Approximation Mechanisms: computation, representation, and incentives

Noam Nisan

Hebrew University, Jerusalem

Based on joint works with Amir Ronen, Ilya Segal, Ron Lavi, Ahuva Mu'alem, and Shahar Dobzinski

Noam Nisan Slide 1 of 31

Talk Structure

- Algorithmic Mechanism Design
- Example: Multi-unit Auctions
- Representation and Computation
- VCG mechanisms
- General Incentive-Compatible Mechanisms

Noam Nisan Slide 2 of 31

- Each participant in today's distributed computation network has its own *selfish* set of goals and preferences.
- We, as designers, wish to optimize some common aggregated goal.
- Assumption: participant's will act in a rationally selfish way.

Noam Nisan Slide 3 of 31

Mechanisms for Maximizing Social Welfare

- Set A of possible <u>social alternatives</u> (allocations of all resources) affecting n players.
- Each player has a <u>valuation function</u> $v_i : A \rightarrow \mathcal{R}$ that specifies his *value* for each possible alternative.
- Our goal: maximize social welfare $\Sigma_i v_i(a)$ over all $a \varepsilon A$.
- Mechanism: Allocation Rule a=f(v₁ ... vₙ) and player payments pᵢ(v₁ ... vո)∈ℜ.
 - Incentive Compatibility: a rational player will always report his true valuation to the mechanism.

Noam Nisan Slide 4 of 31

Dominant-strategy Incentive-compatibility

$$\forall i \forall v_1 \dots v_n \forall v_i : v_i(a) - p \ge v_i(a') - p'$$

Where: $a=f(v_i v_{-i}), p=p_i(v_i v_{-i}), a'=f(v'_i v_{-i}), p'=p_i(v'_i v_{-i}).$

We will not consider weaker notions:

- Randomized
- Bayesian
- Approximate
- Computationally-limited
- •

There is no loss of generality relative to any mechanism with ex-post-Nash equilibria.

The classic solution -- VCG

- 1. Find the welfare-maximizing alternative a
- 2. Make every player pay "VCG prices":
 - Pay Σ_{k≠i} v_k(a) to each player i
 - Actually, a 2nd, non-strategic, term makes player payments ≥ 0.
 - But we don't worry about revenue or profits in this talk.

Proof: Each player's utility is identified with the social welfare.

Problem: (1) is often computationally hard.

CS approach: approximate or use heuristics.

Problem: VCG idea doesn't extend to approximations.

Noam Nisan Slide 6 of 31

Running Example: Multi-unit Auctions

- There are m identical units of some good to allocate among n players.
- v_i(q) value to player i if he gets exactly q units
- Valid allocation: (q₁ ... qₙ) such that Σᵢ qᵢ ≤ m
- Social welfare: $\Sigma_i v_i(q_i)$

Representing the valuation

- Single-minded: (p,q) value is p for at least q units.
- "k-minded" / "XOR-bid": a sequence of k increasing pairs (p_j,q_j) – value is p_j, for q_j ≤ q< q_{j+1} units.
 - Example: "(5\$ for 3 items), (7\$ for 17 items)"
- General, "black box": can answer queries v_i(q).
 - Example: v(q) = 3q²

What can be done efficiently?

Representation →	Single-minded	k-minded	general
Incentives ↓			
No incentive constraints			
Incentive compatible VCG payments			
General incentive compatible			

Noam Nisan Slide 9 of 31

What can be done efficiently?

Noam Nisan Slide 10 of 31

What can be done efficiently?

Noam Nisan Slide 11 of 31

Approximation quality levels

- How well can a computationally-efficient (polynomial time) mechanism approximate the optimal solution?
 - A: Exact Optimization
 - B: Fully Polynomial Time Approximation Scheme (FPTAS)-- to within any ε >0, with running time polynomial in $1/\varepsilon$.
 - C: Polynomial Time Approximation Scheme (PTAS)-- to within any fixed ε>0.
 - D: To within some fixed constant c>0 (this talk c=2).
 - E: Not to within any fixed constant.
- What we measure is the worst-case ratio between the quality (social welfare) of the optimal solution and the solution that we get.

Noam Nisan Slide 12 of 31

Rest of the talk...

