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Scoring rules

• Election: set of voters N={1,...,n}, set of
candidates/alternatives A={x1,...,xm}. Voters express
linear preferences Ri over A.

• Winner determined according to a voting rule/social
choice function.

• Scoring rules: defined by a vector α=〈α1,...,αm〉, all
αi ≥ αi+1. Each candidate receives αi points from
every voter which ranks it in the i’th place.

• Examples:
– Plurality: α=〈1,0,...,0〉
– Veto: α=〈1,...,1,0〉
– Borda: α=〈m-1,m-2,...,0〉
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On the diversity of scoring rules

• Different choice of parameters result in different
properties.

• Some properties:
– Majority: candidate most preferred by majority is elected.
– Robustness: worst-case prob. of the outcome not

changing as a result of a fault.
– Computational Complexity of coalitional manipulation.
– Communication Complexity.

Borda

Veto

Plurality

Rule CommunicationManipulationRobustnessMajority

Θ(n∗m∗logm)NP-complete≤ 1/mNo

O(n∗logm)NP-complete≥ (m-2)/(m-1)No

Θ(n∗logm)P≥ (m-2)/(m-1)Yes
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Automated Design of voting rules

• Designer/teacher is presented with pref.
profiles, and designates the winner in each.

• Philosophical justification.
• Practical justification: designer simply wants

to find a concise representation.
• Assuming there exists a “target” scoring rule,

the goal is to find a scoring rule which is
“close”.
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An Illustration
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PAC Learning

• Training set consists of pairs of examples
(Rj,f(Rj)).

• Rj are drawn from fixed dist. D.
• f = target scoring rule.
• Goal: given ε, find scoring rule g such that

ProbD[f(R) ≠ g(R)] ≤ ε.

• Q: How many examples are needed in order
to guarantee that goal is achieved with prob.
at least 1-δ?
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PAC-learnability of scoring rules

• Theorem: If there are at least poly(n,m,1/
ε,1/δ) examples in the training set, then any
“consistent” scoring rule g achieves the goal.

• Such a rule can be efficiently found using LP.
• Example:

• Scoring rules are efficiently PAC-learnable.
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find α1, α2, α3 s.t.

3α1 > 3α2

3α1 > 3α3

2α1 + α3 > α1 + 2α2

2α1 + α3 > α2 + 2α3

α1 ≥ α2 ≥ α3 ≥ 0
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Limitations

• There are many different scoring rules.
• Can any voting rule be approximated by a scoring

rule?
• Definition: g is a c-approximation of f iff f and g

agree on a c-fraction of the possible preference
profiles.

• Reformulation: given a voting rule f, how hard is it
to learn a scoring rule which is a c-approximation,
with c close to 1?

• Theorem: Let ε>0. For large enough n,m, ∃f such
that no scoring rule is a (1/2+ε)-approximation of f.

• Lemma: ∃ polynomial p(n,m) s.t. the number of
distinct scoring rules ≤ 2p(n,m).
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Proof of Theorem
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Conclusions

• If the designer can designate winners, then it
can automatically design voting rule.

• Cumbersome representation → concise.

• Many voting rules cannot be approximated by
scoring rules.

• Open questions:
– Is there a broad class of rules which can be

approximated by scoring?
– Is there a broad class of rules which is efficiently

learnable and concisely representable?
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