
COMSOC 2006, Amsterdam, Dec. 2006

Incomparability and uncertainty 

in preference aggregation

Francesca Rossi
University of Padova, Italy



COMSOC 2006, Amsterdam, Dec. 2006

Joint work with ...

� K. R. Apt, CWI, Amsterdam
� Jerome Lang, IRIT-CNRS, France
� Maria Silvia Pini, Univ. Padova, Italy
� K. Brent Venable, Univ. Padova, Italy
� Toby Walsh, NICTA and Univ. of New South Wales, 

Australia



COMSOC 2006, Amsterdam, Dec. 2006

Outline

� Representing constraints and preferences:
� Soft constraints (quantitative preferences)
� CP nets (qualitative conditional preferences)

� Aggregating partially ordered preferences
� Fairness: possibility and impossibility results
� Non-manipulability

� Adding uncertainty to incomparability
� Complexity of finding the winners
� Sequential majority voting

� Back to CP nets and soft constraints
� to find optimals in preference aggregation
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How to represent preferences 

compactly?

� Preferences define an ordering over a set of 
objects

� The set can be esponentially large w.r.t. some 
given input size
� Instantiation of n variables over their domains
� Configurations of n objects 

� We need ways to specify the ordering compactly
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AI formalisms for modelling 

preferences compactly

Many, but I will focus on two of them:

� Soft Constraints
� Quantitative preferences
� Preferences + constraints

� CP-nets (Conditional Preference Networks)
� Qualitative conditional preferences
� No constraints
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Soft constraints
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Soft  Constraints: 

the c-semiring framework

� Variables {X1,…,Xn}=X
� Domains {D(X1),…,D(Xn)}=D
� Soft constraints

� each constraint involves some of the variables
� a preference is associated with each assignment of the 

variables
� Set of preferences A

� Totally or partially ordered (indiced by +)
� Combination operator (x)
� Top and bottom element (1, 0)
� Formally defined by  a c-semiring <A,+,x,0,1>

[Bistarelli, Montanari, Rossi, IJCAI 1995]
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Instances of soft constraints

� Each instance is characterized by a c- semiring <A, +, x, 
0, 1>

� Classical constraints: <{0,1},logical or,logical and,0,1>
� Fuzzy constraints: <[0,1],max,min,0,1>
� Lexicographic CSPs: <[0,1]k,lex- max,min,0k,1k>
� Weighted constraints (N):<N∪+∞,+, min,+∞,0>
� Weighted constraints (R):<R∪+∞,+, min,+∞,0>
� Max CSP: weight =1 when constraint is not satisfied and 

0 is satisfied
� Probabilistic constraints: <[0,1],x,max,0,1>
� Valued CSPs: any semiring with a total order
� Multi- criteria problems: Cartesian product of semirings
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Solutions

� Global evaluation: preference associated to a 
complete assignment 

� How to obtain a global evaluation? 
� By combining (via x) the preferences of the partial 

assignments given by the constraints
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Fuzzy-SCSP example

{12 am, 1 pm} {2 pm, 3 pm}

Lunch Swim

(12 am, 3 pm) � 1

(12 am, 2 pm) � 1 (1 pm, 2 pm) � 0

(1 pm , 3 pm) � 1

{Fish, Meat} {White, red}

Main
Course

Wine

(Fish, red) � 0.8

(Fish, white) � 1 (Meat, white) � 0.3

(Meat, red) � 0.7

Lunch=            1 pm
Main course =   meat
Wine=              white
Swim =            2 pm

Solution S

pref(S)=min(0.3,0)=0

Lunch=            12 pm
Main course =   fish
Wine=              white
Swim =            2 pm

Solution S’

pref(S)=min(1,1)=1

Fuzzy semiring

SFCSP=<[0,1],max,min,0,1>

S =<A  ,  +  ,  x ,0,1>
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Solution ordering

� A soft CSP induces an ordering over the 
solutions, from the ordering of the preference 
set

