

Retrieving the Structure of Utility Graphs Used In Multi-Item Negotiation Through Collaborative Filtering

Valentin Robu, Han La Poutré

CWI, Center for Mathematics & Computer Science Amsterdam, The Netherlands

Multi-issue (multi-item) negotiation models

- Alternating offer game
- Indirect revelation, i.e. utility functions are not directly revealed
- Non zero-sum: reach an agreement close to Pareto-optimality

Utility function types used in negotiation:

- **Linearly additive:** very widely used in literature on bilateral bargaining
- K-additive (e.g. for k=2): $U_B = \sum_{i \in S} w_i I_i + \sum_{i,j \in S} w_{i,j} I_i I_j$
- Fully expressive, for sufficiently large k
- Finding optimal allocation can become hard even for k=2
- Furthermore, search occurs with incomplete information

Utility (hyper-)graphs: definition and example

- Each node = one issue under negotiation (i.e. item in a bundle)
- Nodes linked by (hyper-)edges form a cluster
- Buyer cluster potentials:
 u(I1) = \$7, u(I2) = \$5, u(I3) = \$0
 u(I4) = \$0, u(I1, I2) = \$5,
 u(I2, I3) = \$4, u(I2, I4) = \$4

Seller - all items have cost \$2.
 u_{BUYER}(I1=0, I2=1, I3=1, I4=1) = \$5+\$4+\$4 = \$13
 Gains from Trade = Buyer_utility - Seller_Cost
 Optimal combination?

$$GT(I1=0, I2=1, I3=1, I4=1)=$13 - 3*$2 = $7$$

Utility graphs: Use in negotiation

- Bundles with maximal G.T. ⇔ Pareto-optimal bundles
 [Somefun, Klos & La Poutre, '04]
- Seller keeps a model of the utility graph of the buyer
- After each offer from the buyer, he updates this model (true graph of the buyer remains hidden)
- He makes a counter-offer by selecting the bundle with the highest perceived Gains from Trade
- Seller knows a maximal utility graph of possible interdependences (specific to a domain, class of buyers)

Graph partitioning & learning

Selecting the bundle with a maximal GT (w.r.t. to the utility graph learned so far)

- Exponential problem (e.g. 50 issues: $2^{50} > 10^{15}$ bundles)
- Solved by partitioning into sub-graphs
- Nodes belonging to more than 1 subgraph = cutset nodes
- For all possible instantiations of cutset nodes, compute local sub-bundle combination and merge them

Learning from the opponent's offers

$$u_i(\vec{c}_{i,b}) = u_i(\vec{c}_{i,b}) * (1 + \alpha(i))$$
, for the combination induced from buyer's bid
$$u_i(\vec{c}) = u_i(\vec{c}) * (1 - \alpha(i))$$
, for all other combinations

Partitioning a utility graph (example)

- Complexity of exploring all bundles: 2^c * (2^{p+}2^q)
- Algorithms for finding balanced partitions exist (minimum kbalanced separator)

Experimental results (50 issues, 75 clusters)

Structure of the initial utility graph

- Preferences of buyers are in some way clustered
- Can we estimate which items can be potentially complementary/substitutable by looking at previous buying patterns?
- Collaborative filtering asks the same questions
- Not all relationships hold for all users => only a super-graph is required

Item-based collaborative filtering

- Item-based similarity: identifies relationships between items, based on concluded negotiation data
- Several filtering criteria exist Item-item similarity matrix:

Item pairs	I ₁	I _K	I ₅₀
I ₁	1	•••	0.37
I _K	•••	•••	•••
I ₅₀	0.37		1

Correlation-based similarity

• For all items i and j:
$$Sim(i, j) = \frac{\psi_1}{\psi_2}$$

$$\psi_1 = N_{i,j}(0,0)Av_iAv_j - N_{i,j}(0,1)Av_i(1-Av_j)$$

$$-N_{i,j}(1,0)(1-Av_i)Av_j + N_{i,j}(1,1)(1-Av_i)(1-Av_j)$$

$$\psi_2 = \sqrt{\frac{N_i(0)N_i(1)}{N}}\sqrt{\frac{N_j(0)N_j(1)}{N}}$$

$$\psi_2 = \sqrt{\frac{N_i(0)N_i(1)}{N}} \sqrt{\frac{N_j(0)N_j(1)}{N}}$$

• Average buys per item:
$$Av(i) = \frac{N_i(1)}{N}$$

Building the utility super-graph

- Values closer to 1/-1 reflect stronger complementarity/substitutability effects.
- How many dependencies to consider Trade-off:
 - Too few: May affect the outcome at the negotiation stage
 - Too many: Introduces too many spurious dependencies
- Choice should depend on the average expected loss during the negotiation
- Cut-off number of edges defined as a ratio k of estimated no. of edges to no. of issues

Cut-off point & experiments

- Number of edges considered = k * number of items (vertexes)
- $E_{loss-GT}(k)=max \{E_{loss-GT}(N_{missing}(k)), E_{loss-GT}(N_{extra}(k))\}$ $K_{opt}=argmin_{K} E_{loss-GT}(k)$
- Intuition: we choose k such as to minimize the expected GT loss ("regret") measure

Experimental set-up:

- Graph structure generated at random: for 50 issues 75 binary clusters (50+, 25 -)
- Individual item values drawn from normal i.i.d.-s: N(1, 0-5)).
- Results averaged over 50 tests for each test point

Sensitivity of filtering to negotiation data

Choosing the cut-off size of maximal seller graph

Comparison to other approaches

- Combinatorial auctions: efficient solutions have been proposed for k-additive domains [Conitzer et al. '05], but require direct revelation
- Multi-issue negotiation [Klein et al. '03] [Lin '04]
 - Use simulated annealing & evolutionary
 - No aggregate info. used, all exploration takes place during negotiation
- Preference elicitation
 - 1) Theoretical bound from computational learning theory [Lahaie & Parkes, '05] (assoc. to polynomial learning)
 - Exact, but computationally expensive (~6500 queries)

Discussion & comparisons

- Preference elicitation (2)
 - [Brazunias & Boutilier, '05]: based on directed graphs (DAGs)
 - Do not target Pareto efficiency
 - Assumptions on graph structure and value bounds

Our approach:

- Negotiation = search for a Pareto-efficient bundle / prices (different aim than exact preference elicitation!)
- Utilizes the clustering effect between utility functions of typical buyers (filtering part)
- By combining the two techniques => relatively short negotiations (around 40 steps/50 issues), leading to 90-95% of Pareto-efficiency