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Abstract

We study the problem of allocating multiple objects to agents without transferable
utilities, where each agent may receive more than one object according to a quota.
Under lexicographic preferences, we characterize the set of strategyproof, non-bossy,
and neutral quota mechanisms and show that under a mild Pareto efficiency condi-
tion, serial dictatorship quota mechanisms are the only mechanisms satisfying these
properties. Dropping the neutrality requirement, this class of quota mechanisms
expands to sequential dictatorship quota mechanisms. We then extend quota mech-
anisms to randomized settings, and show that the random serial dictatorship quota
mechanisms (RSDQ) are envyfree, strategyproof, and ex post efficient for any number
of agents and objects and any quota system, proving that the well-studied Random
Serial Dictatorship (RSD) satisfies envyfreeness when preferences are lexicographic.

1 Introduction

We consider the problem of allocating indivisible objects to agents without any explicit
market. In many real-life domains such as course assignment, room assignment, school
choice, medical resource allocation, etc. the use of monetary transfers or explicit markets
are forbidden because of ethical and legal issues. Much of the literature in this domain
is concerned with designing incentive compatible mechanisms that incentivizes agents to
reveal their preferences truthfully. Moreover, the criterion of Pareto efficiency along with
strategyproofness provide stable solutions to such allocation problems.

We are interested in allocation problems where each agent may receive a set of objects
and thus we search for mechanisms that satisfy some core axiomatic properties of strat-
egyproofness, Pareto efficiency, and non-bossiness. Examples of such allocation problems
include distributing inheritance among heirs1, allocating multiple tasks to employees, as-
signing scientific equipment to researchers, assigning teaching assistants to different courses,
and allocating players to sports teams. The common solution for allocating players to teams
or allocating courses to students in the course assignment problem is the Draft mechanism
[9], where agents choose one item in each picking round. However, allocation mechanisms,
such as the Draft mechanism, have been shown to be highly manipulable in practice and
fail to guarantee Pareto optimality [11].

Our work generalizes the previous results [28, 19], for a subclass of preferences, by
allowing any number of agents or objects, and assuming that individual agents’ quotas
can vary and be agent specific, imposing no restrictions on the problem size nor quota
structures. Instead, we are interested in expanding the possible quota mechanisms to a
larger class, essentially enabling a social planner to choose any type of quota system based
on a desired metric such as seniority. Our main focus is on the lexicographic preference
domain, where agents have idiosyncratic private preferences. Lexicographic preferences [17]
have attracted attention among researchers in economics and computer science [35, 33,
25]. In behavioral economics and psychology as well as consumer market research, there is
evidence for the presence of lexicographic preferences among individuals such as breaking
ties among equally valued alternatives [15], making purchasing decisions by consumers [13],

1We only consider non-liquid assets that cannot be easily converted to transferable assets such as money.



and examining public policies, job candidates, etc. [39]. Choice and decisions are particularly
tend to look more lexicographic in ordinal domains, thus, in ordinal mechanism design one
must pay particular attention to the settings wherein agents may treat alternatives as non-
substitutable goods. Our main results in this domain are the followings:

• We characterize the set of strategyproof, non-bossy, and neutral allocation mechanisms
when there is a quota system. Allowing any quota system enables the social planner
to remedy the inherent unfairness in deterministic allocation mechanisms by assigning
quotas according to some fairness criteria (such as seniority, priority, etc.).

• We generalize our findings to randomized mechanisms and show that random serial
dictatorship quota mechanisms (RSDQ) satisfy strategyproofness, ex post efficiency,
and envyfreeness in the domain of lexicographic preferences. Thus, random quota
mechanisms provide a rich and extended class for object allocation with no restriction
on the market size nor quota structure while providing envyfreeness in the lexico-
graphic domains, justifying the use of such mechanisms in practical applications.

2 Related Work

Svensson [37, 38] formulated the standard assignment problem (first proposed by Shapley and
Scarf [36]) where each agent receives exactly one item, and showed that Serial Dictatorship
mechanisms are the only social choice rules that satisfy Pareto efficiency, strategyproofness,
non-bossiness, and neutrality. In this setting, each agent is entitled to receive exactly one
object from the market. Pápai [27] extended the standard model of Svensson [37, 38] to
settings where there are potentially more objects than agents (each agent receiving at most
one object) with a hierarchy of endowments, generalizing Gale’s top trading cycle procedure.
This result showed that the hierarchical exchange rules characterize the set of all Pareto ef-
ficient, group-strategyproof, and reallocation proof mechanisms. In the multiple-assignment
problem, agents may receive sets of objects, and thus, might have various interesting prefer-
ences (e.g. complements or substitutes) over the bundles of objects. Pápai [29] studied this
problem on the domain of strict preferences allowing for complements and substitutes, and
showed that sequential dictatorships are the only strategyproof, Pareto optimal, and non-
bossy mechanisms. Ehlers and Klaus [16] restricted attention to responsive and separable
preferences and essentially proved that the same result persists even in a more restrictive
setting. Responsiveness of preference relations was first introduced by Roth [30] for col-
lege admission problems, and along with separability, was formally defined by Barberà et
al. [5]. Furthermore, Ehlers and Klaus showed that considering resource monotonic allo-
cation rules, where changing the available resources (objects) affects all agents similarly,
limits the allocation mechanisms to serial dictatorships. However, the class of sequential
dictatorships mechanisms no longer characterizes all non-bossy, Pareto efficient, and strat-
egyproof social choice mechanisms. To address this issue, Pápai [28] and Hatfield [19]
studied the multiple assignment problem where objects are assigned to agents subject to a
quota. Pápai [28] showed that under quantity-monotonic preferences every strategyproof,
non-bossy, and Pareto efficient social choice mechanism is sequential; while generalizing to
monotonic preferences, the class of such social choice functions gets restricted to quasi-
dictatorial mechanisms where every agent except the first dictator is limited to pick at most
one object. Pápai’s characterization is essentially a negative result and rules out the possi-
bility of designing neutral, non-bossy, strategyproof, and Pareto efficient mechanisms that
are not strongly dictatorial. Hatfield [19], on the other hand, addressed this issue by assum-
ing that all agents have precisely fixed and equal quotas, and showed that serial dictatorship
is strategyproof, Pareto efficient, non-bossy, and neutral for responsive preferences.