� Totally ordered � total order over solutions 
(possibly with ties) 

� Partially ordered � total or partial order over 
solutions  (possibly with ties) 

� Any ordering can be obtained
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Typical questions

� Find an optimal solution
� Difficult: NP-hard 
(ex.: branch and bound + adapted constraint propagation)

� Is t an optimal solution?
� Difficult: NP-hard
(we first have to find the optimal preference level)

� Is t better than t’?
� Easy: Linear in the number of constraints
(if + and x are easy to compute: compute (x) the two pref. 

levels and compare (+) them)
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CP nets
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CP nets

� Conditional preference statements 
� If it is fish I prefer white wine to red 
� syntax: fish: white wine > red wine

� Ceteris paribus interpretation
� all else being equal
� {fish, white wine, ice cream} > (preferred to) 

{fish, red wine, ice cream}
� {fish, white wine, ice cream} ?

{fish, red wine, fruit}

[Boutilier, Brafman, Hoos, Poole UAI99]
[Boutilier, Bacchus, Brafman UA01]
[Domshlak, Brafman KR02]
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CP nets
� Variables {X1, … , Xn} with domains
� For each variable, a total order over its values
� Indipendent variable:

� X=v1 > X=v2 > ... > X=vk
� Conditioned variable: a total order for each combination of 

values of some other variables (conditional preference 
table)
� Y=a, Z=b: X=v1 > X=v2 > ... > X=vk
� X depends on Y and Z (parents of X)

� Graphically: directed graph over X1, … , Xn

� Possibly cyclic

X

X

Y Z
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CP-net semantics

� Worsening flip: changing the value of an attribute in a 
way that is less preferred in some statement

� An outcome O1 is preferred to O2 iff there is a 
sequence of worsening flips from O1 to O2

� Optimal outcome: if no other outcome is preferred
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Preorder over solutions

� A CP net induces an ordering over the solutions 
(directly)

� In general, a preorder
� Some solutions can be in a cycle: for each of them, 

there is another one which is better
� Acyclic CP net: one optimal solution
� Not all orderings can be obtained with CP nets

� Outcomes which are one flip apart must be ordered
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Example: solution ordering

fish>meat

peaches > strawberries

red > 
white

meat

white > 
red

fish

WineMain 
course

Main 
course

Fruit

Wine

Fish, white, peaches

Fish, red, peaches Fish, white, berries

Fish, red, berries

meat, red, peaches

meat, red, berriesmeat, white, peaches

meat, white, berries
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Typical questions in CP nets

� Find an optimal outcome
� In general, difficult (as solving a CSP)
� Acyclic networks always have one

� Sweep forward in linear time
� Example: a>-a, -b>b, ab:-c>c, -a-b:c>-c

a then -b then c
� Does O1 dominate O2?

� Difficult even for acyclic CP nets
� Not even known to be in NP

� Is O optimal?
� Easy (test O against a CSP)
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Summary of preference representation 

formalisms

� CP nets
� pros: conditional, qualitative
� cons: comparing outcomes 

� Soft constraints
� pros: comparing outcomes, hard constraints
� cons: quantitative

� Both may produce partially ordered solution sets
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Multi-agent setting: aggregating 

partially ordered preferences
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The considered setting

� Several agents (people, software agents, etc.) 
expressing their preferences over a set of scenarios
(solutions, outcomes, etc.) 

� We need to aggregate their preferences to obtain a 
result which satisfies all

� Result can be:
� A preference ordering over the scenarios (social welfare)
� A set of scenarios (social choice)

� Preferences (of one agent, or in the result) are 
expressed via partial orders
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Some desired properties

� Unanimity
� If all agents say A better than B, the result must say the 

same

� Independence to irrelevant alternatives
� Final ordering of two outcomes only depends on how agents 

order these two outcomes

� Non-dictatorship
� Dictatorial: for any election, the resulting ordering depends 

on just one agent (he cannot be contradicted)
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Arrow’s theorem 

� Voting system: function from a set of total orders with 
ties to a total order with ties

� A voting system is fair is it is unanimous, 
independent to irrelevant alternatives, and non-
dictatorial

� Theorem: there is no voting system, with at least 2 
voters and 3 outcomes, which is fair

� Proof: if we assume unanimity and independence, 
then the voting system must be dictatorial

[Arrow, 1951]
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Fairness

� Can we fairly combine the agents’ 
preferences?

