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Abstract

We study a rating system in which a set of individuals (e.g., the customers of a
restaurant) evaluate a given service (e.g, the restaurant), with their aggregated
opinion determining the probability of all individuals to use the service and thus
its generated revenue. We explicitly model the influence relation by a social net-
work, with individuals being influenced by the evaluation of their trusted peers. On
top of that we allow a malicious service provider (e.g., the restaurant owner) to bribe
some individuals, i.e., to invest a part of his or her expected income to modify their
opinion, therefore influencing his or her final gain. We analyse the effect of bribing
strategies under various constraints, and we show under what conditions the system
is bribery-proof, i.e., no bribing strategy yields a strictly positive expected gain to
the service provider. We also study the computational complexity of bribery, show-
ing that establishing the existence of an optimal manipulation for the attacker is
NP-complete, even with full knowledge of the underlying network structure.®

%This paper summarises two publications that appeared in the proceedings of the 25th
International Joint Conference on Artificial Intelligence (Grandi and Turrini, 2016) and of
the 32nd AAAI Conference on Artificial Intelligence (Grandi et al., 2018).

1 Introduction

Imagine to be the owner of a new and still relatively unknown restaurant. The quality of
food is not spectacular and the customers you have seen so far are only limited to a tiny
number of friends of yours. Your account on Tripadvisor® has received no review and your
financial prospects look grim at best. There is one easy solution to your problems: you ask
your friends to write an enthusiastic review for you, in exchange for a free meal. After this,
Tripadvisor® lists your restaurant as excellent and the number of customers, together with
your profit, suddenly florishes.

Systems such as Tripadvisor®, where a small proportion of customers writes reviews
and influences a large number of potential customers, are not bribery-proof. each restaurant
owner - or the owner of whichever service - is able to offer a compensation - monetary or
not - in exchange for positive evaluation, having an impact on the whole set of potential
customers. Tripadvisor® is based on what we call “Objective Rating”, or O-rating: indi-
vidual evaluations are aggregated into a single figure, which is seen by, and thus influences,
every potential customer.

What we study in this paper is a system in which each individual only receives the eval-
uation given by the set of trusted peers, his or her friends, and only this aggregated opinion
influences his or her decision. This is what we call “Personalised Rating”, or P-rating, which
can be seen a generalisation of O-rating in which influence has a complex network-structure.
So, while in the case of O-rating the restaurant owner knows exactly how influence flows
among the customers, this might not be the case with P-rating.

Our contribution. We analyse the effect of bribing strategies in the case of O-rating
and P-rating under various constraints, depending on the presence of customers who do
not express any opinion and the knowledge of the network by the service provider: the exact
network is known, the network is known but not the customers’ exact position, the network



is completely unknown. We show under what conditions the system is bribery-proof, i.e.,
there is no bribe yielding a strictly positive expected gain to the service provider, and we
provide algorithms for the computation of (all) optimal bribing strategies when they exist.

Intuitively, being able to know and bribe influential customers is crucial for guaranteeing
a positive expected reward of a bribing strategy. However, while with large populations of
non-voters “random” bribes can still be profitable, the effect of P-rating is largely different
from that of O-rating and, as we show, the expected profit in the former can be severely
limited and drops below zero in all networks, under certain conditions on the cost of bribes.

Moreover, we show that even if P-rating is manipulable in theory, the problem of
manipulating it is intractable in practice. In particular, we establish that even when the
attacker has full knowledge of the network the problem of determining the existence of a
manipulation strategy guaranteeing at least a given reward — and, notably, an optimal one
— is NP-complete. We do so by giving a polynomial-time reduction from the problem of
finding an independent set of a given size k in a 3-regular graph.

Paper structure Section 2 presents the basic setup, introducing O-rating, P-rating and
bribing strategies. Section 3 focusses on O-rating, studying its bribery-proofness under
various knowledge conditions. Section 4 evaluates P-rating against the same knowledge
conditions. In Section 5 we compare the two systems, taking the cost of bribery into account.
In Section 6 we establish the NP-completeness of computing an optimal bribing strategy
and of deciding the possibility for successful manipulation. We conclude by summarising
the main findings and pointing at future research directions (Section 7). Due to space
constraints, some of the proofs can be found in appendix.

1.1 Related Work

Our approach relates to several research lines in artificial intelligence, game theory and
(computational) social choice (Brandt et al., 2015).

Network-based voting and mechanism design. We study social networks in which
individuals’ local decisions can be manipulated to modify the resulting global properties. A
similar approach is taken by Apt and Markakis (2014) and Simon and Apt (2015), which
study the changes on a social network needed to make a certain product adopted among
users. The work of Conitzer et al. (2010), Bu (2013), Todo and Conitzer (2013) and Brill
et al. (2016) on the effect of adding fake profiles to a social network is also relevant in its being
close to the problem of bribing. Finally, an extremely relevant line of research is the work
of Alon et al. (2015) and Lev and Tennenholtz (2017), who looks at theoretical guarantees
for group recommendations, as well as papers that have looked at social network-based
recommendations, such as Andersen et al. (2008). See also the recent survey by Grandi
(2017) for relevant literature on the interplay between mechanisms for collective choice and
social networks.

Lobbying and Bribery. Our framework features an external agent trying to influence
individual decisions to reach his or her private objectives. Lobbying in decision-making
is an important problem in the area of social choice, from the seminal contribution of
Helpman and Persson (1998) to more recent studies in multi-issue voting (Christian et al.,
2007). Lobbying and bribery are also established concepts in computational social choice,
with their computational complexity being analysed extensively (Faliszewski et al., 2009;
Baumeister et al., 2011; Bredereck et al., 2014, 2016).



