On the Robustness of Preference Aggregation in Noisy Environments

Ariel D. Procaccia, Jeffrey S. Rosenschein and Gal A. Kaminka

Outline

Motivation	Definition	Results	Conclusions
------------	------------	---------	-------------

- Motivation
- Definition of Robustness
- Results:
 - About Robustness in general.
 - Sketch of results about specific voting rules.
- Conclusions

Voting in Noisy Environments

 Motivation
 Definition
 Results
 Conclusions

- Election: set of voters N={1,...,n},
 alternatives / candidates A={x₁,...,x_m}.
- Voters have linear preferences Rⁱ; winner of the election determined according to a social choice function / voting rule.
- Preferences may be faulty:
 - Agents may misunderstand choices.
 - Robots operating in an unreliable environment.

Possible Informal Definitions of Robustness

Motivation Definition Results Conclusions

- **Option 1**: given a uniform distribution over preference profiles, what is the probability of the outcome **not** changing, when the faults are adversarial?
- Reminiscent of manipulation.
- Option 2 (ours): given the worst preference profile and a uniform distribution over faults, what is the probability of the outcome not changing?

Formal Definition of Robustness

Motivation Definition Results Conclusions

- Fault: a "switch" between two adjacent candidates in the preferences of one voter.
 - Depends on representation; ∃ consistent, "quite good" representation.

Faults Illustrated

Motivation	Definition	Results	Conclusions
x2	T 1	x3	1
x3	- 2 x	x1	- 2 x
x1		x2	
Jote	7	Joter 2	

Formal Definition of Robustness

MotivationDefinitionResultsConclusions

- Fault: a "switch" between two adjacent candidates in the preferences of one voter.
 - Depends on representation; ∃ consistent, "quite good" representation.
- $D_k(R)$ = prob. dist. over profiles; sample: start with R and perform k independent uniform switches.
- The **k-robustness** of F at R is: $\rho(F,R) = Pr_{R1\sim Dk(R)}[F(R)=F(R_1)]$

Robustness Illustrated

Motivation Conclusions Definition Results F = Plurality. 1-Robustness at R is 1/3.rank rank Joter

Formal Definition of Robustness

MotivationDefinitionResultsConclusions

- Fault: a "switch" between two adjacent candidates in the preferences of one voter.
 - Depends on representation; ∃ consistent, "quite good" representation.
- D_k(R) = prob. dist. over profiles; sample: start with R and perform k independent uniform faults.
- The **k-robustness** of F at R is: $\rho(F,R) = Pr_{R1\sim Dk(R)}[F(R)=F(R_1)]$
- The **k-robustness** of F is: $\rho(F) = \min_{R} \rho(F,R)$

Simple Facts about Robustness

MotivationDefinitionResultsConclusions

- Theorem: $\rho_k(F) \ge (\rho_1(F))^k$
- **Theorem:** If Ran(F)>1, then $\rho_1(F) < 1$.
- Proof:

1-robustness of Scoring rules

Motivation	Definition	Results	Conclusions
------------	------------	---------	-------------

- Scoring rules: defined by a vector $\alpha = \langle \alpha_1, ..., \alpha_m \rangle$, all $\alpha_i \geq \alpha_{i+1}$. Each candidate receives α_i points from every voter which ranks it in the i'th place.
 - Plurality: $\alpha = \langle 1, 0, ..., 0 \rangle$
 - Borda: $\alpha = \langle m-1, m-2, ..., 0 \rangle$
- $A_F = \{1 \le i \le m-1: \alpha_i > \alpha_{i+1}\}; a_F = |A_F|$
- **Proposition:** $\rho_1(F) \ge (m-1-a_F)/(m-1)$
- Proof:
 - A fault only affects the outcome if $\alpha_i > \alpha_{i+1}$.
 - There are a_F such positions per voter, out of m-1.
- **Proposition:** $\rho_1(F) \leq (m-a_F)/m$

Results about 1-robustness

Motivation Definition Results Conclusions

Rule	Lower Bound	Upper Bound
Scoring	(m-1-a _F)/(m-1)	(m-a _F)/m
Copeland	0	1/(m-1)
Maximin	0	1/(m-1)
Bucklin	(m-2)/(m-1)	1
Plurality w. Runoff	(m-5/2)/(m-1)	(m-5/2)/(m-1)+5m/(2m(m-1))

Conclusions

Motivation

•	k-robustness: v	worst-case	probability	that k switches	,
	change outcom	ne.			

Results

Conclusions

- Connection to 1-robustness:
 - High 1-robustness \Rightarrow high k-robustness.

Definition

- Low 1-robustness ⇒ can expect low k-robustness.
- Tool for designers:
 - Robust rules: Plurality, Plurality w. Runoff, Veto, Bucklin.
 - Susceptible: Borda, Copeland, Maximin.
- Future work:
 - Different error models.
 - Average-case analysis.