� Does Arrow’s theorem hold also in our 
context?

� Not directly: voters (and result) may include 
incomparability

� Arrow’s theorem assumes a total order for 
each agent and for the result
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What is a dictator when we use POs?

� Strong dictator: a voter such that his ordering is the 
result

� Dictator: if he says A better than B, then the result is 
A better than B
� But if he says that A and B are incomparable or indifferent, 

then they can be ordered in the result
� Same notion as for TOs in Arrow’s theorem

� Weak dictator: if he says A better than B, then the 
result cannot be B better than A
� But it can be A incomparable/indifferent to B

� At most one strong dictator or dictator, possibly 
many weak dictators

� Strong dictator � dictator � weak dictator
� Weak fairness � fairness � strong fairness
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Strong dictators

� No strong dictator: very weak property
� Example: Lex

� It is free, monotonic, independent, and does not 
have any strong dictator

� The first agent does not dictate indifference, so it 
is not a strong dictator

� It is a dictator however

� So, with partial orders it is possible to be 
strongly fair
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Dictators

� It is possible to be fair
� Example: Pareto

� It is free, monotonic, transitive, independent, and 
does not have any dictator

� The only way one agent can force the result is by 
stating that all outcomes are incomparable

� All agents are weak dictators however
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Weak fairness is not possible

� Theorem: If 
� At least 2 agents and 3 outcomes,
� Social welfare function unanimous and IIA,
� Agents express their preferences as POs
� The resulting ordering is an rPO (unique top or

unique bottom)
� There is at least one weak dictator 
(� it is impossible to be weakly fair)

[Pini, Rossi, Venable, Walsh, TARK 2005]
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Optimals only (social choice)

� Result is a set of winners, not an ordering of the 
outcomes

� Unanimous: given any profile p,
� If a in top(pi) for every i, then a in f(p)
� If {a} = top(pi) for every i, then f(p) = {a}

� Monotonic: given two profiles p, p’
� If a in f(p) and for any b, a improves over b from p 

to p’ in all agents, then a in f(p’)
� If f(p) = S and for all s in S, s improves over any b 

from p to p’ in all agents i, then f(p’) = S
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Dictators for social choice functions

� Strong dictator: agent i such that, for all 
profiles p, f(p) = top(pi)

� Dictator: agent i such that, for all profiles p, 
f(p) ⊆ top(pi)

� Weak dictator: agent i such that, for all 
profiles p, f(p) ∩ top(pi) ≠ ∅

� Consistent with corresponding notions for 
social welfare function f’, where f(p) = 
top(f’(p))
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Impossibility result for weak fairness
(extension of Muller-Satterthwaite thm.)

� If 
� At least 2 agents and 3 outcomes,
� Social choice function with no ties unanimous and 

monotonic,
� Agents express their preferences as POs
� The resulting ordering is a PO

� � There is at least one weak dictator 
(� it is impossible to be weakly fair)

[Pini, Rossi, Venable, Walsh, TARK 2005]
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Strategy proofness
� Agents should not be able to make an outcome win 

by lowering its position in their preference ordering
� For every agent i, for every two profiles p and p’, 

which differ on pi only, for every a in f(p)-f(p’), for 
every b in f(p’),
� a pi b � a p’i b or a <p’i b
� a <pi b � a <p’i b

� There is at least an element b in f(p’) such that
� (a >pi b) and (a p’i b or a <p’i b), or
� (a pi b) and (a <p’i b)

� One agent can remove an element (a) from the set 
of winners only by worsening it with respect to at 
least one of the new winners (b)
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Results on strategy proofness
(extension of Gibbard-Satterthwaite thm.)

