Voting Systems and Automated Reasoning: the QBFEVAL Case Study

Massimo Narizzano, Luca Pulina and Armando Tacchella

STAR-Lab University of Genoa, Italy

COMSOC 2006. Amsterdam, December 6-8

Introduction

 The automated reasoning research community has grown accustomed to competitive events.

- An (incomplete) list:
 - CADE ATP System Competition (CASC)
 - SAT Competition
 - QBF Evaluation
 - International Planning Competition
 - . .

- The automated reasoning research community has grown accustomed to competitive events.
- An (incomplete) list:
 - CADE ATP System Competition (CASC)
 - SAT Competition
 - QBF Evaluation
 - International Planning Competition
 - ...
- Fundamental role in the advancement of the state of the art:
 - for developers: help to set research challenges
 - for users: assess the current technological frontier

Introduction

 The competion winner is the system ranking above the others according to some aggregation procedure.

- The competion winner is the system ranking above the others according to some aggregation procedure.
- The ranking should be a representation of the relative strength of the systems.

- The competion winner is the system ranking above the others according to some aggregation procedure.
- The ranking should be a representation of the relative strength of the systems.
- Two sets of aggregation procedures:

- The competion winner is the system ranking above the others according to some aggregation procedure.
- The ranking should be a representation of the relative strength of the systems.
- Two sets of aggregation procedures:
 - methods used in automated reasoning systems contests and a new method called YASM ("Yet Another Scoring Method")

- The competion winner is the system ranking above the others according to some aggregation procedure.
- The ranking should be a representation of the relative strength of the systems.
- Two sets of aggregation procedures:
 - methods used in automated reasoning systems contests and a new method called YASM ("Yet Another Scoring Method")
 - procedures based on voting systems

- The competion winner is the system ranking above the others according to some aggregation procedure.
- The ranking should be a representation of the relative strength of the systems.
- Two sets of aggregation procedures:
 - methods used in automated reasoning systems contests and a new method called YASM ("Yet Another Scoring Method")
 - procedures based on voting systems
- We introduce measures to quantify desirable properties of the aggregation procedures.

Contribution

Introduction

Using and evaluating social choice methods in automated reasoning systems contests

Agenda

- Preliminaries
- Procedures
- YASM
- Comparative measures
- Conclusions

Preliminaries

- Empirical analysis based on QBFEVAL 2005 data:
 - eight solvers of the second stage
 - fixed structure QBF instances

Preliminaries

- Empirical analysis based on QBFEVAL 2005 data:
 - eight solvers of the second stage
 - fixed structure QBF instances
- Table Runs with four attributes: SOLVER, INSTANCE, RESULT. and CPUTIME.

- Empirical analysis based on QBFEVAL 2005 data:
 - eight solvers of the second stage
 - fixed structure QBF instances
- Table Runs with four attributes: SOLVER, INSTANCE, RESULT, and CPUTIME.
- ullet Runs is the only input required by an aggregation procedure.

Agenda

- Preliminaries
- Methods
- YASM
- Comparative measures
- Conclusions

Procedures used in automated reasoning systems contests

 CASC: solvers are ranked according to the number of problems solved and ties are broken using average CPUTIME.

Procedures used in automated reasoning systems contests

- CASC: solvers are ranked according to the number of problems solved and ties are broken using average CPUTIME.
- QBF evaluation: is the same as CASC but ties are broken. using total CPUTIME.

- CASC: solvers are ranked according to the number of problems solved and ties are broken using average CPUTIME.
- QBF evaluation: is the same as CASC but ties are broken. using total CPUTIME.
- **SAT competition:** uses a purse-based method where the score is obtained adding up a solution purse, a speed purse and a series purse.

Assuming solvers as candidates to an election and instances as voters:

• Borda count: solvers are ordered by CPUTIME and to each position is associated a score.

Procedures based on voting systems

Assuming solvers as candidates to an election and instances as voters:

- Borda count: solvers are ordered by CPUTIME and to each position is associated a score.
- Range voting: similar to Borda count, but using multiplicative positional weights.

Procedures based on voting systems

Assuming solvers as candidates to an election and instances as voters:

- **Borda count:** solvers are ordered by CPUTIME and to each position is associated a score.
- Range voting: similar to Borda count, but using multiplicative positional weights.
- **Schulze's method:** it is a Condorcet method that computes the Schwartz set to determine a winner. We use an extension of the single overall winner procedure, in order to make it capable of generating an overall ranking.