Reputation-based systems. We study the aggregation of possibly insincere individual
evaluations by agents that can influence one another through trust relations. In this sense
ours can be seen as a study of reputation in Multi Agent Systems, which has been an impor-
tant concern of MAS for the past decades (Conte and Paolucci, 2002; Sabater and Sierra,
2005; Garcin et al., 2009). In particular, our framework treats reputation as a manipulable
piece of information, not just a static aggregate of individual opinions, coherently with the
work of Conte et al. (2008) and Pinyol and Sabater-Mir (2013).

2 Basic setup

In this section we provide the basic formal definitions of our setting.

2.1 Restaurant and customers

Our framework features an object r, called restaurant, being evaluated by a finite non-
empty set of individuals C' = {c1,..., ¢}, called customers. Customers are connected by
an undirected graph E C C x C, called the customers network. Given ¢ € C we call
N(c) ={x € C| (¢c,x) € E} the neighbourhood of ¢. We assume that ¢ € N(c) for all c.

Customers concurrently submit an evaluation of the restaurant, drawn from a set of
values Val C [0,1], together with a distinguished element {+}, symbolising no opinion.
Examples of values are the set [0,1] itself, or a discrete assignment of 1 to 5 stars, as
common in online rating systems. We make the assumption that {0,1} C Val and that Val
is closed under the operation min{1l,z + y} for all z,y € Val. The vast majority of known
rating methods can be mapped onto the [0, 1] interval and analysed within our framework.

We represent the evaluation of the customers as a function eval : C' — ValU {*} and
define V' C C as the subset of customers that expresses an evaluation over the restaurant,
ie, V={ce C]| eval(c) # *}. We refer to this set as the set of voters and we assume it to
be always non-empty, i.e., there is at least one customer that expresses an evaluation.

2.2 Two rating systems

In online rating systems such as Tripadvisor® every interested customer can see - and is
therefore influenced by - (the average of) what the other customers have written. We call
this method O-rating, which stands for objective rating.

Given an evaluation function eval of a restaurant, the associated O-rating is defined as
follows:

O-rating(eval) = avg eval(c)
ceV
Where avg is the average function across real-valued eval(c), disregarding . We omit eval
when clear from the context.

O-rating flattens individual evaluations into a unique objective aggregate, the rating
that a certain restaurant is given. What we propose is a refinement of O-rating, which
takes the network of influence into account. In this system customers are only interested
in the evaluation of other customers they can trust, e.g., their friends. We call our method
P-rating, which stands for personalised rating. It is defined for a pair customer-evaluation
(¢, eval) as follows:

P-rating(c, eval) = avg  eval(k)
kEN(c)NV



So the P-rating(c, eval) calculates what customer ¢ comes to think of the restaurant, taking
the average of the opinions of the customers c is connected to. Again we omit eval whenever
clear from the context.

Observe that in case a customer has no connection with a voter, then P-rating is not
defined. To facilitate the analysis we make the technical assumption that each customer is
connected to at least one voter. Also observe that when E = C' x C| i.e., in case the network
is complete and each individual is influenced by each other individual, then for all ¢ € C
and eval we have that P-rating(c, eval) = O-rating(eval).

2.3 Utilities and strategies

We interpret a customer evaluation as a measure of his or her propensity to go to the
restaurant. We therefore assume that the utility that a restaurant gets is proportional to
its rating. To simplify the analysis we assume a factor 1 proportionality.
The case of O-rating. For the O-rating, we assume that the initial utility u° of the
restaurant is defined as:
ud = |C|O-rating(eval).

Intuitively, the initial utility amounts to the number of customers that actually go to
the restaurant, weighted with their (average) predisposition.

At the initial stage of the game, the restaurant owner receives u’, and can then decide
to invest a part of it to influence a subset of customers and improve upon the initial gain.
We assume utility to be fully transferrable and, to facilitate the analysis, that such transfers
translate directly into changes of customers’ predispositions.

Definition 1. A strategy is a function o : C — Val such that Y .. o(c) < uP.

Definition 1 imposes that strategies are budget balanced, i.e., restaurants can only pay
with resources they have.

Let ¥ be the set of all strategies. We denote o¥ the strategy that assigns 0 to all
customers and we call bribing strateqy any strategy that is different from o®. After the
execution of a bribing strategy, the evaluation is updated as follows:

Definition 2. The evaluation eval® (c) after execution of o is eval®(c) = min{l, eval(c) +
o(c)}, where x+ o(c) = o(c), if o(c) # 0, and x + o(c) = *, if o(c) = 0.

In this definition we are making the assumption that the effect of bribing a non-voter to
vote is equivalent to that of bribing a voter that had a 0-level review, as, intuitively, the
individual has no associated predisposition to go to the restaurant.

A strategy is called efficient if o(c) + eval(c) < 1 for all ¢ € C. Let B(o) = {c € C'|
o(c) # 0} be the set of bribed customers. Let V7 be the set of voters after the execution
of 0. Executing o induces the following change in utility:

ud = |C|O-rating(eval”) — Za(c).
ceC

Intuitively, ug, is obtained by adding to the initial utility of the restaurant the rating obtained
as an effect of the money invested on each individual minus the amount of money spent.
We define the revenue of a strategy o as the marginal utility obtained by executing it:

Definition 3. Let o be a strategy. The revenue of o is defined as ro(o) = uf — u®. We
say that o is profitable if rop(o) > 0.