� Social choice function from POs to PO
� Strategy proofness � monotonicity
� Onto + monotonicity � unanimity
� Strategy proofness + onto � unanimity + 

monotonicity
� Strategy proofness + onto � at least one 

weak dictator

[Pini, Rossi, Venable, Walsh, AAMAS 2006]
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Adding uncertainty to 

incomparability
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Our notion of uncertainty

� Uncertainty: we don’t know the relationship between 
two candidates 
� They could be ordered, tied, or incomparable
� Complete absense of knowledge (no possibilities, no 

probabilities, etc.)
� Maybe we will know later

� On-going preference elicitation
� At any given point in time, four kinds of relation 

between A and B
� A above B (A>B) or B above A (B>A)
� A incomparable to B (A ∼ B)
� A indifferent to B (A=B)
� Unknown: it could be any of the above
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Possible and necessary winners

� Since there are incomplete preferences, we focus
on computing possible (PW) and necessary winners
(NW)

� Necessary winners
� outcomes which are maximal in every completion

� winners no matter how incompleteness is resolved

� Possible winners
� outcomes which are maximal in at least one of the 

completions
� winners in at least one way in which incompleteness is

resolved

[Konczac and Lang, 2005]
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Computational aspects

� Possibility and impossibility results still hold
� Without uncertainty, if preference aggregation 

is easy, computing the winners is easy
� With uncertainty, there is an exponential 

number of profile completions to consider
� If preference aggregation is polynomial, is it still 

easy to compute the winners?
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Main results

� Computing PW and NW: difficult
� Approximating PW and NW: difficult
� Sufficient conditions on preference 

aggregation such that computing PW and 
NW is easy 

� How knowing PW and NW can be useful in 
preference elicitation

[Pini, Rossi, Venable, Walsh, IJCAI 2007]
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Agent 1

B

CA ?

> ~

Agent 2

B

CA >

~ >

Agent 3

B

CA >

> >

Preference aggregation function: example with Pareto

only completions that are POs!

Pref. aggr. function:

incomplete profiles → sets of P0s

Pareto: POs →→→→ PO

•A>B iff A>B  or A=B for
all agents, and A>B for at 
least one
•A~B otherwise

B

CA
~

~~

>

B

CA

~~

C>, ~

~
B

A

~

Combined result

B

CA >

~ >

B

CA >

> >

> CA

> ~
B

B

CA >

~ >

B

CA >

> >
~ CA

> ~
B
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Combined result

� Graph where
� nodes = candidates
� all arcs
� label of arc A-B: set of all relations between A 

and B, such that each relation in at least one 
result
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Agent 1

B

CA ?

> ~

Agent 2

B

CA >

~ >

Agent 3

B

CA >

> >

B

CA >

~~
B

CA >

~ >

B

CA >

> >

B

CA >

~ >

B

CA >
> >

B

CA
~

~~

> CA

> ~

~

B

CA

> ~

NW={A,B}

PW={A,B,C}

Possible and necessary winners: example with Pareto

B

Possible and 

necessary winners
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PW and NW: complexity results

� Computing PW and NW is NP-hard
(even restricting to incomplete TOs)

� deciding if an outcome is
� a possible winner: NP- complete
� a necessary winner: coNP- complete

� Computing good approximations of PW and 
NW is NP-hard
� good approximation: for all k integer >1, a 

superset PW* s.t. |PW*| < k |PW|
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PW and NW: easy from combined result

� Combined result: graph where
� nodes = candidates
� all arcs
� label of arc A-B: set of all relations between A and B, such

that each relation in at least one result 

� Given the combined result, PW and NW are easy to 
find
� A in NW if no arc (A-B) with B>A
� A in PW if all arcs (A-B) with B>A contain also other labels

� Computing the combined result: in general NP-hard
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PW and NW: a tractable case