In the randomized settings, Random Serial Dictatorship (RSD) and Probabilistic Serial
Rule (PS) are well-known for their prominent economic properties. RSD satisfies strat-
egyproofness, ex post efficiency, and equal treatment of equals [1], while PS is ordinally
efficient and envyfree but not strategyproof [6]. In fact, in the multiple-assignment domain
no randomized mechanism can satisfy efficiency, strategyproofness, and equal treatment of
equals under the stochastic dominance relation [3]. For divisible objects, Schulman and
Vazirani [35] showed that if agents have lexicographic preferences, the Probabilistic Serial
rule is strategyproof under strict conditions over the minimum available quantity of ob-
jects and the maximum demand request of agents. Under indivisible objects, these strict
requirements translate to situations where the number of agents is greater than the number
of objects and each agent receives at most one object. When allocating multiple objects
to agents, Kojima [26] obtained negative results on (weak) strategyproofness of PS in the
general domain of preferences. Not only PS is not strategyproof, but the fraction of ma-
nipulable profiles quickly goes to one as the number of objects exceeds that of agents, even
under lexicographic preferences [20]. In contrast, we seek to find strategyproof and envyfree
mechanisms with no restriction on the number of agents or objects under the lexicographic
preference domain, addressing the open questions in [28] and in [35] about the existence of
a mechanism with more favorable fairness and strategyproofness properties.

3 The Model

There is a set of m indivisible objects M = {1, . . . ,m} and a set of n agents N = {1, . . . , n}.
There is only one copy of each object available, and an agent may receive more than one
object. Let M = P(M) denote the power set of M . Agents have private preferences over
sets of objects. Let P denote the set of all complete and strict preferences over M. Each
agent’s preference is assumed to be a strict relation �i∈ P. A preference profile denotes
a preference ordering for each agent and is written as �= (�1, . . . ,�n) ∈ Pn. Following
the convention, �−i= (�1, . . . ,�i−1,�i+1, . . . ,�n) ∈ Pn, and thus �= (�i,�−i). An
allocation is a n × m matrix A ∈ A that specifies a (possibly probabilistic) allocation of
objects to agents. The vector Ai = (Ai,1, . . . , Ai,m) denotes the allocation of agent i. We
sometimes abuse the notation and use Ai to refer to the set of objects allocated to agent
i. Let A refer to the set of possible allocations. Allocation A ∈ A is said to be feasible if
and only if ∀j ∈M,

∑
i∈N Ai,j ∈ {0, 1}, no single object is assigned to more than one agent,

while some objects may not be assigned. Note that we allow free disposal, and therefore,⋃
i∈N Ai ⊆M . For two allocations we write Ai �i Bi if agent i with preferences �i strictly

prefers Ai to Bi. Thus, Ai �i Bi and Bi �i Ai implies Ai = Bi.
Preference �i is lexicographic if there exists an ordering of objects, (a, b, c, . . .), such that

for all A,B ∈ A if a ∈ Ai and a /∈ Bi then Ai �i Bi; if b ∈ Ai and a, b /∈ Bi then Ai �i Bi;
and so on. That is, the ranking of objects determines the ordering of the sets of objects
in a lexicographic manner. Note that lexicographic preferences are responsive and strongly
monotonic. A preference relation is responsive if Ai

⋃
Bi �i Ai

⋃
B′i if and only if Bi �i B′i.

Strong monotonicity means that any set of objects is strictly preferred to all of its proper
subsets. We make no further assumption over preference relations.

An allocation mechanism is a function π : Pn → A, which assigns a feasible allocation
to every preference profile. Thus, agent i’s allocation Ai can also be represented as πi. An
allocation mechanism assigns objects to agents according to a quota system q, where qi is the
quota of the ith dictator such that

∑n
i=1 qi ≤ m. Since not all agents need to be assigned an

object, we use the size of quota |q| to denote the number of agents that are assigned at least
one object, thus, |q| ≤ n. From the revelation principle [14], we can restrict our analysis to
direct mechanisms that ask agents to report their preferences to the mechanism directly.



3.1 Properties

In the context of deterministic assignments, an allocation A Pareto dominates another
allocation B at � if ∃i ∈ N such that Ai �i Bi and ∀j ∈ N Aj �j Bj . An allocation
is Pareto efficient at � if no other allocation exists that Pareto dominates it at �. Since
a social planner may decide to only assign C ≤ m number of objects, we need to slightly
modify our efficiency definition. We say that an allocation that assigns C =

∑n
i=1 qi objects

is Pareto C-efficient if there exists no other allocation that assigns an equal number of
objects, C, that makes at least one agent strictly better off without making any other agent
worse off. A Pareto C-efficient allocation is also Pareto efficient when

∑n
i=1 qi = m.

Definition 1 (Pareto C-efficiency). A mechanism π with quota q, where C =
∑
i qi, is

Pareto C-efficient if for all �∈ Pn, there does not exist A ∈ A which assigns C objects such
that for all i ∈ N , Ai �i πi(�), and Aj �j πj(�) for some j ∈ N .

A mechanism is strategyproof if there exists no non-truthful preference ordering �′i 6=�i
that improves agent i’s allocation. More formally,

Definition 2 (Strategyproofness). Mechanism π is strategyproof if for all �∈ Pn, i ∈ N ,
and for any misreport �′i∈ P, we have πi(�) �i πi(�′i,�−i).

Although strategyproofness ensures that no agent can benefit from misreporting prefer-
ences, it does not prevent an agent from reporting a preference that changes the prescribed
allocation for some other agents while keeping her allocation unchanged. This property was
first proposed by Satterthwaite and Sonnenschein [34]. A mechanism is non-bossy if an
agent cannot change the allocation without changing the allocation for herself.

Definition 3 (Non-bossiness). A mechanism is non-bossy if for all �∈ Pn and agent i ∈ N ,
for all �′i such that πi(�) = πi(�′i,�−i) we have π(�) = π(�′i,�−i).

Non-bossiness and strategyproofness only prevent certain types of manipulation; chang-
ing another agent’s allocation or individually benefiting from a strategic report.

Our last requirement is neutrality. Let φ : M → M be a permutation of the objects.
For all A ∈ A, let φ(A) be the set of objects in A renamed according to φ. Thus, φ(A) =
(φ(A1), . . . , φ(An)). For each �∈ Pn we also define φ(�) = (φ(�1), . . . , φ(�n)) as the
preference profile where all objects are renamed according to φ.

Definition 4 (Neutrality). A mechanism π is neutral if for any permutation function φ
and for all preference profiles �∈ Pn, φ(π(�)) = π(φ(�)).

In other words, a mechanism is neutral if it does not depend on the name of the objects,
that is, changing the name of some objects results in a one-to-one identical change in the
outcome. It is clear that above conditions reduce the set of possible mechanisms drastically.