Finally, we recall the standard notion of dominance:



Definition 4. A strategy o is weakly dominant if uf > u(f‘)/ for all o’eX. It is strictly
dominant if ug > u(%)l for all ceX.

Hence a non-profitable strategy is never strictly dominant.
The case of P-rating. The previous definitions can be adapted to the case of P-rating
as follows:

up = Z P-rating(c, eval)
ceC

which encodes the initial utility of each restaurant, and

up = Z P-rating(c, eval”) — Z a(c)
ceC ceC
which encodes the utility change after the execution of a ¢. Finally, let the revenue of o be
rp(0) = ug — ul. If clear from the context, we use P-rating”(c) for P-rating(eval’, c).

In order to determine the dominant strategies, we need to establish how the customers
vote, how they are connected, and what the restaurant owner knows. In this paper we
assume that the restaurant knows eval, leaving the interesting case when ewval is unknown
to future work. We focus instead on the following cases: the restaurant knows the network,
the restaurant knows the shape of the network but not the individuals’ position, and the
network is unknown. We analyse the effect of bribing strategies on P-rating in each such
case. Notice how for the case of O-rating the cases collapse to the first. We also look at
the special situation in which every customer is a voter.

Given a set of such assumptions, we say that O-rating (or P-rating) are bribery-proof
under those assumptions if o is weakly dominant.

2.4 Discussion

Our model is built upon a number of simplifying assumptions which do not play a significant
role in the results and could therefore be dispensed with: (i) customers’ ratings correspond to
their propensity to go to the restaurant. (ii) the restaurant utility equals the sum of all such
propensities (iii) bribe o(c) affects evaluation eval(c) linearly. All these assumptions could
be generalised by multiplicative factors, such as an average price R paid at the restaurant,

and a “customer price” D., such that eval’(c) = eval(c) + azgi .

3 Bribes under O-rating

In this section we look at bribing strategies under O-rating, first focussing on the case
where everyone expresses an opinion, then moving on to the more general case.

3.1 All vote

Let us now consider the case in which V' = C. Recall that B(o) is the set of customers
bribed by . We say that two strategies o1 and o9 are disjoint if B(o1) N B(og) = 0.
By direct calculation it follows that the revenue of disjoint strategies exhibits the following
property:

Lemma 1. IfV = C and o1 and oo are two disjoint strategies, then ro(o10092) = ro(o1) +
I‘@(O’Q).

We now show that bribing a single individual is not profitable.



Lemma 2. Let o be a bribing strategy, V = C and |B(0)| = 1. Then, ro(o) <0, i.e., o is
not profitable.

Proof sketch. Let € be the only individual such that o(¢) # 0. By calculation, r(c) =
ud —u = O-rating” —O-rating—Y__o(c) = min{1, eval(¢)+0(¢)} — eval(c)—o(c) < 0. O

By combining the two lemmas above we are able to show that no strategy is profitable for
bribing the O-rating.

Proposition 3. If V = C, then no strategy is profitable.

Proof sketch. Any bribing strategy o can be decomposed into n pairwise disjoint strategies
such that 0 = o, 0---00., and |B(o.,)| = 1 for all 1 < j <n. By applying Lemma 1 and
Lemma 2 we then obtain that rg(o) < 0. O

From this it follows that ¢° is weakly dominant and thus O-rating is bribery-proof when
all customers voted.

3.2 Non-voters

Let us now consider the case of V' C C, i.e., when there is at least one customer who is not
a voter. In this case Lemma 1 no longer holds, as shown in the following example.

Example 1. Let C = {A, B,C}, and let eval(A) = 0.5, eval(B) = 0.5, and eval(C) =
The initial resources are u® = O-rating x 3 = 1.5. Let now o1(A) = 0.5 and O’l(B)
01(C) =0, and let 02(C) = 0.5 and 02(A) = 02(B) = 0. Now ug' =0.75 x 3 —0.5 = 1.75
and uZ? =05x3—-05=1, but ud'**>=06x3—-1=1.

The example (in particular o1) also shows that O-rating in this case is not bribery-proof.

We now turn to characterise the set of undominated bribing strategies. We begin by
showing that bribing a non-voter is always dominated. Let first o be a strategy such that
o(€) # 0 for some ¢ € C'\ V and recall that V7 is the set of voters after execution of . Let
us define the ¢-greedy restriction of o to be any strategy o~ such that:

e Vo " =V7)\ {¢}, i.e., the greedy restriction eliminates ¢ from the set of voters.

e For each ¢ € V7 °, max(1, eval(c) + o(c)) = max(1, eval(c) + o~(c)), i.e., the greedy
restriction does not waste further resources.

e If there exists ¢ € V7 * such that eval(c)+0~%(c) < 1 then Yoecc o () = ccolc),
i.e., the o~ ¢ redistributes o(¢) among the remaining voters.

We now show that each strategy bribing a non-voter is strictly dominated by any of its
greedy restrictions.

Proposition 4. Let V #£ C, and ¢ € C\'V. Then each strategy o with o(¢) # 0 is strictly
dominated by o~ ¢.