� If f is IIA and monotonic
� we can compute an upper approximation (cr*) in 

polynomial time
� Also, given cr*, polynomial to compute PW and NW

� algorithm not affected by approximation

� IIA: when rel(A,B) in the result depends only 
by rel(A,B) given by the agents

� Monotonic: when we improve an outcome in 
a profile (for ex. we pass from A>B to A=B ), 
then it improves also in the result



COMSOC 2006, Amsterdam, Dec. 2006

Cr*: upper approximation of the  

combined result
� Consider two profile completions: 

� (A?B) replaced with (A>B) for every agent
� (A?B) replaced with (A<B) for every agent 
� Two results: (A r1 B) and (A r2 B)

� In cr*, put (A r B) where r is {r1,r2,everything between 
them}

� Order of relations: <, = and ∼, > 
� Thm.: f is IIA and monotonic � cr* upper approx.of cr
� Approximation only on arcs with all four labels

� involves only = and ∼∼∼∼
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Example: Lex

Agent 1

C

BA ?

>

Agent 2

B

C

A

<
Agent 1

C

BA >

>

Agent 2

B

C

A

<

Agent 1

C

BA <

>

Agent 2

B

C

A
<

Lex:
agents are ordered, 
ArB given by the 
first agent in the 
order that doesn’t 
declare A=B

B

C

A

A

C

B

B
>, =,~, <

<

C

A

>

cr*

PW = {A,B}

NW = ∅
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Preference elicitation - (1)

� Process of asking queries to agents in order to
determine their preferences over outcomes

[Chen and Pu, 2004]

� At each stage in eliciting preference there is a set of 
possible and necessary winners

� PW = NW → preference elicitation is over, no matter
how incompleteness is resolved

� Checking when PW = NW: hard in general
[Conitzer and Sandholm, 2002]

� Pref.elicitation is easy if f IIA+ pol. computable
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Preference elicitation - (2)

� PW = NW� preference elicitation is over
� At the beginning:                       NW=∅ PW=Ω
� As preferences are declared:    NW ↑ PW ↓
� If PW ⊃ NW, and A∈PW−NW, A can become a   

loser or a necessary winner
�Enough to perform ask(A,B), ∀∀∀∀B∈∈∈∈PW  

� C∉PW is a loser → dominated
� f is IIA → ask(A,B) involves only A-B preferences

� O(|PW|2) steps to remove enough 
incompleteness to know the winners
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A specific voting rule with two 

kinds of uncertainty: sequential 

majority voting
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Sequential Majority voting

� Knock-out competitions, modelled by a 
binary tree T 

� Result of each competition given by majority 
graph

� rT: majority graph G � candidate (winner)
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Uncertainty

� In sequential majority voting, we consider 
two kinds of uncertainty

1. No knowledge about the voting tree
2. Partial knowledge about the agents’ preferences

� We start with the first kind, then we add the 
second kind

� Complexity of finding possible/necessary 
winners

[Lang, Pini, Rossi, Venable, Walsh, IJCAI 2007]
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First type of uncertainty

� Complete agents’ preferences
� No knowledge of the tree of knock-out 

competitions
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Condorcet (necessary) winner

� Given a complete profile P, a candidate A 
is a Condorcet winner iff binary tree, 
rT(M(P))=A

� Given M(P), A is a Condorcet winner iff
its node in M(P) has only outgoing edges

� Polynomial time

A

C

B

D

No Condorcet winner

A

C

B

D

Condorcet winner

If then unique
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Possible winners
� Given a complete profile P, candidate A 

is a possible winnner iff binary tree, 
such that rT(M(P))=A

� Given M(P), candidate A is a possible 
winner iff there is path from node A to 
every other node.

� Polynomial time  

A

C

B

D

A B

CD

B

A

A

W(C,B)

DC

C
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Manipulation

� Given the majority graph, the chair can easily 
check if A can win, and can find a tree where 
it wins � easy to manipulate by the chair

� Can we make it difficult for the chair to 
manipulate the result?