4 Allocation Mechanisms

Several plausible multiple allocation mechanisms exploit interleaving picking orders to in-
corporate some level of fairness, where agents can take turns each time picking one or more
objects [24, 10, 8]. An interleaving mechanism alternates between agents, allowing a single
agent to pick objects in various turns. The interleaving mechanisms have been widely used
in many everyday life activities such as assigning students to courses, members to teams, and
in allocating resources or moving turns in boardgames or sport games. To name a few, strict
alternation where agents pick objects in alternation (e.g. 1212 and 123123) and balanced
alternation where the picking orders are mirrored (e.g. agent orderings 1221 and 123321),



and the well-known Draft mechanism [11, 9, 10] that randomly chooses a priority ordering
over n agents and then alternates over the drawn priority ordering and its reverse sequence
are the examples of such mechanisms. However, all these interleaving mechanisms are highly
manipulable in theory; computing optimal manipulations under interleaving mechanisms is
shown to be easy only for two agents under additive and separable preferences and simi-
larly for lexicographic preferences [2]. Extending to non-separable preferences, deciding a
strategic picking strategy is NP-complete, even for two agents [7]. Kalinowski et al. [22]
studied interleaving mechanisms (alternating policies) from a game-theoretical perspective
and showed that under linear order preferences the underlying equilibrium in a two-person
picking game is incentive compatible [23]. Nonetheless, such interleaving mechanisms have
been shown to be heavily manipulated in practice [11]. We generalize such allocation proce-
dures to any mechanism with an interleaving order of agents with general preferences where
at least one agent gets to choose twice, once before and once after one (or more) agents. We
note that all missing proofs can be found in the appendix.

Theorem 1. There exists no interleaving mechanism that satisfies Pareto C-efficiency,
non-bossiness, and strategyproofness.

Clearly, an imposed mechanism that assigns a fixed allocation to every preference profile
is strategyproof and non-bossy but does not satisfy Pareto C-efficiency [29].2 With these
essentially negative results for interleaving mechanisms, we restrict our attention to the
class of sequential dictatorship mechanisms, where each agent only gets one chance to pick
(possibly more than one) objects.

4.1 Sequential Mechanisms

Let q denote a quota system such that
∑
i qi ≤ m. In a sequential dictatorship mechanism

with quota q, the first dictator chooses q1 of her most preferred objects; the second dictator
is chosen depending on the set of objects allocated to the first dictator. The second dictator
then chooses q2 objects of her most preferred objects among the remaining objects. This
procedure continues, where the choice of the next dictator may be determined based on the
earlier allocations, until no object or no agent is left. Sequential dictatorship mechanisms
are particularly useful in settings where the ordering of the agents may vary as a function
of the allocations of the preceding agents, for example, when a mechanism designer decides
to have an ordering of agents that is responsive to the allocated objects.

Let f be a function that, given a partial allocation of objects to some agents, returns the
next dictator. Then, fi(·) = j means that agent j is ranked ith in the ordering of dictators.
There exists an agent f1 (first dictator) for each preference profile �∈M, and an ordering
of the remaining dictators such that the ith dictator is identified recursively by

fi(πf1(�), . . . , πfi−1
(�))

In other words, the choice of the next dictator only depends on the previous dictators and
their allocation sets and does not depend on the preferences of the previous dictators.

Definition 5 (Sequential Dictatorship). Let Mk = P≤k(M) be the set of subsets of M
of cardinality less than or equal k. An allocation mechanism π : Pn → A is a sequential
dictatorship quota mechanism if there exists a quota system q and an ordering f such that

2An imposed mechanism does not take agents’ preferences into account and prescribes the same allocation
to every preference profile.



for all �∈ Pn,

πf1(�) ={Z ∈Mq1 |Z �1 Z
′ for all Z ′ ∈Mq1}

πfi(πf1
,...,πfi−1

)(�) ={Z ∈Mqi \
j=i−1⋃
j=1

πfj (�)|Z �fi Z ′ for all |Z ′| = |qi|}

A serial dictatorship mechanism is an example of a sequential mechanism where
the ordering is a permutation of the agents, determined a priori, that is, for all �∈ Pn,
πf(·)(�) = πf (�). Such mechanisms satisfy neutrality. From now on, we simply use the
vector f instead of f(·) when the ordering is predefined independent of the choice of objects.

5 Serial Dictatorship Quota Mechanisms

When allocating objects sequentially via a quota system q, Pareto C-efficiency requires that
no two agents be envious of each others’ allocations since then they can simply exchange
objects ex post, implying that the initial allocation is dominated by the new allocation after
the exchange. For example, take a serial dictatorship with q1 = 1 and q2 = 2 and three
objects. Agent 1 will receive her top choice object {a} (since {a} �1 {b} �1 {c}) according
to her preference and agent 2 receives {b, c}. However, it may be the case that {b, c} �1 {a}
while {a} �2 {b, c} and both agents may be better off exchanging their allocations. Thus,
we have the following proposition for general preferences.

Proposition 1. For general preferences, sequential (and serial) dictatorship quota mecha-
nisms do not guarantee Pareto C-efficiency.

In the absence of Pareto C-efficiency in the domain of general preferences, a social planner
is restricted to use only one type of quota system; either assigning at most one object to
all agents except the first dictator (who receives the remaining objects), or setting equal
quotas for all agents [28, 19]. Due to the impossibility shown in Proposition 1, we restrict
ourselves to the interesting class of lexicographic preferences. We show that if preferences
are lexicographic, regardless of the selected quota system, any serial dictatorship mechanism
guarantees Pareto C-efficiency. We first provide the following lemma in the lexicographic
domain.

Lemma 1. The following statements hold for two sets of objects when preferences are
lexicographic:

- If Bi ⊂ Ai then Ai �i Bi.
- For all X such that X ∩Ai = ∅, we have Ai �i Bi iff Ai ∪X �i Bi ∪X.

- If Bi 6⊂ Ai and Ai �i Bi then there exists an object x ∈ Ai such that x �i X for all
X ∈ P(Bi −Ai).

Proposition 2. If preferences are lexicographic, the serial dictatorship quota mechanism is
Pareto C-efficient.

Proof. Consider a mechanism π with quota q, that assigns C =
∑
i qi objects. Suppose for

contradiction that there exists an allocation B with arbitrary quota q′, where C ′ =
∑
i q
′
i,

that Pareto dominates A = π(�). We assume C ′ = C to ensure that both allocations assign
equal number of objects (Otherwise by strong monotonicity of lexicographic preferences and
Lemma 1 one can assign more objects to strictly improve some agents’ allocations.).

Thus, for all agents j ∈ N , Bj �j Aj , and there exist some agent i where Bi �i Ai. If for
all j ∈ N , |Bj | ≥ |Aj | then q′j ≥ qj . Now suppose for some i, |Bi| > |Ai|. This implies that



q′i > qi. By adding these inequalities for all agents we have
∑
i q
′
i >

∑
i qi, contradicting the

initial assumption of equal quota sizes (C ′ = C). For the rest of the proof, we consider two
cases; one with |Bi| > |Ai|, and one where |Bi| ≤ |Ai|.