Proof. Let o be a strategy with o(¢) # 0 for some non-voter ¢, and let 0~¢ be one of its
greedy restriction defined above.

ug  —ud =
|C|(®—n’athmg”76—®—ratﬁmg")+ Z o(c)— Z o %) =
ceC ceC

ZCGC eval"ié(c) B ZCEC eval®(c)
\4 [V uel

+Q o) = > 07 ()

ceC ceC
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Observe first that o~° is a redistribution, hence ) _o(c) — > .07%(c) > 0, i.e., the second
addendum in the above equation is positive. Consider now the case where there exists
¢ € V7 \ ¢ such that eval(c) + 07 %(c) < 1. Then by the definition of ¢~¢ we have that

Yoceye eval®(c) = 3 cyo-e eval‘f_é(c), i.e., the greedy restriction preserves the overall

evaluation. By straightforward calculation this entails that u(‘[’»fc —ug > 0. If no such

¢ exists, and therefore (]:)—rr:unt|'1tr1g‘fE = 1 we have that either O-rating” < 1 or, by the
efficiency requirement and the fact that o(¢) # 0, we have that Y .~ o(c) > > .o 0 %(c).

In either cases we have that u(%)fc —ug > 0. O

Let an O-greedy strategy be any efficient strategy that redistributes all the initial re-
sources u(%) among voters. Making use of the previous result, we are able to characterise the
set of all dominant strategies for O-rating.

Proposition 5. Let V # C. A strategy is weakly dominant for O-rating if and only if it
is an Q-greedy strategy.

Proof sketch. For the right-to-left direction, first observe that all Q-greedy strategies are
payoff-equivalent, and that a non-efficient strategy is always dominated by its efficient coun-
terpart. By Proposition 4 we know that strategies bribing non-voters are dominated, and
by straightforward calculations we obtain that in presence of non-voters it is always prof-
itable to bribe as much as possible. For the left-to-right direction, observe that a non-greedy
strategy is either inefficient, or it bribes a non-voter, or does not bribe as much as possible.
In either circumstance it is strictly dominated. O

While there may be cases in which the number of weakly dominant strategies under
O-rating is exponential, all such strategies are revenue equivalent, and Proposition 5 gives
us a polynomial algorithm to find one of them: starting from an evaluation vector eval,
distribute all available resources u(%) to the voters, without exceeding the maximal evaluation
of 1. By either exhausting the available budget or distributing it all, we are guaranteed the
maximum gain by Proposition 5.

4 Bribes under P-rating

In this section we look at bribing strategies under P-rating, against various knowledge
conditions on the social network. As for Section 3 we start by looking at the case where
everyone votes and later on allowing non-voters. Before doing that, we introduce a graph-
theoretic measure of influence and prove a useful lemma.

Definition 5. The influence weight of a customer ¢ € C in a network E and a set of
designed voters V is defined as follows:

1
w, = —_—
> IN(k)N V]
kEN(c)
Recall that we assumed that every customer can see a voter, thus w) are well-defined for
every c. If V = C, i.e., when everybody voted, we let w. = w®. In this case, we obtain

We =D ken(e) ﬁ(k)’ where deg(c) = |N(c)| is the degree of ¢ in E. When V is defined by

a bribing strategy o, we write w? = w/

Intuitively, each individual’s rating influences the rating of each of its connections, with
a factor that is inversely proportional to the number of second-level connections that have
expressed an evaluation. We formalise this statement in the following lemma:

o



Lemma 6. The utility obtained by playing o with P-rating is ug = ) .o wl X eval’ (c) —
>ceco(o).

Proof. By calculation:

up + Z o(c) = Z P-rating”(c) = Z avg  eval’ (k) =

ceC ceC cec keN(e)nVe
1

= Z [70 Z eval"(k)] =

o IN@OVel Gave

1
== Z [e’l)alg(k)x Z W]—
keve K EN (k)
= Z w? x eval’ (c)
ceVe |

4.1 All vote, known network

We begin by studying the simplest case in which the restaurant knows the evaluation ewal,
the network E as well as the position of each customer on the network. The following
corollary is a straightforward consequence of Lemma 6:

Corollary 7. Let V = C and let o1 and oo be two disjoint strategies, then rp(oy o 09) =
I']p(dl) —+ I‘P(O'Q).

We are now able to show a precise characterisation of the revenue obtained by any efficient
strategy o (the proof of this proposition can be found in appendix):

Proposition 8. Let V = C, let E be a known network, and let o be an efficient strategy.
Then rp(o) = 3 co(we —1)o(c).

Proposition 8 tells us that the factors w. are crucial in determining the revenue of a
given bribing strategy. Bribing a customer c¢ is profitable whenever w.>1 (provided its
evaluation was not 1 already), while bribing a customer ¢ with w.<1 is at most as prof-
itable as doing nothing, as can be seen in the example below. Most importantly, it shows
that P-rating is not bribery-proof when the restaurant knows both the network and the
customers’ evaluations.

Example 2. Let E be a four-armed star, and let A be the individual in the centre. Assume
each individual values the restaurant 0.5. We have that wa = 2.2 and w. = 0.7 for all c
different from A. Consider now two bribing strategies: o* which bribes A with 0.5, and
B which bribes a single individual B # A with the same amount. What we obtain is that
rp(c?) = 0.6, while rp(c?) = —0.15.

Given a network F and an evaluation vector eval, let Algorithm 1 define the P-greedy
bribing strategy.
As a consequence of Proposition 8 we obtain:

Corollary 9. The P-greedy bribing strategy defined in Algorithm 1 is weakly dominant.

As in the case of O-rating, Corollary 9 has repercussions on the computational com-
plexity of bribery: it shows that computing a weakly dominant strategy can be done in
polynomial time. Notice how the most costly operation lies in the computation of the
influence weights w., which can be performed only once, assuming the network is static.
Similar problems, such as recognising whether bribing a certain individual is profitable, or
estimating whether individuals on a network can be bribed above a certain threshold, are
also computable in polynomial time.