Representation ->	Single-minded	k-minded	general
Incentives ↓			
No incentive constraints	В	В	В
Incentive compatible VCG payments	С	С	D
General incentive compatible	В	Conjecture: C	Conjecture + Partial result: D

Noam Nisan Slide 13 of 31

Computational Status

Representation →	Single-minded	k-minded	general
Incentives ↓			
No incentive constraints	Not A NP-compete	Not A	

The SM case is exactly Knapsack:

Input: $(p_1, q_1) \dots (p_n, q_n)$

Maximize $\Sigma_{i \in S} p_i$ where $\Sigma_{i \in S} q_i \leq m$

$$v_i(q) = p_i \text{ iff } q \ge q_i \text{ (0 otherwise)}$$

Computational Status: general valuations

Representation →	Single-minded	k-minded	general
Incentives ↓			
No incentive constraints			Not A Exponential

Proof:

- Consider two players with $v_1(q) = v_2(q) = q$ except for a single value of q^* where $v_1(q^*) = q + 1$.
- $v_1(q_1)+v_2(q_2)=m$ except for $q_1=q^*$; $q_2=m-q^*$.
- Finding q* requires exponentially many (i.e. m) queries.

THM (N+Segal): Lower bound holds for all types of queries.

Proof: Reduction to Communication Complexity

Computational Status: Approximation

Representation ->	Single-minded	k-minded	general
Incentives ↓			
No incentive constraints	В	В	B FPTAS

Knapsack has an FPTAS – works in general:

- 1. Round **prices** $v_i(q)$ down to integer multiple of δ
- 2. For all $k=1 \dots n$ for all $p = \delta \dots L\delta$
 - Compute $Q(k,p) = \min \sum_{i \le k} q_i$ such that $\sum_{i \le k} v_i (q_i) \ge p$ (Requires binary search to find minimum q_k with $v_k(q_k) \ge p'$.)

Incentives vs. approximation

Two players; Three unit m=3

 v_1 : (1.9\$ for 1 unit), (2\$ for 2 units), (3\$ for 3 units)

 v_2 : (2\$ for 1 item), (2.9\$ for 2 units), (3\$ for 3 units)

Best allocation: 1.9\$+2.9\$ = 4.8\$.

Approximation algorithm with $\delta=1$ will get only 2\$+2\$=4\$.

Manipulation by player 1: say $v_1(1 \text{ unit})=5$ \$.

Improves social welfare → (with VCG payments) improves player 1's utility

Where can VCG take us?

Representation ->	Single-minded	k-minded	general
Incentives ↓			
No incentive constraints	В	В	В
Incentive compatible VCG payments	Not B Not better than <i>n/(n-1)</i> approximation	Not B	Not C Not better than 2 approximation

Noam Nisan Slide 18 of 31

Limitation of VCG-based mechanisms

THM (N+Ronen): A VCG-based mechanism is incentive compatible iff it *exactly* optimizes over its own range of allocations. (almost)

Proof:

- (If) exactly VCG theorem on the range
- (only if) Intuition: if players can improve outcome, they will...
- (only if) proof idea: hybrid argument (local opt → global opt)

Corollary (N+Dobzinski): No better than 2-approximation for general valuations, or n/(n-1)-approximation for SM valuations.

Proof (of corollary):

- If range is full → exact optimization → we saw impossibility
- If range does not include $[q_1 q_2 ... q_n]$ then will loose factor of n/(n-1) on profile $v_1 = (1 \text{ for } q_1) ... v_n = (1 \text{ for } q_n)$.

Noam Nisan Slide 19 of 31

Where can VCG take us?

Representation →	Single-minded	k-minded	general
Incentives ↓			
No incentive constraints	В	В	В
Incentive compatible VCG payments	C	C PTAS	D 2-approximation

Noam Nisan Slide 20 of 31

An incentive-compatible VCG-based mechanism

Algorithm (N+Dobzinski): bundle the items into n² bundles of size t=m/n² (+ a single remainder bundle).

Lemma 1: This is a 2-approximation

Proof: Re-allocate items of one bidder among others

Lemma 2: Can be computed in poly-time:

For all k=1 ... n for all q=t ... m/tCompute $P(k,q) = \max \sum_{i \le k} v_i(tq_i)$ such that $\sum_{i \le k} q_i \le q$

PTAS for k-minded case: all players except for $O(1/\varepsilon)$ ones get round bundles.