Agenda

- Preliminaries
- Procedures
- YASM
- Comparative measures
- Conclusions

- YASMv2, improvement of YASM that combines:
 - traditional approach of the procedures used in automated reasoning systems contests
 - some ideas borrowed from voting systems

- YASMv2, improvement of YASM that combines:
 - traditional approach of the procedures used in automated reasoning systems contests
 - some ideas borrowed from voting systems

• Score
$$S_{s,i} = k_{s,i} \cdot (1 + H_i) \cdot \frac{L - T_{s,i}}{L - M_i}$$

- YASMv2, improvement of YASM that combines:
 - traditional approach of the procedures used in automated reasoning systems contests
 - some ideas borrowed from voting systems
- Score $S_{s,i} = k_{s,i} \cdot (1 + H_i) \cdot \frac{L T_{s,i}}{I M_i}$
 - $k_{s,i}$: Borda-like positional weight
 - $(1 + H_i)$: relative hardness of the instance; it rewards the solvers that solve hard instances
 - $\frac{L-T_{s,i}}{I-M}$: relative speed of the solver with respect to the fastest solver on the instance; it rewards the solvers that are faster than other competitors

- YASMv2, improvement of YASM that combines:
 - traditional approach of the procedures used in automated reasoning systems contests
 - some ideas borrowed from voting systems
- Score $S_{s,i} = k_{s,i} \cdot (1 + H_i) \cdot \frac{L T_{s,i}}{I M}$
 - $k_{s,i}$: Borda-like positional weight
 - $(1 + H_i)$: relative hardness of the instance; it rewards the solvers that solve hard instances
 - $\frac{L-T_{s,i}}{I-M}$: relative speed of the solver with respect to the fastest solver on the instance; it rewards the solvers that are faster than other competitors
- Total score $S_s = \sum_i S_{s,i}$

Agenda

- Preliminaries
- Procedures
- YASM
- Comparative measures
- Conclusions

• Degree of (dis)agreement between different aggregation procedures.

Homogeneity

- Degree of (dis)agreement between different aggregation procedures.
- Verify that the aggregation procedures considered
 - do not produce exactly the same solver rankings
 - do not yield antithetic solver rankings

Homogeneity

- Degree of (dis)agreement between different aggregation procedures.
- Verify that the aggregation procedures considered
 - do not produce exactly the same solver rankings
 - do not yield antithetic solver rankings
- Kendall rank correlation coefficient τ as measure of homogeneity.

Homogeneity

	CASC	QBF	SAT	YASM	YASMv2	Borda	r.v.	Schulze
CASC	_	1	0.71	0.86	0.79	0.86	0.71	0.86
QBF		_	0.71	0.86	0.79	0.86	0.71	0.86
SAT			-	0.86	0.86	0.71	0.71	0.71
YASM				_	0.86	0.71	0.71	0.71
YASMv2					_	0.86	0.86	0.86
Borda						_	0.86	1
r. v.							-	0.86
Schulze							·	-

 $\mathsf{r.v.} = \mathsf{range} \ \mathsf{voting}$

• Given a synthesized set of raw data, evaluates whether an aggregation procedure distorts the results.

Fidelity

- Given a synthesized set of raw data, evaluates whether an aggregation procedure distorts the results.
- ullet Several samples of table Runs filled with random results:
 - RESULT is assigned to SAT/UNSAT, TIME or FAIL with equal probability
 - a value of CPUTIME is chosen uniformly at random in the interval [0;1]

Comparative measures

- Given a synthesized set of raw data, evaluates whether an aggregation procedure distorts the results.
- Several samples of table RUNS filled with random results:
 - RESULT is assigned to SAT/UNSAT, TIME or FAIL with equal probability
 - a value of CPUTIME is chosen uniformly at random in the interval [0:1]
- A high-fidelity aggregation procedure:
 - computes approximately the same scores for each solver
 - produces a final ranking where scores have a small variance-to-mean ratio

Fidelity

Method	Mean	Std	Median	Min	Max	IQ Range	F
QBF	182.25	7.53	183	170	192	13	88.54
CASC	182.25	7.53	183	170	192	13	88.54
SAT	87250	12520.2	83262.33	78532.74	119780.48	4263.94	65.56
YASM	46.64	2.22	46.33	43.56	51.02	2.82	85.38
YASMv2	1257.29	45.39	1268.73	1198.43	1312.72	95.11	91.29
Borda	984.5	127.39	982.5	752	1176	194.5	63.95
r. v.	12010.25	5183.86	12104	5186	21504	8096	24.12
SCHULZE	-	-	_	_	-	_	-

 $\mathsf{r.v.} = \mathsf{range} \ \mathsf{voting}$

INSTANCE_1
INSTANCE_2
INSTANCE_3
Instance_4
INSTANCE_5
INSTANCE_6
INSTANCE_7
INSTANCE_8
Instance_9
INSTANCE_10
INSTANCE_11
INSTANCE_12
INSTANCE_13
INSTANCE_14
INSTANCE_15