Input: Evaluation function eval and network F
Output: A bribing strategy o : C — Val
Budget=u)
of(c)=0forallceC
Compute w, for all c € C
Sort ¢ € C in descending order cg, ..., ¢, based on w,
for i=0,...,m do
if Budget# 0 then
if we, > 1 then
oS (¢;) = min{1 — eval(c;), Budget}
Budget=DBudget-o§ (c;)

end
end
return o'g

end

Algorithm 1: The P-greedy bribing strategy O'g

4.2 All vote, unknown network

We now move to study the more complex case of an unknown network. Surprisingly, we are
able to show that no bribing strategy is profitable (in expectation), and hence P-rating is
bribery-proof in this case. Recall that we are still assuming that the restaurant knows eval
and everybody voted.

We begin by assuming that the restaurant knows the structure of the network, but
not the position of each participant. Formally, the restaurant knows F, but considers any
permutation of the customers in C' over E as possible. Let us thus define the expected
revenue of a strategy o over a given network E as the average over all possible permutations
of customers: E[rp(c)] = Y -[ug —ub], where we abuse notation by writing uJ as ug under
permutation p over the network E. What we are able to show is that all strategies are at
most as profitable as ¢¥ in expected return:

Proposition 10. Let V = C, let the network structure of E be known but not the relative
positions of customers on E. Then Elrp(c)] = 0 for all strategies o.

Proof sketch. Let |C| = n. We show the result for any strategy o that bribes a single
customer ¢. The general statement follows from the linearity of E[r(c)]. Equation (5)
uses Proposition 8 to compute the revenue for each permutation p of customers C on the
network:

1 . 1 _
Elo) =30 L (g —u9) = Y Lwne — Vo(@) = 1)
p p
—1)! _ —1)!

= D 1o = O S e 1) =0 @

ceC ceC
The last line follows from the observation that ) w. = |C| and hence ) (w. —1) =0, by
a consequence of Definition 5 when everybody votes. O

Hence, if we assume a uniform probability over all permutations of customers on the
network, a straightforward consequence of Proposition 10 concludes that it is not profitable
(in expectation) to bribe customers.

Corollary 11. IfV = C and the network is unknown, then no bribing strategy for P-rating
is profitable in expected return.
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Figure 1: Customers permutations in Example 4.

4.3 Non-voters, known network
With P-rating it is possible to find a network where bribing a non-voter is profitable:

Example 3. Consider 4 individuals {B,C, D, E} connected only to a non-voter in the
middle. Let eval(j) = 0.2 for all j but the center. We have u} = 1. Let A be the non-voter,
and let 01(A) =1 and 0 otherwise. The utility of o1 is:

P-rating” (A) + 4P-rating”* (j) — 1 = 1.76

All other strategies can be shown to be dominated by o1. Take for instance a strategy oo
such that o2(B) = 0.8, 02(C) = 0.2 and 0 otherwise. The utility of o9 is ug® = 1.25.

It is quite hard to obtain analytical results for strategies bribing non-voters, due to the
non-linearity of the P-rating in this setting. We can however provide results in line with
those of the previous section if we restrict to voter-only strategies, i.e., strategies o such that
o(c) =0 for all ¢ € V. In this case, a similar proof to Proposition 8 shows the following:

Proposition 12. Let V # C, E be a known network, and o be an efficient bribing strategy
such that B(c) C V. Then, rp(o) =3 .o (w) — 1)o(c).

The difference with the case of V = C' is that w) can be arbitrarily large in the presence of
non-voters, such as in our Example 3.

4.4 Non-voters, unknown positions

Unlike the case of V' = C, in this case it is possible to define bribing strategies that are
profitable (in expected return).

Example 4. Let C = {A, B,C}, and the initial evaluation eval(A) = eval(B) = 0.2 and
eval(C) = . Assume that the structure of the network is known, but the position of the
individuals is not. Let the three possible network positions (without counting the symmetries)
be depicted in Figure 1. Let 0(B) = 0.2 and 0(A) = o(C) = 0. In the first case:

1

rp(0)=P-rating(A) + ... + P-rating(C) — 0.2 — uf =
=034+03+04-02-06=0.2

In the second case r3(c) = 0 while in the third:
r}(0) =0.4+03+02-02-0.6=0.1

Therefore, P-rating is not bribery-proof (in expectation) in the presence of non-voters
when the network is unknown. Interesting computational problems open up in this set-
ting, such as identifying the networks that allow for profitable bribing strategies, and their
expected revenue.



5 Boundaries of bribery-proofness

The previous sections have shown that having a network-based rating systems, where in-
dividuals are influenced by their peers, is not bribery-proof, even when the position of
individuals in a given network is not known. However bribing strategies have a different
effect in the overall score. While the utility of O-rating is a sum of the global average of
voters’ evaluation, the utility of P-rating is a sum of local averages of voters’ evalution
against the one of their peers.

Therefore a strategy bribing one voter affects everyone in the case of O-rating, but it
can be shown to have a limited effect in the case of P-rating.

Proposition 13. Let o be an efficient strategy s.t. |B(o)| = 1, and let ¢ be such that
o(c) #0. Thenrp(c) < N(2).

Proof. By calculation, we have that:

o) = Z P-rating” (¢)—o(c)— Z P-rating(c) =

ceC ceC
Z P-rating” (c) — o( Z P-rating(c
c¢’eN(c) c’eN(e)
<1x N(e Z P-rating(c) < N(¢)
c’eN(¢) O

The previous result shows that increasing the number of individuals that are not con-
nected to an agent that is bribed, even if these are non-voters, does not increase the revenue
of the bribing strategy. This is not true when we use O-rating.