Case I: Consider |Bi| ≤ |Ai| and Bi �i Ai. If Bi ⊂ Ai then monotonicity of lexico-
graphic preferences in Lemma 1 implies that Ai �i Bi contradicting the assumption. On
the other hand, if Bi 6⊂ Ai by Lemma 1 there exists an object x ∈ Bi such that for all
X ∈ P(Bi−Ai) agent i ranks it higher than any other subset, that is, x �i X. In this case,
serial dictatorship must also assign x to agent i in Ai, which is a contradiction.

Case II: Consider |Bi| > |Ai| and Bi �i Ai. The proof of this case heavily relies on
the lexicographic nature of preferences (as opposed to Case I that held valid for the class
of monotonic, and not necessarily lexicographic, preferences). The inequality |Bi| > |Ai|
indicates that q′i > qi. We construct a preference profile �′ as follows: for each j ∈ N ,
if Bj = Aj then �′j=�j , otherwise if Bj 6= Aj rank the set Bj higher than Aj in �′j
(�′j= Bj � Aj � . . .). Now run the serial dictatorship on �′ with quota q. Suppose that
B′ = π(�′). For agent i, B′i is the top qi objects of Bi where B′i ( Bi and because qi is
fixed, then |B′i| = |Ai|. Given �′ we have Bi 6= Ai, which implies that B′i 6= Ai. By strong
monotonicity for agent i we have Bi �i B′i �i Ai. However, according to the constructed
quotas we have |Bi| > |B′i| but |B′i| = |Ai|, where B′i 6= Ai. By Lemma 1 there exists an
object x ∈ B′i which is preferred to all proper subsets of Ai − Bi. However, if such object
exists it should have been picked by agent i in the first place, which is in contradiction with
agent i’s preference.

We state a few preliminary lemmas before proving our main result in characterizing the
set of non-bossy, Pareto C-efficient, neutral, and strategyproof mechanisms. Given a non-
bossy and strategyproof mechanism, an agent’s allocation is only affected by her predecessor
dictators. Thus, an agent’s allocation may only change if the preferences of one (or more)
agent with higher priority changes.

Lemma 2. Take any non-bossy and strategyproof mechanism π. Given two preference
profiles �,�′∈ Pn where �= (�i,�−i) and �′= (�i,�′−i), if for all j < i we have πfj (�
) = πfj (�′), then πfi(�) = πfi(�′).

The next Lemma guarantees that the outcome of a strategyproof and non-bossy mech-
anism only changes when an agent states that some set of objects that are less preferred to
πi(�) under �i is now preferred under �′i. Intuitively, any preference ordering �′i which
reorders only the sets of objects that are preferred to πi(�) or the sets of objects that are
less preferred to the set of objects allocated via πi(�) keeps the outcome unchanged.

Lemma 3. Let π be a strategyproof and non-bossy mechanism, and let �,�′∈ Pn. For all
allocations A ∈ A, if for all i ∈ N, πi(�) �i Ai and πi(�) �′i Ai, then π(�) = π(�′).

The next lemma states that when all agents’ preferences are identical, any strategyproof,
non-bossy, and Pareto C-efficient mechanism simulates the outcome of a serial dictatorship
quota mechanism.

Lemma 4. Let π be a strategyproof, non-bossy, and Pareto C-efficient mechanism with
quota system q, and � be a preference profile where all individual preferences coincide, that
is �i=�j for all i, j ∈ N . Then, there exists an ordering of agents, f , such that for each
k = 1, . . . , |q|, agent fk receives exactly qk items according to quota q induced by a serial
dictatorship.

Theorem 2. If preferences are lexicographic, an allocation mechanism is strategyproof,
non-bossy, neutral, and Pareto C-efficient if and only if it is a serial dictatorship quota
mechanism.



Proof. It is clear that in the multiple-assignment problem any serial dictatorship mechanism
is strategyproof, neutral, and non-bossy [29]. For Pareto efficiency, in Proposition 2, we
showed that the serial dictatorship mechanism is Pareto C-efficient for any quota, and in
fact it becomes Pareto efficient in a stronger sense when all objects are allocated C = m.

Now, we must show that any strategyproof, Pareto C-efficient, neutral, and non-bossy
mechanism, π, can be simulated via a serial dictatorship quota mechanism. Let π be a
strategyproof, Pareto C-efficient, neutral, and non-bossy mechanism. Consider �∈ Pn to
be an arbitrary lexicographic preference profile. Given q, we want to show that π is a serial
dictatorship mechanism. Thus, we need to find an ordering f that induces the same outcome
as π when allocating objects serially according to quota q.

Take an identical preference profile and apply the mechanism π with a quota q. By
Lemma 4, there exists a serial dictatorial allocation with an ordering f where agent f1

receives q1 of her favorite objects from M , agent f2 receives q2 of her best objects from
M \ πf1 , and so on. Therefore, given a strategyproof, non-bossy, neutral, and Pareto C-
efficient mechanism with quota q, we can identify an ordering of agents f = (f1, . . . , fn) that
receive objects according to q = (q1, . . . , qn). Note that since the ordering is fixed a priori,
the same f applies to any non-identical preference profile. From any arbitrary preference
profile �, we construct an equivalent profile as follows: Given the ordering f , the first best
q1 objects (the set of size q1) according to �f1 are denoted by Af1 and are listed as the first
objects (or set of objects of size q1 since preferences are lexicographic) in �′i. The next q2

objects in �′i are the first best q2 objects according to �f2 from M \ Af1 , and so on. In
general, for each i = 2, . . . , |q|, the next best qi objects are the best qi objects according

to �fi from M \
⋃j=i−1
j=1 Aj . Algorithm 1, which can be found in the Appendix, illustrates

these steps.
Now we need to show that applying π to the constructed identical preference profile (�′)

induces the same outcome as applying it to �. By Lemma 2 for each agent fi, πfi(�) =
πfi(�′) if for all j < i we have πfj (�) = πfj (�′). That is, the allocation of an agent remains
the same if the allocations of all previous agents remain unchanged. Now by Lemma 3, for
any allocation A ∈ A, if for each agent i ∈ N , πi(�′) �′i Ai then we also have πi(�′) �i Ai.
For each fi where i = 1, . . . , |q|, by Lemma 3 since π is strategyproof and non-bossy, for
any allocation Afi given the quota q we have πfi �′fi Afi and πfi �fi Afi , which implies
that πfi(�′) = πfi(�). Therefore, we have π(�′) = π(�). Since �′ is an identical profile,
π(�′) = π(�) assigns qi objects to each agent according to the serial ordering f . Thus, π is
a serial dictatorship quota mechanism.

