Automated Design of Voting Rules by Learning From Examples

Ariel D. Procaccia, Aviv Zohar, Jeffrey S. Rosenschein

Outline

Scoring rules Learning Limitations Conclusions

- Scoring rules:
 - Definition
 - Advantages
- Our approach
 - Learning voting rules in the PAC model
 - Main theorem
- Limitations of our approach
- Conclusions

Scori	na	AC

Learning

Limitations

- Election: set of voters N={1,...,n}, set of candidates/alternatives A={x₁,...,x_m}. Voters express linear preferences Rⁱ over A.
- Winner determined according to a voting rule/social choice function.
- Scoring rules: defined by a vector $\alpha = \langle \alpha_1, ..., \alpha_m \rangle$, all $\alpha_i \geq \alpha_{i+1}$. Each candidate receives α_i points from every voter which ranks it in the i'th place.
- Examples:
 - Plurality: $\alpha = \langle 1, 0, ..., 0 \rangle$
 - Veto: $\alpha = \langle 1, ..., 1, 0 \rangle$
 - Borda: $\alpha = \langle m-1, m-2, ..., 0 \rangle$

On the diversity of scoring rules

Scoring rules Learning	Limitations	Conclusions
------------------------	-------------	-------------

- Different choice of parameters result in different properties.
- Some properties:
 - Majority: candidate most preferred by majority is elected.
 - Robustness: worst-case prob. of the outcome not changing as a result of a fault.
 - Computational Complexity of coalitional manipulation.
 - Communication Complexity.

Rule	Majority	Robustness	Manipulation	Communication
Plurality	Yes	≥ (m-2)/(m-1)	Р	Θ(n∗logm)
Veto	No	≥ (m-2)/(m-1)	NP-complete	O(n*logm)
Borda	No	≤ 1/m	NP-complete	Θ(n*m*logm)

Automated Design of voting rules

Scoring rules

Learning

Limitations

- Designer/teacher is presented with pref.
 profiles, and designates the winner in each.
- Philosophical justification.
- Practical justification: designer simply wants to find a concise representation.
- Assuming there exists a "target" scoring rule, the goal is to find a scoring rule which is "close".

An Illustration

PAC Learning

Scoring rules

Learning

Limitations

- Training set consists of pairs of examples (R_j,f(R_j)).
- R_i are drawn from fixed dist. D.
- f = target scoring rule.
- Goal: given ε , find scoring rule g such that $Prob_{D}[f(R) \neq g(R)] \leq \varepsilon$.
- Q: How many examples are needed in order to guarantee that goal is achieved with probat least $1-\delta$?

PAC-learnability of scoring rules

Scoring rules

Learning

Limitations

Conclusions

- **Theorem:** If there are at least poly(n,m,1/ ϵ ,1/ δ) examples in the training set, then any "consistent" scoring rule g achieves the goal.
- Such a rule can be efficiently found using LP.
- Example:

find $\alpha_1, \alpha_2, \alpha_3$ s.t. $3\alpha_1 > 3\alpha_2$ $3\alpha_1 > 3\alpha_3$ $2\alpha_1 + \alpha_3 > \alpha_1 + 2\alpha_2$ $2\alpha_1 + \alpha_3 > \alpha_2 + 2\alpha_3$ Scoring rules are efficiently PAC-learnable.

Limitations

Scoring rules Learning Limitations Conclusions

- There are many different scoring rules.
- Can any voting rule be approximated by a scoring rule?
- **Definition:** g is a *c-approximation* of f iff f and g agree on a c-fraction of the possible preference profiles.
- Reformulation: given a voting rule f, how hard is it to learn a scoring rule which is a c-approximation, with c close to 1?
- **Theorem:** Let $\varepsilon > 0$. For large enough n,m, $\exists f$ such that no scoring rule is a $(1/2+\varepsilon)$ -approximation of f.
- Lemma: ∃ polynomial p(n,m) s.t. the number of distinct scoring rules ≤ 2^{p(n,m)}.

Proof of Theorem

Conclusions

Scoring rules

Learning

Limitations

- If the designer can designate winners, then it can automatically design voting rule.
- Cumbersome representation → concise.
- Many voting rules cannot be approximated by scoring rules.
- Open questions:
 - Is there a broad class of rules which can be approximated by scoring?
 - Is there a broad class of rules which is efficiently learnable and concisely representable?