Proposition 14. Let o be an efficient strategy. The revenue ro(o) of o is monotonically
increasing with the number of non-voters, and is unbounded.

Proof. Tt follows from our definitions that:

C
ro(o) = ||V”| -1)[ Z eval(c) + o(c)]

ceC

The above figure is unbounded and monotonically increasing in the number of non-voters,
which can be obtained by increasing C' keeping V¢ fixed. O

So while P-rating and O-rating are not bribery-proof in general, it turns out that the
impact of the two in the overall network are significantly different. In particular, under
realistic assumptions such as a very large proportion of non-voters and with participants
having a few connections, bribing under O-rating is increasingly rewarding, while under
P-rating this is no longer the case.

6 The Complexity of Bribery under the P-rating

We now investigate, from a complexity theoretic standpoint, the problem of computing a
bribing strategy yielding at least some given revenue, when not every customer votes and
the restaurant has full knowledge of each customer’s position. Firstly we re-formulate the
above optimisation problem as a decision problem.

BRIBE-NVKL
Instance: Network (C, E), evaluation evaly, p € Q
Yes-Instance: An instance of BRIBE-NVKL s.t. there exists a strategy o with

r(o) > p



Any instance of the above problem should adhere to the usual restrictions of the frame-
work. These are, most importantly, that the initial evaluation is such that every customer
¢ € C is adjacent to at least one customer ¢’ € C such that eval(c’) # * (recall that every
customer is adjacent to itself). Also, any strategy o is such that ) .~ o(c) is at most the
initial utility resulting from ewvaly.

The following proposition is straightforward:

Proposition 15. BRIBE-NVKL s in NP.

Proof. Given a customer network (C, E), an evaluation eval, and p € Q, we can clearly
decide whether a given strategy o yields a revenue of at least p in polynomial-time (we
simply evaluate the strategy). It therefore follows that BRIBE-NVKL is in NP. O

In what follows, we show that BRIBE-NVKL is NP-hard, by giving a reduction from
the known NP-complete problem of finding an independent set on 3-regular graphs, aka
ISREG(3) Garey and Johnson (1990).

Recall that a graph G is 3-regular if the degree of every vertex is 3, and an independent
set of G is a subset X of its vertices such that there is no edge of G joining any pair of
vertices in X. We can now give the following definition:

ISREG(3)

Instance: A 3-regular graph G, k € N

Yes-Instance: An instance of ISREG(3) such that G has an independent set
of size at least k

The proof of the following proposition can be found in appendix:
Proposition 16. BRIBE-NVKL is NP-hard.

As a direct consequence of Propositions 15 and 16 we obtain the following;:
Theorem 17. BRIBE-NVKL is NP-complete.

In summary, we have been able to prove the NP-completeness of BRIBE-NVKL by giv-
ing a reduction from ISREG(3). This is an important finding, that significantly strengthens
the value of personalised rating systems and their resistance to bribery, as we have demon-
strated that we cannot compute an optimal bribing strategy, nor any strategy guaranteeing
at least a given reward, in a reasonable amount of time; that is, of course, unless P = NP.

7 Conclusive remarks

We introduced P-rating, a network-based rating system which generalises the commonly
used O-rating, and analysed their resistance to external bribery under various conditions.
The main take-home message of our contribution can be summarised in one point, deriving
from our main results:

P-rating and O-rating are not bribery-proof in general. However, if we assume that a
service provider has a cost for bribing an individual, there are situations in which P-rating is
fully bribery proof, while O-rating is not. For instance, if the cost of bribing an individual ¢
is at least N (¢) then P-rating is bribery-proof. As observed previously, this is not necessarily
true for O-rating. In particular, if we assume the presence of unreachable individuals the
difference is more significant. As shown, for P-rating we need to bribe individuals with
w, > 1. With O-rating is sufficient to find one voter who accepts a bribe.

To strengthen for the practical applicability of the personalised rating framework, we
also showed that despite the proposed system being manipulable such task is intractable in
practice, as the problem of computing the existence of a manipulation strategy guaranteeing
a given reward and thus an optimal one, what we called BRIBE-NVKL, is NP-complete.
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Appendix
Proof of Proposition 8:

Proof. By calculation, where Step (2) uses Lemma 6, and Step (4) uses the fact that o is
efficient:

rp(0) = uf — u = (3)
= [Z w, evaly — Z a(e) — Z we eval(c)] = (4)
ceC ceC ceC
=Y [we [min{1, eval(c) + o(c)} — eval(c)] — Y a(c) (5)
ceC ceC
= (we = 1o(c). (6)
ceC

Proof of Proposition 16:

Proof. We start by giving a reduction from an arbitrary instance of ISREG(3) to an in-
stance of BRIBE-NVKL. That is, given a 3-regular graph G and k € N, we construct a
network (C, E), an initial evaluation evaly, and p € Q such that G has an independent set
of size at least k <= there exists a strategy on ((C, E), evalp) that yields a revenue of at
least p. Given a 3-regular graph G, we define a network of customers as follows:

Customers The set C' of customers is composed of old, pendant, and edge cutomers. For
all vertices v € G, we create an old customer v € C, as well as a set of pendant
customers v1,..,v, € C, where n is the number of vertices of G. For each edge (u,v)
of G, we introduce an edge customer w,, € C.