The following example illustrates how an equivalent preference profile with identical
outcome is constructed given any arbitrary preference profile, ordering, and quota system.

Example 1. Consider allocating 4 objects to 3 agents with preferences illustrated in Table 1
(left), based on the following quota q = (1, 2, 1). Assume the following ordering of agents
f = (1, 2, 3). To construct a profile with identical orderings, agent 1’s first best object
according to �1, a, is considered the highest ranking object in �′i. Agent 2’s best two objects
(q2 = 2) among the remaining objects c and b are ranked next, and finally agent 3’s remaining
object d is ranked last. Given f and q, the two preference profiles depicted in Table 1 have
exactly similar outcome (shown with squares).

�1: a � b � c � d
�2: c � a � b � d
�3: a � c � d � b

�′1: a � c � b � d
�′2: a � c � b � d
�′3: a � c � b � d

Table 1: Converting a preference profile to identical orderings, with exact same outcome.



6 Sequential Dictatorship Quota Mechanisms

In this section, we study a broader class of quota mechanisms by relaxing the neutrality
requirement and allowing for the dictators to be identified in each sequence, as opposed to
fixing the dictatorship orderings apriori.

Proposition 3. A sequential dictatorship quota mechanism is Pareto C-efficient under
lexicographic preferences.

The proof exactly follows as of the proof of Proposition 2. Characterizing the set of
strategyproof, non-bossy, and Pareto C-efficient quota mechanisms is similar to our charac-
terization for serial dictatorship mechanisms, but requires a subtle change in Lemma 4.

Lemma 5. Let π be a strategyproof, non-bossy, and Pareto C-efficient mechanism with quota
q, and � be a preference profile where all individual preferences coincide, that is �i=�j for
all i, j ∈ N . Then, there exists an ordering f1, f2(πf1(�)), . . . , fk(πf1(�), . . . , πfk−1

(�))
such that for each i ∈ N agent i receives exactly qi items according to quota q.

Theorem 3. An allocation mechanism is strategyproof, non-bossy, and Pareto C-efficient
if and only if it is a sequential dictatorship quota mechanism.

7 Randomized Quota Mechanisms

So far we identified the class of deterministic strategyproof, non-bossy, and Pareto C-efficient
quota mechanisms. However, deterministic quota mechanisms generally have poor fairness
properties: the first dictator always has a strong advantage over the next dictator and so on.
This unfairness could escalate when an agent gets to pick more objects than the successor
agent, that is, qi > qj for i < j. Thus, while any profile-independent randomization over a
set of serially dictatorial mechanisms still maintains the incentive property, randomization
over priority orderings seem to be a proper way of restoring some measure of randomized
fairness.

We first need to define a few additional properties in the randomized settings. A random
allocation is a stochastic matrix A with

∑
i∈N Ai,j = 1 for each j ∈ M . This feasibility

condition guarantees that the probability of assigning each object is a proper probability
distribution. Moreover, every random allocation is a convex combination of deterministic
allocations and is induced by a lottery over deterministic allocations [40]. Hence, we can
focus on mechanisms that guarantee Pareto C-efficient solutions ex post.

Definition 6 (Ex Post C-Efficiency). A random allocation is ex post C-efficient if it can be
represented as a probability distribution over deterministic Pareto C-efficient allocations.

The support of any lottery representation of a strategyproof allocation mechanism must
consist entirely of strategyproof deterministic mechanisms. Moreover, if the distribution over
orderings does not depend on the submitted preferences of the agents, then such randomized
mechanisms are strategyproof [32].

We focus our attention on the downward lexicographic dominance relation to compare
the quality of two random allocations when preferences are lexicographic.3 Given two al-
locations, an agent prefers the one in which there is a higher probability for getting the
most-preferred object. Formally, given a preference ordering �i, agent i prefers any alloca-
tion Ai that assigns a higher probability to her top ranked object Ai,o1 over any assignment
Bi with Bi,o1 < Ai,o1 , regardless of the assigned probabilities to all other objects. Only when

3In the general domain, this measure corresponds to a stronger notion based on first-order stochastic
dominance [6, 18]



two assignments allocate the same probability to the top object will the agent consider the
next-ranked object. Throughout this paper we focus on the downward lexicographic rela-
tion, as opposed to upward lexicographic relation [12]. The downward lexicographic notion
compares random allocations by comparing the probabilities assigned to objects in order of
preference. It is in fact a more natural way of comparing allocations and is extensively used
in consumer markets and other settings involving human decision makers [21, 41, 39].

Definition 7. Agent i with preference �i downward lexicographically prefers random allo-
cation Ai to Bi if

∃ ` ∈M : Ai,` > Bi,` ∧ ∀k �i ` : Ai,k = Bi,k.

We say that allocation A downward lexicographically dominates another allocation
B if there exists no agent i ∈ N that lexicographically prefers Bi to Ai. Thus, an allocation
mechanism is downward lexicographically efficient (ld-efficient) if for all preference profiles
its induced allocation is not downward lexicographically dominated by any other random
allocation.4

Given an allocation A, we say that agent i is envious of agent j’s allocation if agent i
prefers Aj to her own allocation Ai. Thus, an allocation is envyfree when no agent is envious
of another agent’s assignment. Formally we write,

Definition 8. Allocation A is envyfree if for all agents i ∈ N , there exists no agent-object
pair j ∈ N , ` ∈M such that, Aj,` > Ai,` ∧ ∀k �i ` : Ai,k = Aj,k.

A mechanism is envyfree if at all preference profiles �∈ Pn it induces an envyfree
allocation.

7.1 Random Serial Dictatorship Quota Mechanisms

Recall that |q| denotes the number of agents that are assigned at least one object. Given
a quota of size |q|, there are

(
n
|q|
)
× |q|! permutations (sequences without repetition) of |q|

agents from N . Thus, a Random Serial Dictatorship mechanism with quota q is a uniform
randomization over all permutations of size |q|. Formally,

Definition 9 (Random Serial Dictatorship Quota Mechanism (RSDQ)). Let P(N) be the
power set of N , and f ∈ P(N) be any subset of N . Given a preference profile �∈ Pn, a
random serial dictatorship with quota q is a convex combination of serial dictatorship quota
mechanisms and is defined as ∑

f∈P(N):|f |=|q| πf (�)(
n
|q|
)
× |q|!

(1)

In this randomized mechanism agents are allowed to pick more than one object according
to q and not all the agents may be allocated ex post. We can think of such mechanisms as
extending the well-known Random Serial Dictatorship (RSD) for the house assignment prob-
lem wherein each agent is entitled to receive exactly one object. Thus, an RSD mechanism
is a special case of our quota mechanism with qi = 1,∀i ∈ N and |q| = n.