� We can do that by imposing some restrictions 
on the trees
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Fair Possible Winners

� Some possible winners may win only on very 
unbalanced trees, competing only few times

� Given majority graph M(P) of profile P, A is a fair 
possible winner iff T balanced voting tree such that 
rT(M(P))=A

� We want to know how difficult it is to recognize fair 
possible winners 
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Binomial trees

� Binomial tree
� T0� 1 node
� TK� the root has k children and the i-th child is the 

root of a Tk-I

� Tk has 2k nodes

T0 T1 T2 T3

T0
T1 T2
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Determining  fair possible winners

� Given a majority graph G with 2k nodes, 
candidate A is a fair possible winner iff exists a 
binomial tree Tk: 
� Covering G (arrows from father to child)
� Rooted at A

A

C

B

D

A

C

B

D

A

C

D

B

A DCB

A C

A
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Complexity of determining fair 

possible winners

� Th.: Given a complete weighted majority graph G 
and a candidate A, testing if there is a spanning
binomial tree with root A is NP-complete
� Proof: Reduction from the Exact Cover problem

� Weighted majority graphs  are used in social choice 
theory and weights may represent for example the 
amount of disagreement, or the elicitation cost

� A standard majority graphs = weighted maj. graphs 
with all identical weights
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Both types of uncertainty

� Missing preferences � Missing arcs in the majority 
graph

� Unknown voting tree
� New notions:

� Weak possible (WP) winner A: 
completion of maj. graph, tree s.t. A wins

� Strong possible (SP) winner A:   
completion of maj. graph, tree s.t. A wins

� Weak Condorcet (WC) winner A:  
completion of maj. graph, tree s.t. A wins

� Strong Condorcet (SC) winner A:
completion of maj. graph, tree s.t. A wins

� SC
� ∪
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Determining WP, SP, WC, SC is 

easy
� A is a strong possible (SP) winner iff, B, there is a 

path from A to B in G
� A is a weak possible (WP) winner iff it is possible to 

complete the majority graph such that every 
outcome is reachable from A

� A is a strong Condorcet (SC) winner iff A has m-1 
outgoing edges 

� A is weak Condorcet (WC) winner iff A has no 
ingoing edges
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Incomplete profiles

� Some completions of an incomplete majority graph 
do not correspond to any completion of the 
incomplete profile
� Agents’ preferences are transitive

� SP’, WP’, SC’, WC’ defined using incomplete 
profiles rather than incomplete majority graphs

� Results:
� WC’=WC � easy to compute (same for SC’)
� Conjecture: WP’ and SP’ difficult to compute
� Fairness (balanced tree) � difficult (with weights)
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Another role for CP nets and soft 

constraints

� Not just for represently each agent’s 
preferences compactly

� Solving tools to compute optimals when 
aggregating preferences as in game theory
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Games vs. CP nets and soft constraints

� Nash equilibria in games = optimals in CP 
nets
� Finding a Nash equilibrium is as difficult as finding 

an optimal solution in a CP net
� Tractability results in CP nets and soft constraints 

can be exploited when finding Nash equilibria

� Optimals in soft constraints vs. other notions 
of optimality inm games (such as Pareto 
optimality)

[Apt, Rossi, Venable, Proc. CIRAS 2006]
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Conclusions

� Compact preference modelling 
� Formalisms and solving tools

� Multi-agent setting: normative and 
computational properties
� Incomparability does not help for fairness or 

strategy proofness: usual (im)possibility results
� When preferences are incomplete: difficult to 

compute possible and necessary winners, but 
easy under certain conditions
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Future work

� Modelling preferences: comparison/merge 
with other frameworks
� E.g.: strategic games vs. CP nets and soft 

constraints 

� Positive and negative preferences
� Representing and aggregating them

� Compact preference formalisms in multi-
agent preference aggregation 
� Related to judgement aggregation


