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Resource Allocation Problem

I ={1,2,...,m} — set of services (agents)
(Q — feasible set of allocation decisions
X € () — allocation pattern

y; = f;(x) — result (effect) of allocation x for service 1

Networking, e.g. bandwidth allocation, network dimensioning
Results maximization (overall efficiency)

Fairness



Fair (Equitable) Optimization

e Multicriteria Problem

maX{(f]_(X), . ,fm(X)) L X E Q}

strict monotonicity: y+ce; »y = Pareto-optimization

e Equally important homogeneous outcomes:
y = (y1,v2,...,ym) — distribution of m individual outcomes:

Fairness 1: impartiality (anonymity)

(Yr(1): Yr(2) - - -2 Yr(m)) = (W1,92:- - Ym)

e Fairness 2: equitability — strict preference of equitable transfer

Y1 > Yin = y —¢eey + ee;n =y



Ordered Outcomes

Ordered outcomes:
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(i) for some permutation 7.

Cumulated ordered outcomes: 6,(y) = % zk: Y

Absolute Lorenz curve Ly(:t) = 18,(y) =

Fair (equitable) dominance y' =cy"” <<  0,(y") > 0;(y") Vi
Max-Min Fairness

lexmax {(01(f(x)),0>(f(x)),...,0n(f(x))) : x € Q}
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Bicriteria Mean-Equity Models

max {(p(f(x)), —o(f(x))) : x€ Q}

1 m
Mean u(y) = — 3 u;
m,—1

Inequality measure p(y): standard deviation, MAD, Gini's mean
difference, semideviations, etc

Modeling efficiency/equity trade-off

Inequality measure minimization may result in inefficient deci-

sions.
E.g., allocating no resource to any service will provide perfectly

equal (zero) effect to all the services (real communism).



Inequality Measures vs. Underachievements
o My(y) = pu(y) — o(y) underachievement measure (maximized)

e o(y) is mean-complementary fairly consistent <
v =ey! = u@y)—o@) > uly") - oly")
e o(y) is fairly a-consistent < ap(X) is mean-complementary fairly

consistent

Y =ey" = u@) - aoly) > uly") - aoly”)

e Strong consistency

y =ey" = u@y)—o@") > p@y") —oly”)



Fair Consistency

e If the inequality measure p(y) is fairly a-consistent, then except
for allocation patterns with identical values of u(y) and o(y),
every optimal solution of the parametric problem

max{u(f(x)), p(f(x)) —ao(f(x)) : x € Q}

is a fairly efficient solution.

e If the inequality measure p(y) is fairly a-consistent, then except
for allocation patterns with identical values of u(y) and o(y),
every optimal solution of the parametric problem

max{u(f(x)) — Xo(f(x)) : x € Q}
with O < A < « is a fairly efficient solution.

e In the case of strong a-consistency, every efficient/optimal so-
lution is, unconditionally, fairly efficient.



Consistency Conditions

e Let o(y) > 0 be a convex, positively homogeneous and transla-
tion invariant (dispersion type) inequality measure.
If the measure is bounded by the maximum downside semidevi-
ation (is A-bounded)
ao(y) < Aly) = _max (u(y) —wi) Yy,

then o(y) is fairly a-consistent.

e If po(y) is also strictly A-bounded on unequal outcomes and
strictly convex on identically distributed outcomes, then the con-

sistency is strong.



Fair Consistency Results

Measure a—consistency
Mean absolute semideviation | §(y) 1
Mean absolute deviation o(y) 0.5
Maximum semideviation A(y) 1
Maximum absolute deviation | R(y) | 1/(m — 1)
Mean absolute difference M (y) 1 strong
Maximum absolute difference | d(y) 1/m
Standard semideviation o(y) 1
Standard deviation o(y) | 1/v/m—1 strong

e Convex combination of measures preserves mean-
complementary fair consistency.

e One strongly consistent measure is enough for strong consis-
tency of the entire combination.



Conclusions

e In order to comply with the maximization of outcomes as well
as with an fair treatment of agents, the concept of equitable
efficiency must be used for the multiple criteria model. Sim-

plified mean-equity approaches, in general, may lead to inferior
conclusions.

e Several inequality measures can be combined with the mean
itself into fairly consistent underachievement measures. We have
shown that properties of convexity and positive homogeneity
together with boundedness by the maximum semideviation are
sufficient for a typical absolute inequality measure to guarantee
the corresponding fair consistency.

e Many of the inequality measures, we analyzed, can be imple-
mented with auxiliary linear programming constraints.



Inequality measures

Mean absolute deviation: § =
Mean absolute difference: D =

. 1
Variance: (7 = —
m .

NC - Yy
=1 ]=1

Relative inequality measures: o(ay) = o(y) dla a > 0



Conditional means — computational models

e LP for a given vector y while nonlinear for variable y:

m
O(y) = min > yug,
j=1l

m
1=1

e By taking advantage of the LP duality:

m
Qk(y) = MaXx (lﬁ“k — Z dkz)
1=1
P.W. rp—y; < dgg, di; >0 Vi

LP even for variable y



™m
Ordered Weighted Average OWA: ay(y) = ) WYy, w; > 0
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Equitable OWA — monotonic weights
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