Example 2. Consider three agents and four objects. Agents’ preferences and the proba-
bilistic allocation induced by RSDQ with quota q = (2, 1, 1) are presented in Table 2. Note
that the size of q can potentially be smaller than the number of agents, meaning that some
agents may receive no objects ex post.

4An allocation that is ld-efficient implies stochastic dominance efficiency (a.k.a sd-efficiency) under gen-
eral preferences but the converse does not hold. In other words, there may be allocations that are sd-efficient
but not ld-efficient.



�1 c � a � b � d
�2 a � c � d � b
�3 c � b � d � a

a b c d

A1 3/6 1/6 2/6 2/6
A2 3/6 0 2/6 3/6
A3 0 5/6 2/6 1/6

Table 2: RSDQ allocation with q = (2, 1, 1).

The weakest notion of fairness in randomized settings is the equal treatment of equals.
We say an allocation is fair (in terms of equal treatment of equals) if it assigns an identical
random allocation (lottery) to agents with identical preferences.

Lemma 6. Take any serial dictatorship mechanism π with a quota q. A uniform random-
ization over all permutations of orderings with size |q| is strategyproof, ex post C-efficient,
and fair (equal treatment of equals).

Now, we present our main result for envyfreeness of RSDQ regardless of the selected
quota system.

Theorem 4. Random Serial Dictatorship Quota mechanism is envyfree with any quota q,
under downward lexicographic preferences.

Proof. Let A denote a random allocation induced by RSDQ with quota q at an arbitrary
preference profile �∈ Pn. Suppose for contradiction that there exists an agent i ∈ N
with random allocation Ai that prefers another agent’s random allocation Aj to her own
assignment, that is, Aj �i Ai. Assuming that preferences are downward lexicographic, there
exists an object ` such that Aj,` > Ai,` and for all objects that are ranked higher than `
(if any) they both receive the same probability ∀k �i ` : Ai,k = Aj,k. Thus, we can write:∑
x∈Ai:x�i`

Aj,x =
∑
x∈Ai:x�i`

Ai,x. Since preferences are lexicographic, the assignments of
objects less preferred to ` become irrelevant because for two allocations Ai and Bi such that
Ai,` > Bi,`, we have Ai �i Bi for all x ≺i ` where Bi,x ≥ Ai,x. Thus, we need only focus on
object `.

Let F denote the set of all orderings of agents where i is ordered before j or i appears
but not j. Note that since we allow for |q| = |f | ≤ n, some agents could be left unassigned,
and permuting i and j could imply that one is not chosen under

(
n
|q|
)
. For any ordering

f ∈ F of agents where i precedes j, let f̄ ∈ F̄ be the ordering obtained from f by swapping
i and j. Clearly, |F| = |F̄ | and the union of the two sets constitute the set of orderings that
at least one of i or j (or both) is present. Fixing the preferences, we can only focus on f
and f̄ . Let πf (�) be the serial dictatorship with quota q and ordering f at �. RSDQ is a
convex combination of such deterministic allocations with equal probability of choosing an
ordering from any of F or F̄ . Given any object y ∈M , either i receives y in πf and j gets
y in πf̄ , or none of the two gets y in any of πf and πf̄ . Thus, object ` is either assigned to
i in πf and to j in πf̄ , or is assigned to another agent. If i gets ` in πf for all f ∈ F , then
j receives ` in πf̄ . The contradiction assumption Aj,` > Ai,` implies that there exists an
ordering f where i receives a set of size qi that does not include object ` while j’s allocation
set includes `. Let Xi denote this set for agent i and Xj for agent j. Then, Xi �i Xj .
Thus, by definition there exists an object `′ ∈ Xi such that `′ �i `, where `′ 6∈ Xj . Thus,
the probability of assigning object `′ �i ` to i is strictly greater than assigning it to j, that
is, Ai,`′ > Aj,`′ . However, by lexicographic assumption we must have ∀k �i ` : Ai,k = Aj,k,
which is a contradiction.

Theorem 5. Under downward lexicographic preferences, a Random Serial Dictatorship
Quota mechanism is ex post C-efficient, strategyproof, and envyfree for any number of agents
and objects and any quota system.



The well-known random serial dictatorship mechanism (RSD), also known as Random
Priority, is defined when n = m and assigns a single object to agents [1]. It is apparent that
RSD is a special instance from the class of RSDQ mechanisms.

Corollary 1. RSD is ex post efficient, strategyproof, and envyfree when preferences are
downward lexicographic.

8 Discussion

We investigated strategyproof allocation mechanisms when agents with lexicographic pref-
erences may receive more than one object according to a quota. The class of sequential
quota mechanisms enables the social planner to choose any quota without any limitations.
For the general domain of preferences, the set of strategyproof, non-bossy, and Pareto
efficient mechanisms gets restricted to quasi-dictatorial mechanisms, which are far more
unfair [28, 29]. Such mechanisms limit a social planner to specific quota systems while
demanding the complete allocation of all available objects. We showed that the class of
strategyproof allocation mechanisms that satisfy neutrality, Pareto C-efficiency, and non-
bossiness expands significantly when preferences are lexicographic. Our characterization
shows that serial dictatorship quota mechanisms are the only mechanisms satisfying these
properties in the multiple-assignment problem. Removing the neutrality requirement, this
class of mechanisms further expands to sequential dictatorship quota mechanisms.

To recover some level of fairness, we extended the serial dictatorship quota mechanisms to
randomized settings and showed that randomization can help achieve some level of stochas-
tic symmetry amongst the agents. More importantly, we showed that RSDQ mechanisms
satisfy strategyproofness, ex post C-efficiency, and envyfreeness for any number of agents,
objects, and quota systems when preferences are downward lexicographic. The envyfreeness
result is noteworthy: it shows that in contrast to the Probabilistic Serial rule (PS) [6] which
satisfies strategyproofness when preferences are lexicographic only when n ≥ m [35], the
well-known RSD mechanism in the standard assignment problem is envyfree for any com-
bination of n and m. These results address the two open questions about the existence of a
mechanism with more favorable fairness and strategyproofness properties [28, 35]. Moreover,
these results confirm that, in contrast to general preferences, under lexicographic preference
relation efficiency, envyfreeness, and strategyproofness do not charactrize the probabilistic
serial rule [33].