INSTANCE_1
Instance_3
Instance_6
INSTANCE_7
Instance_8
Instance_9
INSTANCE_11
INSTANCE_12
INSTANCE_14
INSTANCE_15

INSTANCE_1	
INSTANCE_3	
INSTANCE_6	
INSTANCE_7	
INSTANCE_8	\rightarrow
Instance_9	
INSTANCE_11	
INSTANCE_12	
INSTANCE_14	
INSTANCE_15	

INSTANCE_1		
INSTANCE_3		
INSTANCE_6		
INSTANCE_7		
INSTANCE_8	\rightarrow	RANKING_A
Instance_9		
INSTANCE_11		
INSTANCE_12		
INSTANCE_14		
INSTANCE_15		

$\begin{array}{c} \operatorname{INSTANCE.1} \\ \operatorname{INSTANCE.2} \\ \operatorname{INSTANCE.3} \\ \operatorname{INSTANCE.4} \\ \\ \overline{\operatorname{INSTANCE.6}} \\ \overline{\operatorname{INSTANCE.7}} \\ \longrightarrow & \operatorname{RANKING.A} \\ \\ \overline{\operatorname{INSTANCE.10}} \\ \operatorname{INSTANCE.10} \\ \operatorname{INSTANCE.11} \\ \operatorname{INSTANCE.12} \\ \operatorname{INSTANCE.13} \\ \end{array}$		
$\begin{array}{c} \text{INSTANCE.3} \\ \text{INSTANCE.4} \\ \\ \text{INSTANCE.6} \\ \\ \text{INSTANCE.7} \\ \\ \end{array} \longrightarrow \begin{array}{c} \text{RANKING.A} \\ \\ \\ \text{INSTANCE.10} \\ \\ \text{INSTANCE.11} \\ \\ \text{INSTANCE.12} \\ \end{array}$		
$\begin{array}{c} \text{INSTANCE.4} \\ \\ \text{INSTANCE.6} \\ \\ \text{INSTANCE.7} \\ \\ \end{array} \longrightarrow \begin{array}{c} \text{RANKING.A} \\ \\ \\ \text{INSTANCE.10} \\ \\ \text{INSTANCE.11} \\ \\ \text{INSTANCE.12} \\ \end{array}$	•	
$\begin{array}{c} \text{INSTANCE_6} \\ \text{INSTANCE_7} \\ \longrightarrow \\ \text{INSTANCE_10} \\ \text{INSTANCE_11} \\ \text{INSTANCE_12} \end{array}$	•	
$\begin{array}{c} \text{INSTANCE.7} \\ \longrightarrow \\ \text{RANKING.A} \\ \\ \text{INSTANCE.10} \\ \text{INSTANCE.11} \\ \\ \text{INSTANCE.12} \\ \end{array}$		
INSTANCE_10 INSTANCE_11 INSTANCE_12	•	
INSTANCE_11 INSTANCE_12	·	RANKING_A
INSTANCE_11 INSTANCE_12		
INSTANCE_12	•	
INSTANCE_13	•	
	•	
		· · · · · · · · · · · · · · · · · · ·

INSTANCE_1		
INSTANCE_2		
INSTANCE_3		
INSTANCE_4		
INSTANCE_6		
INSTANCE_7		
	\rightarrow	RANKING_A
		RANKING_B
INSTANCE_10		
INSTANCE_11		
INSTANCE_12		

INSTANCE_2		
INSTANCE_3		
INSTANCE_4		
INSTANCE_5		
INSTANCE_6		
INSTANCE_8	\rightarrow	RANKING_A
Instance_9		ranking_B
INSTANCE_10		
INSTANCE_14		
INSTANCE_15		

instance_2		
instance_3		
INSTANCE_4		
INSTANCE_5		
INSTANCE_6		
		RANKING_A
INSTANCE_8	\rightarrow	RANKING_B
Instance_9		RANKING_C
INSTANCE_10		
INSTANCE_14		
INSTANCE_15		

Comparative measures

RDT-stability

	-		
INSTANCE_2	-		
INSTANCE_3	-		
INSTANCE_4	-		
INSTANCE_5	-		
INSTANCE_6	-		
	-	RANKING_A	
INSTANCE_8	\rightarrow	RANKING_B	
INSTANCE_9	-	RANKING_C	
INSTANCE_10	-		
	•		
	-		
	-		
INSTANCE_14			
INSTANCE_15	-		

INSTANCE_2 INSTANCE_3 INSTANCE_5 INSTANCE_6 INSTANCE_6 INSTANCE_8 INSTANCE_9 INSTANCE_10	· · · · · · · · · · · · · · · · · · ·	RANKING_A RANKING_B RANKING_C	\rightarrow	RANKING_MEDIAN
INSTANCE_14 INSTANCE_15				

 Stability on a Solver Biased Test set aims to measure how much an aggregation procedure is sensitive to a test set that is biased in favor of a given solver.