Noam Nisan Slide 21 of 31

General Incentive Compatibility

Representation ->	Single-minded	k-minded	general
Incentives ↓			
No incentive constraints	В	В	В
Incentive compatible VCG payments	С	С	D
General incentive compatible			

Noam Nisan Slide 22 of 31

The single-minded case

Representation ->	Single-minded	k-minded	general
Incentives ↓			
No incentive constraints	В	В	В
Incentive compatible VCG payments	С	С	D
General incentive compatible	B FPTAS		

Noam Nisan Slide 23 of 31

Single parameter Incentive-Compatibility

- **THM** (LOS): A mechanism for the Single-minded case is incentive compatible iff it is
 - 1. Monotone increasing in p_i and monotone decreasing in q_i
 - 2. Payment is critical value: minimum p_i needed to win q_i

Proof (if):

- Payment does not depend on declared p; win iff p > payment
- Lying with lower q is silly; higher q can only increase payment

Corollary (almost): Incentive compatible FPTAS for SM case. The FPTAS that rounds the prices to integer multiples of δ satisfies 1&2.

Problem: Choosing δ ...

Solution: Briest, Krysta and Vöcking, STOC 2005....

Noam Nisan Slide 24 of 31

What can be implemented?

Representation ->	Single-minded	k-minded	general
Incentives ↓			
No incentive constraints	В	В	В
Incentive compatible VCG payments	С	С	D
General incentive compatible	В	Conjecture: C	Conjecture + Partial result: D
		No better than VCG	No better than VCG

Noam Nisan Slide 25 of 31

Efficiently Computable Approximation Mechanisms?

Theorem (Roberts '77): If the space of valuations is unrestricted and |A|≥3 then the only incentive compatible mechanisms are *affine* maximizers: $\Sigma_i \alpha_i v_i(a) + \beta_a$

<u>Comment:</u> weighted versions of VCG. Easy to see that Weights cannot help computation/approximation.

Noam Nisan Slide 26 of 31

Partial Lower Bound

<u>Theorem</u> (Lavi+Mu'alem+N): Every efficiently computable incentive compatible mechanism among two players that always allocates all units has approximation ratio ≥2.

Proof idea: If range is full, must be (essentially) affine maximizer.

- Non-full range → no better than 2-approximation
- Full range → computationally as hard as exact social welfare maximization

Rest of talk: proof assuming full range even after a single player is fixed.

Noam Nisan Slide 27 of 31

Characterization of incentive compatibility

Notation: The algorithm allocates a=f(v w) units to player 1. Player 1 pays: $p_1(v w)$

Characterization 1: For every w there exist payments p_a (for all a) such that for all v: f(v|w) maximizes v(a)- p_a

Proof: $p_a(w) = p_1(v w)$, with f(v w) = a, can not depend on v.

Characterization 2 (WMON): If: $f(v w)=a\neq b=f(v' w)$

Then: $v(a)-v(b) \ge v'(a)-v'(b)$

Proof: $v(a) - p_a \ge v(b) - p_b$

$$v'(a)$$
- $p_a \le v'(b)$ - p_b

 \rightarrow v(a)-v'(a) ≥ v(b)-v'(b)

Properties of $p_a(w)$

Our Goal: for all a, $p_a(w) = \beta_a - \alpha w(m-a)$ Proof (Goal \rightarrow Theorem): By characterization 1, f(v w) maximizes v(a)- $p_a = \beta_a + v(a) + \alpha w(m-a)$

Lemma: If: w(m-a)-w(m-b) > w'(m-a)-w'(m-b)

Then: $p_a(w)-p_b(w) \le p_a(w')-p_b(w')$

Proof (Lemma → Goal): Math (next slide)

Proof (of Lemma): Otherwise choose *v* such that:

 $p_a(w) - p_b(w) > v(a) - v(b) > p_a(w') - p_b(w')$ (and low other v(c))

By characterization 1: f(v w)=b and f(v w')=a. Contradiction to WMON.

Monotonicity in differences (sketch)

Lemma: If $p: \mathcal{R}^m \to \mathcal{R}^m$ $(m \ge 3)$ satisfies $w_a - w_b > w'_a - w'_b \to p_a(w) - p_b(w) \ge p_a(w') - p_b(w')$ Then for all a, $p_a(w) = \beta_a + \alpha w_a$

<u>Proof:</u>

 $\rightarrow p_a(w)-p_b(w)$ depends only on w_a-w_b (except for countably many values.)

Claim: $\partial p_a / \partial w_a = \partial p_b / \partial w_b$ (except for measure 0 of w)

Proof: $p_a(w)$ - $p_b(w)$ stays constant when w_a and w_b are increased by the same amount.

Corollary: $\partial p_a/\partial w_a$ is constant

Remaining Open Problem:

Are there any useful non-VCG mechanisms for CAs, MUAs, or other resource allocation problems?

(E.g. poly-time approximations or heuristics)

Noam Nisan Slide 31 of 31