Serial dictatorship mechanisms are widely used in practice since they are easy to im-
plement while providing stability and strategyproofness guarantees [31]. Serial dictatorship
quota mechanisms and their randomized counterparts provide a richer framework for mul-
tiple allocation problems while creating the possibility of fair and envyfree assignments. In
randomized settings, however, an open question is whether RSDQ mechanisms are the only
allocation rules that satisfy the above properties in the multiple assignment domain. Of
course, answering this question, first, requires addressing the open question by Bade [4] in
the standard assignment problem (where every agent gets at most one object): is random
serial dictatorship a unique mechanism that satisfies strategyproofness, ex post efficiency,
and equal treatment of equals?
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A Missing Proofs and Algorithms

In this appendix we include all proofs that were missing in the main part of the paper,
along with the pseudocode used to construct particular preference profiles that are needed
in some of the proofs.

A.1 Proof of Theorem 1

Proof. The proof follows by constructing a manipulable preference profile. Given any Pareto
C-efficient and non-bossy interleaving mechanism, we show that we can construct an instance
(preference profile) at which at least one agent can manipulate the outcome.

Suppose there is a non-bossy and Pareto C-efficient mechanism π with at least one
alternation between agents i and j. Note that the alternation could be through a fixed
ordering or through a picking process. Since we are constructing an instance, we can assume
that all other agents k ∈ N \ {i, j} will receive their objects after agents i and j (or have
already received their non-conflicting objects before the two). We now construct a preference
profile such that �= (�i,�j ,�N\{i,j}).

Let fk denote the agent in the kth picking order, that is, f2 = i indicates that the agent
in the second picking order is agent i. Consider the ordering such that for agents 1 and 2
we have f1 = f3 = 1 and f2 = 2. Assume there are 3 objects available and construct a
preference profile as follows: �1= a � b � c and �2= o1 � o2 � o3, where ok represent
the kth ranked object in �2. By Pareto C-efficiency and non-bossiness of π, agents final
allocations must preclude any further exchange between the two agents, and no agent can
change the allocation of the other while its own allocation remains unchanged.

Since agent 1 picks first and last according to ordering f , agent 1 can pick her first choice
either at stage 1 or 3 as long as agent 2’s top choice is not equal to that of agent 1, i.e.
o1 ∈ {b, c}. If o1 = c then there is no conflict between agent 1 and 2 and playing truthfully
has the best outcome for agent 1. Thus, it follows that o1 = b and o2 ∈ {a, c}. Now we need
to construct the rest of agent 2’s ordering such that agent 1’s top choice, object a, remains
in the pool of objects until the last stage. Thus, for the following profile �1= a � b � c and
�2= b � c � a, the interleaving mechanism is manipulable. This implies that no Pareto
C-efficient and non-bossy interleaving mechanism guarantees strategyproofness.

A.2 Proof of Lemma 1

Proof. We provide proof for each of the statements in the lexicographic domain.

• Since Bi ⊂ Ai then all objects in Bi are also in Ai, and there exists an object x ∈ Ai
such that x /∈ Bi. By the definition of lexicographic preferences, having an object is
preferred to not having the object (i.e. objects are goods). Therefore, Ai �i Bi.

• It is easy to see that adding a set of object X ∩Ai = ∅ to two sets such that Ai �i Bi
maintains the preference over the two sets. This is because elements in X are added
to both sets and by assumption there is still an element x ∈ Ai and x /∈ X that is
preferred to all objects in Bi. We should prove the converse that if Ai ∪X �i Bi ∪X
then Ai �i Bi. Suppose not, that is Bi �i Ai. By adding X = Bi − Ai to both
sides we have Bi ∪X �i Ai ∪X, that is, Bi �i Ai ∪Bi, which contradicts the strong
monotonicity of lexicographic preferences when Ai is nonempty.

• Suppose that there does not exist an object x ∈ Ai such that x �i X for all X ∈
P(Bi−Ai). The set X can be any power set of Bi−Ai, and for the sake of this proof
we assume that X = Bi − Ai. By the second statement in this lemma, for Ai �i Bi,
we can add any X such that X ∩Ai = ∅ to the both sides and write Ai∪X �i Bi∪X,



which holds since X = Bi − Ai. This states that for any object x ∈ Bi, x is also a
member of Ai ∪X, implying that Bi ⊂ Ai ∪X. Note that Bi 6= Ai ∪X because Ai is
considered to be nonempty. Using the first statement in this lemma, if Bi ⊂ Ai ∪X
then Ai ∪X �i Bi. Replacing X with Bi −Ai and subtracting it from both sides, we
have Ai �i ∅, which implies that there exists an object x ∈ Ai such that x /∈ Bi and
x �i Bi −Ai, contradicting the initial assumption.

The above items conclude our proof for the statements in this lemma.

A.3 Proof of Lemma 2

Proof. For all j < i we have πfj (�) = πfj (�′). By non-bossiness and strategyproofness, for
all �′j such that πj(�) = πj(�′j ,�−j) we have π(�) = π(�′j ,�−j). In words, non-bossiness
and strategyproofness prevent any agent to change the allocation of other agents with lower
priority (those who are ordered after him), without changing its own allocation. Let M ′ be

the set of remaining objects such that M ′ = M \
⋃j
k=1 πfk(�). Since πfj (�) = πfj (�′),

the set of remaining objects M ′ under �′ is equivalent to those under �, implying that
πfi(�) = πfi(�′) which concludes the proof.

A.4 Proof of Lemma 3

Proof. The proof follows similar to Lemma 1 in [38]. First, we show that π(�′i,�−i) = π(�),
that is changing i’s preference only does not affect the outcome. From strategyproofness
we know that πi(�i) �i πi(�′i,�−i). By the lemma’s assumption (if condition) we can also
write πi(�i) �′i πi(�′i,�−i). However, strategyproofness implies that πi(�′i,�−i) �′i πi(�i).
Since the preferences are strict, the only way for the above inequalities to hold is when
πi(�′i,�−i) = πi(�). The non-bossiness of π implies that π(�′i,�−i) = π(�).

We need to show that the following argument holds for all agents. We do this by
partitioning the preference profile into arbitrary partitions constructed partly from � and
partly from �′. Let �p= (�′1, . . . ,�′p−1,�p, . . . ,�n) ∈ Pn. Thus, a sequence of preference
profiles can be recursively written as �p+1= (�′p,�

p
−p). Using the first part of the proof

and by the recursive representation, we can write π(�p) = π(�′p,�
p
−p) = π(�p+1). Now

using this representation, we shall write π(�′) = π(�n+1) and π(�) = π(�1), which implies
that π(�) = π(�′).

