uniquely minimized by π̄1 = π1 and Π
is a Nash equilibrium when using distorted costs. However, Π is not a Nash equilibrium of
the original game since voter 1 can obtain a strictly better outcome by submitting the unique
best response (1, 1/ε). Therefore, rather than refining the set of equilibria, ε-distorted costs
can result in irrational play.
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