Network The network E relating customers is defined as follows. For each old customer
v, there is an edge (v,v;) € E for i = 1,2,...,n, connecting it to the related pendant
customers. For every edge (u,v) of G, we add (u,ws,) and (w, ,,v) to E, relating
the two old customers with the corresponding edge customer.

For any such network as constructed above, we can define an initial evaluation evaly as
follows, where 0 < € < 1 is some value that will be set later in the proof:

e If c € C is an old customer then evaly(c)=+ (non-voter).

o If c € C is an edge or pendant customer then evaly(c)=e.

An example of the construction of the customer network and evaluation from a graph G
can be seen in Figure 2.

By the construction of the network, we have that for all ¢ € C, the P-rating(c, evaly) = €
(recall that we assumed ¢ € N(c¢) for all customers). Every customer of the newly con-
structed customer network contributes € to the initial utility of the network and therefore
ud = e(n+n%+ 32). We now choose € so that u) = k; that is, so that

k
n+n?+ 3
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Figure 2: The figure above shows a portion of a 3-regular graphs, formed by the five black
vertices (additional edges required by 3-regularity have been omitted). Black vertices are
therefore old customers, white vertices are pendant customers, and grey vertices are edge
customers. The associated bribing strategy is marked with 0, 1 and € labels.

By assumption the restaurant owner can only make bribes totalling at most k. Further-
more, note that the initial evaluation is a valid one in that every customer of the network
is adjacent to at least one voter. Finally, let

1 n—+3
p=H 6)(n+4+ 2 > K

( = ) Suppose that our instance (G, k) of ISREG(3) is a yes-instance; that is, there
is a set I of k vertices such that no two vertices of I are adjacent in GG. Consider the
bribing strategy for (C, E) (as constructed above) where o(c) = 1, for every old customer
corresponding to some vertex of I, and o(¢’) = 0 for all other ¢ € C.

Let us now compute the revenue obtained by o. Recall that the revenue is equal to the
increase in P-rating of the bribed customers and their neighbourhoods (old, pendant, and
edge customers), minus the cost of the bribe. The cumulative increase in rating of bribed

old customers is:
k 1—}—(71—&—3)6_6 :k;l_G.
n+4 n+4

The cumulative increase in rating of pendent customers is:

1 1-—
nk( —2'_6—6>:nk 26.

Finally, the increase in rating due to edge customers is:

1+e 1—c¢
3k( 5 —6)—3k 5




Recall that bribed old customers correspond to an independent set in G. Summing up, the

revenue of strategy o is:
1 n+3
k(1 — —k=p.
(1-¢ (n+4+ 2 > P

Therefore ((C, E), evaly, p) is a yes-instance of NVKL.

( <= ) We now suppose that ((C, E), evalg, p) is a yes-instance of NVKL and that o is
a bribing strategy that yields a revenue of at least p. We will assume that o is also optimal,
i.e., that there is no other strategy ¢’ yielding a higher revenue. We will now show that o
can be transformed into a revenue-equivalent strategy such that (a) only old customers are
bribed, (b) all bribed old customers are bribed fully, and (¢) exactly k old customers are
bribed.

We begin by showing the following technical lemma, whose proof is omitted in the interest
of space:

Lemma 18. Let o be an optimal bribing strateqy. Let X be the set of customers for which
eval(z) < eval?(z) < 1. Let vy, = |[N(y) N V| for anyy € C. For z,y € X

Y=
2€N@) F zeN() *
So, given an optimal bribing strategy, we can move bribes amongst non-fully bribed
voters arbitrarily without affecting the revenue acquired so long as we do not totally remove

all the bribe from a customer that was not originally a non-voter, and we do not turn a
non-voter into a voting one.

Revenue equivalent strategy - new customers. Let us call new customers, the set of
edge and pendant customers. We begin by showing that ¢ can be modified into an optimal
strategy that does not bribe any new customer.

If a new customer is bribed then the bribes to new customers can be enumerated in
descending order as 1 —¢,1 —¢€,...,1 —¢€, €71, €3, ..., €5, for some s > 0 and where 0 < ¢; < 1—¢€
for each ¢ = 1,2, ..., s, with possibly no bribe of 1 — e. By Lemma 18, we can move bribes
amongst the new customers so that we may assume that all but at most one new customer
is not fully bribed; that is, that s < 1. The following result is needed:

Lemma 19. There exists an old customer ¢ who has not been bribed and where at most
one of its adjacent new pendant customers has been bribed.

First, we suppose that there exists a fully bribed new customer, and derive a contradiction
with the optimality of o.

Consider the bribe of 1 — € to ¢, and consider the increase in P-rating generated by this
single bribe. If ¢ is a new pendant customer then this contribution is certainly less than
2 as |[N(c)| = 2, and if ¢ is a new edge customer then this contribution is less than 3 as
|N(c)| = 3. Therefore, in all cases, the bribe of 1 — € to ¢ contributes less than 3 units to
the overall utility accrued from o.

By Lemma 19, let ¢’ be an old customer that is not bribed and that is adjacent to at
most one new pendant customer that has been bribed. Consider moving the 1 — e bribe from
¢ to ¢’; so, we obtain a new (efficient) strategy o’. Let us examine the increase in P-rating
generated by this new 1 — e bribe.