 Stability on a Solver Biased Test set aims to measure how much an aggregation procedure is sensitive to a test set that is biased in favor of a given solver.

- Test set instances
- Solved by SOLVER_1
- Solved by SOLVER_2
- Solved by SOLVER_3

 Stability on a Solver Biased Test set aims to measure how much an aggregation procedure is sensitive to a test set that is biased in favor of a given solver.

- Test set instances
- Solved by SOLVER_1
- Solved by SOLVER_2
- Solved by SOLVER_3

 Stability on a Solver Biased Test set aims to measure how much an aggregation procedure is sensitive to a test set that is biased in favor of a given solver.

Solved by SOLVER_1

Solved by SOLVER_2

■ Solved by SOLVER_3

 Stability on a Solver Biased Test set aims to measure how much an aggregation procedure is sensitive to a test set that is biased in favor of a given solver.

Test set instances

Solved by SOLVER_1

■ Solved by SOLVER_2

Solved by SOLVER_3

	CASC/QBF	SAT	YASM	YASMv2	Borda	r. v.	Schulze
OPENQBF	0.43	0.57	0.36	0.64	0.79	0.79	0.79
QBFBDD	0.43	0.43	0.36	0.64	0.79	0.86	0.79
QMRes	0.64	0.86	0.76	0.79	0.71	0.86	0.79
QUANTOR	1	0.86	0.86	0.86	0.93	0.86	0.93
SEMPROP	0.93	0.71	0.71	0.79	0.93	0.86	0.93
SSOLVE	0.71	0.57	0.57	0.79	0.86	0.79	0.86
WalkQSAT	0.57	0.57	0.43	0.71	0.64	0.79	0.79
YQUAFFLE	0.71	0.64	0.57	0.71	0.86	0.86	0.93
Mean	0.68	0.65	0.58	0.74	0.81	0.83	0.85

Kendall rank correlation coefficient between the test sets.

SOTA-relevance

- Relationship between the ranking obtained with an aggregation procedure and its SOTA-distance w.r.t. the SOTA solver.
- The SOTA solver is the ideal solver that fares the best time for each instance among all solvers.

- Relationship between the ranking obtained with an aggregation procedure and its SOTA-distance w.r.t. the SOTA solver.
- The SOTA solver is the ideal solver that fares the best time for each instance among all solvers.
- The SOTA-distance is the distance metric obtained by computing the Euclidean norm between the CPU times of any given solver and the SOTA solver.

SOTA-relevance

- Relationship between the ranking obtained with an aggregation procedure and its SOTA-distance w.r.t. the SOTA solver
- The SOTA solver is the ideal solver that fares the best time for each instance among all solvers.
- The SOTA-distance is the distance metric obtained by computing the Euclidean norm between the CPU times of any given solver and the SOTA solver.

	SOTA-distance
CASC	1
QBF	1
SAT	0.71
YASM	0.86
YASM v2	0.79
Borda	0.86
range voting	0.71
Schulze	0.86

Agenda

- Preliminaries
- Procedures
- YASM
- Comparative measures
- Conclusions

 A larger test set is not necessarily a better test set (RDT-stability).

- A larger test set is not necessarily a better test set (RDT-stability).
- Increasing the time limit is not necessary useful, unless you increase it substantially (DTL-stability).

Conclusions

- A larger test set is not necessarily a better test set (RDT-stability).
- Increasing the time limit is not necessary useful, unless you increase it substantially (DTL-stability).
- The composition of the evaluation test set may heavily influence the final ranking (SBT-stability).

 Addition of the fidelity measure and improvement of the definition of SOTA-relevance.

- Addition of the fidelity measure and improvement of the definition of SOTA-relevance.
- YASMv2 is more powerful than YASM in terms of SBT-stability and fidelity.

Conclusions

- Addition of the fidelity measure and improvement of the definition of SOTA-relevance.
- YASMv2 is more powerful than YASM in terms of SBT-stability and fidelity.
- The fidelity measure shows the effectiveness of a hybrid approach such as YASMv2.

Possible Extensions

 Investigation in the explanatory power of the SOTA-distance metric.

Possible Extensions

- Investigation in the explanatory power of the SOTA-distance metric.
- Extension of the analysis to other aggregation procedures and/or voting systems.

Conclusions

- Investigation in the explanatory power of the SOTA-distance metric.
- Extension of the analysis to other aggregation procedures and/or voting systems.
- Investigation in the YASMv2 properties according to the framework of social choice theory.