A.5 Proof of Lemma 4

Proof. Suppose the contrary and let � be an identical preference profile �1=�2= a � b � c
such that agent 1 receives a and c while agent 2 receives b. For agents 1 and 2, assume
that they both have received no other objects except the ones stated above (Alternatively,
we can assume that the other objects received by these two agents so far are their highest
ranked objects, and because these objects were assigned in some previous steps, they won’t
affect the assignment of the remaining objects). For all other agents N \ {1, 2} assume that
the allocation remains unchanged, i.e., these agents will receive exactly the same objects
after we change the preferences of agent 1. By Lemma 3, since the mechanism is non-bossy
and strategyproof, agent 1’s allocation remains unchanged under the following changes in
its preference ordering:

�1= a � b � c⇒ a � c � b⇒ c � a � b

Thus, the new preference profile �′ would be

�′1: c � a � b
�2: a � b � c



where π(�′) = π(�). The squares show the current allocation. Since agent 1 is receiving
two objects and agent 2 receives one, for any ordering that is not prescribed by a serial
dictatorship, agent 2 should be ordered second (otherwise, the ordering is a serial dictator-
ship).

More specifically, orderings (1,2) and (2,1) are serial dictatorships. Since agent 2 must be
ordered second, it must be the case that agent 1 goes first and third (otherwise we are back
at (1,2), which results in a serial dictatorship). Agent 1 first chooses object c according to
�′1, then agent 2 chooses object a according to �2, and lastly agent 1 chooses the remaining
object b. Therefore, agent 2 can benefit from manipulating the mechanism by choosing
a instead of b, contradicting the assumption that π is strategyproof and non-bossy. This
implies that such agents cannot exist, and concludes our proof.

A.6 Algorithm 1

Algorithm 1: Constructing an identical preference profile

Data: A preference profile �, an ordering f , and quota q
Result: A profile with identical preferences �′ with π(�′) = π(�)

1 Initialize �1← ∅
2 Initialize set Z = ∅
3 for (i← 1 to |q|) do
4 Z ← top(qi,�fi) // Most preferred set of size qi from the remaining objects.

5 �′1← append(�′1, Z) // Append this set to the preference ordering.

6 Z ← ∅
7 for (i← 1 to |f |) do
8 �′i←�′1
9 return �′.

A.7 Proof of Lemma 5

Proof. Let π be a strategyproof, non-bossy, and Pareto C-efficient mechanism with quota
q. By Lemma 4, we know that for each identical preference profile, there exists a fixed
ordering f ′ : (f ′1, . . . , f

′
k) such that agent f ′1 receives q1 objects, agent f ′2 receives q2, and so

on. Let f be a dictatorship ordering such that f1, f2(πf1(�)), . . . , fk(πf1(�), . . . , πfk−1
(�)).

We show that for each ordering of agents, there is an exact mapping from f ′ to f . For
all preference profiles, map each agent ordering as follows: f1 = f ′1, f2(πf1(�)) = f ′2, . . .,
fk(πf1(�), . . . , πfk−1

(�) = f ′k. This implies that f is a dictatorial ordering, which concludes
our existence proof.

A.8 Proof of Theorem 3

Proof. Sequential dictatorship quota mechanisms are strategyproof and non-bossy. Propo-
sition 3 states that when preferences are lexicographic sequential dictatorships are Pareto

C-efficient. Sequential dictatorships are also Pareto efficient when C =
∑|q|
i=1 qi.

We must show the converse. Let π be a strategyproof, Pareto C-efficient, and non-
bossy mechanism with quota q. By Lemma 5, given an identical preference profile and
a quota q, there exists a sequential ordering f where agent f1 receives q1 of her favorite
objects from M , agent f2(πf1(�)) receives q2 of her best objects from M \ πf1 , and so
on. Therefore, since the choice of the first dictator is independent of preference profile, we
can identify a sequential ordering f1, f2(πf1(�)), . . . , fk(πf1(�), . . . , πfk−1

(�)) that receive
objects according to q = (q1, . . . , qk).



Similar to the proof of Theorem 2, we construct an alternate preference profile �′,
based on the given preference profile, at which all agents have identical preferences, where
�′= (�′i, . . . ,�′i).

According to function f , the first best q1 objects according to �f1 are denoted by πf1(�)
and are listed as the first objects in �′i. The next q2 objects in �′2 are the first best q2

objects according to �f2(πf1
(�)) from M \πf1(�), and so on. In general, for each i ∈ N \f1,

the next best qi objects are the best qi objects according to �fi(πf1
(�),...,πfi−1

(�)) from

M \
⋃j=i−1
j=1 πfj (�). These steps are depicted in Algorithm 2.

By Lemma 2, for any agent in f the outcome of π(�′) must remain unchanged if the
outcome of all predecessor agents remains unchanged. Thus, by Lemma 3, for any allocation
A ∈ A, if for each agent i ∈ N , πi(�′) �′i Ai then we also have πi(�′) �i Ai. For each fi(·)
where i = 1, . . . , |f |, by Lemma 3 since π is strategyproof and non-bossy, for any allocation
Afi given the quota q we have

πfi(πf1
(�),...,πfi−1

(�)) �′fi(πf1
(�),...,πfi−1

(�)) Afi(πf1
(�),...,πfi−1

(�))

πfi(πf1
(�),...,πfi−1

(�)) �fi(πf1
(�),...,πfi−1

(�)) Afi(πf1
(�),...,πfi−1

(�))

which implies that π(�′) = π(�). Therefore, we identified an sequential ordering of agents
that induces the same outcome as the original mechanism. Thus, π is a sequential dictator-
ship quota mechanism.

Algorithm 2: Constructing an identical preference profile

Data: A preference profile �, first dictator f1, and quota q
Result: A profile with identical preferences �′ with π(�′) = π(�)

1 Initialize �1← ∅
2 Initialize set Z = ∅
3 for (i← 1 to |q|) do
4 if (i = 1) then
5 k ← f1 // The first dictator is known.

6 else
7 k ← fi(πf1(�), . . . , πfi−1

(�)) // Identify the next dictator

8 Z ← top(qi,�k) // Most preferred set of size qi from the remaining objects.

9 �′1← append(�′1, Z) // Append this set to the preference ordering.

10 Z ← ∅
11 for (i← 1 to |f |) do
12 �′i←�′1
13 return �′.

A.9 Proof of Lemma 6

Proof. Showing ex post C-efficiency is simple: any serial dictatorship mechanism satisfies
Pareto C-efficiency, and thus, any randomization also guarantees a Pareto C-efficient solution
ex post. The support of the random allocation consists of only strategyproof deterministic
allocations, implying that the randomization is also strategyproof. The equal treatment of
equal is the direct consequence of the uniform randomization over the set of possible priority
orderings.



A.10 Proof of Corollary 1

Proof. The conventional RSD mechanism is equivalent to an RSDQ mechanism where agents
receive exactly one object, that is,

∑
i qi = m and for each agent i, qi = 1. Therefore, RSD

satisfies ex post efficiency, strategyproofness, and envyfreeness.