At least n — 1 of the new pendant customers adjacent to ¢’ have not been bribed and so
the associated cumulative increase in rating is given by (n — 1) — (n — 1)e and given that



€ < =—2_ then the cumulative increase in utility is

2n+5
1 n—1
-1 =- — 1.
(n )<2 e)> 3

Bribing ¢’ might reduce the P-ratings of ¢’ and its adjacent new edge customers. However,
this reduction is certainly less than 4 units. Therefore we may conclude that the movement of
1—c¢ of bribe from c¢ to ¢’ increases the overall utility by an amount greater than ("T_l — 1) -7
units. This amount is strictly positive for n sufficiently large (n > 14). Therefore the
strategy o’ that we have constructed yields a revenue greater than that of o, in contradiction
with its optimality.

Suppose now that some new customer ¢ has been bribed some amount § such that 0 <
0 <1 —e€. By a detailed case study — omitted for space constraints — we can again derive a
contradiction with the optimality of o. Therefore, we conclude that no new customer have
been bribed in the revenue-equivalent optimal strategy o.

Revenue equivalent strategy - old customers. We now turn our attention to old
customers. The bribes on old customers can be enumerated in descending order as
1,1,...,1,01,02, ... 0y, for some m > 0 and where 0 < §; < 1, for each i = 1,2,...,m,
with possibly no bribes of 1. Without loss of generality, we may assume that > ., &§; < 1;
otherwise, we would have that m > 2 and we could reduce the bribes ds, 93, ..., d,,, without
making any equal to zero, so as to increase the bribe é; to 1 and secure another fully bribed
customer. The following result is needed:

Lemma 20. Let (C, E) be some network with initial evaluation evaly and let o be a bribing
strategy. Let ¢ € C be such that evalp(c) # * and eval’(c) = § > 0, but where for every
customer ¢’ € U{N(c') : ¢ € N(c)}, we have that 6 < eval’(¢"). If o_. is the bribing
strategy obtained from o by removing the bribe from ¢, we have that r(o_.) > r(o).

Therefore, we can assume that at most one old customer has not been fully bribed.
Suppose now that there is in fact one bribed old customer that has not been fully bribed.
Let us call this old customer ¢ and further suppose that it has been bribed é where 0 < § < 1.
We will again show that this yields yet another contradiction with the optimality of o. We
have the capacity to increase this bribe to 1 at a cost of 1 — ¢ (which we can do, given the
remaining resource). The P-rating of all the customers within N(¢) will increase with the
cumulative increase (only due to new pendant neighbours) being
1+4¢€ d+e€ 1-90
n .

-n =n
2 2 2

Hence we obtain an increase in revenue for n sufficiently large (n > 3). This contradicts

the optimality of 0. Henceforth, we assume that, without loss of generality, any optimal

bribing strategy o on (C, E), with initial evaluation evaly, is necessarily such that only old

customers are bribed and bribed old customers are fully bribed.

Suppose now that the bribing strategy o bribes less than k old customers; so, there is an
old customer ¢ that has not been bribed. Let us amend ¢ to obtain a new bribing strategy
o’ by bribing ¢ so that o(¢) = 1. This costs us 1 unit of resource. There is no customer
of C such that its P-rating decreases, and the cumulative increase in P-rating of the n new
pendant customers adjacent to c is

" l+e - 1—e¢ >n(2n+3)>ﬁ
2 )~ 2 2(2n+5) ~ 4




which is strictly greater than 1 (the amount invested) for n sufficiently large (n > 5). This
contradicts the optimality of o. Furthermore, it is clear that more than k£ old customers
could not have been bribed since the initial utility of the network totals only &£ and each old
customer is bribed by 1.

Finding an independent set of size k. We have shown above that the optimal bribing
strategy o on (C, E) is such that only old customers are bribed, all bribed old customers
are fully bribed, and exactly k old customers are bribed.

Consider now the revenue accruing from our optimal bribing strategy o. Irrespective of
which k old customers are fully-bribed, the increase in P-rating due to these old customers

is equal to:
(1+ (n+3)e) 1—e¢
=
n+4 n+44’
and the P-rating of the pendant customers adjacent to each of these bribed old customers

increases by:

1+e 1—e¢

2 T 2
All that remains is to compute the revenue accruing due to the new edge customers
adjacent to each of these bribed old customers (as the P-rating of any other old or new
customer does not change). However, this depends upon how many bribed old customers
each new edge customer is adjacent to. Let m; denote the number of new edge customers
adjacent to ¢ bribed old customers, for ¢ = 1,2. If a new edge customer c is adjacent to 1
bribed old customer then its increase in P-rating is
(1+9 __ (-9

2 2

and if it is adjacent to two bribed old customers then its increase in P-rating is

(2+¢€) . 2(1—¢)

3 3

So, the total increase in revenue is

(1—¢) 2(1—¢)
mi B —+ mo 3 .
We also know that by counting the edges joining bribed old customers and their adjacent
new edge customers, we obtain that 3k = 2msy 4+ my. Hence, the total increase in P-rating
due to new edge customers is equal to
(1—¢) 2(1—¢)

mlT + mgy

= (3k‘ — 2m2) (1 g 6) + ’ITLQT
3k(1 —¢) (1—¢)

T2 M3

So, the revenue due to the bribing strategy o is:

k(1—6)+nk(1—e)+3k(l—e) - (I—e)

n+4 2 2 3
k k(n+3) mq

= 1— — —= | — k.

Calat 5k



Clearly this revenue is largest when mso is 0, and if my > 0 then the revenue is less than
this maximal value. Also, when my is 0 this revenue is exactly equal to p. Hence, as
we started with a yes-instance of NVKL, we must have that my = 0, i.e., that no edge
customer is adjacent to two bribed old customers. Thus, the &k vertices of G corresponding
to the k bribed old customers in C' form an independent set, and (G, k) is a yes-instance of
ISREG(3). O



