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Introduction

Setting

Set of agents: N = {1, . . . , n}
Multi-dimensional type of agent i : t i ∈ T i with T i ⊆ Rk

Set of outcomes Γ

Valuations v(α|t i , t−i )

Types independently distributed

T set of type profiles t =
(
t1, . . . , tn

)
Allocation rule: f : T 7→ Γ
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Introduction

Goal

Characterize allocation rules for which there is a
P : T 7→ Rn such that (f ,P) is Bayes-Nash incentive
compatible.

Can we extend weak monotonicity characterization for
dominant strategy i.c. (Bikhchandani, Chatterji, Sen,
Lavi, Mu’alem, Nisan, Sen (2006), Gui, Müller, Vohra
(2004), Saks, Yu (2005) to Bayes-Nash i.c.?
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Notation

Bayes-Nash Incentive Compatibility

f is Bayes-Nash i.c. if ∃P s.t. ∀i ∈ N, ∀r i , r̃ i ∈ T i
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Implies weak monotonicity: ∀i ∈ N, ∀r i , r̃ i ∈ T i
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Network approach

Network

∀i ∈ N complete directed graph T i
f

Node associated with each type

Length of edge from r̃ i to r i (cost of manipulation):

l i
(
r̃ i , r i

)
=

E−i

[
v i

(
f

(
r i , t−i

)
| r i , t−i

)
− v i

(
f

(
r̃ i , t−i

)
| r i , t−i

)]
weak-monotonicity becomes no-negative 2-cycle:

l i
(
r̃ i , r i

)
+ l i

(
r i , r̃ i

)
≥ 0
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Network approach

Theorem

An allocation rule f is Bayes-Nash incentive compatible if and
only if ∀i ∈ N, T i

f has no negative cycle.

Proof

Similar to Rochet (1987), and infinite graph equivalent of
“shortest path lengths exist if and only if no negative cycle”.

Question

No negative 2-cycle (i.e., weak-monotonicity) if and only if no
negative cycle?
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One-dimensional types

T i ⊆ R

Definition: The costs of manipulation are decomposition
monotone if ∀r i , r̄ i ∈ T i and ∀α ∈ (0, 1) we have

l i
(
r i , r̄ i

)
≥ l i

(
r i , (1− α)r i + αr̄ i

)
+l i

(
(1− α)r i + αr̄ i , r̄ i

)
.

Theorem If costs of manipulation are decomposition
monotone, T i convex, then f is Bayes-Nash i.c. if and
only if for all i ∈ N, T i

f has no negative 2-cycle.
(Example: Myerson (1981) “Optimal Auction Design”)
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Multi-Dimensional Types

Additional Assumption

T i ⊆ Rk convex

Valuations linear w.r.t. own type: ∀γ ∈ Γ

v i
(
γ | t i , t−i

)
= αi

(
γ | t−i

)
+ βi

(
γ | t−i

)
t i

αi : Γ× T−i 7→ R, βi : Γ× T−i 7→ Rk

Expected valuation: E−i

[
v i

(
f

(
r i , t−i

)
| t i , t−i

)]
= E−i

[
αi

(
f

(
r i , t−i

)
| t−i

)]
+ E−i

[
βi

(
f

(
r i , t−i

)
| t−i

)]
t i

Lemma

If v i is linear in the own type and f satisfies weak monotonicity
then the costs of manipulation are decomposition monotone.
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Multi-Dimensional Types

Potential function and Path independence

E−i

[
βi

(
f

(
r i , t−i

)
| t−i

)]
is vector field T i 7→ Rk

A vector field ψ: T i 7→ Rk has a potential function ϕ:
T i 7→ R if for any smooth path A joining t i , t̄ i ∈ T i∫

A
ψ = ϕ

(
t̄ i

)
− ϕ

(
t i

)
.

Equivalent: ψ is path-independent, that is for any closed
path B ∫

B
ψ = 0.
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Multi-Dimensional Types

Theorem

Suppose that ∀i ∈ N, T i is convex and that agents have valu-
ation functions that are linear w.r.t. their own true types then:
f is Bayes-Nash incentive compatible if and only if for all i ∈ N
(1) T i

f has no negative 2-cycle and
(2) E−i

[
βi

(
f

(
r i , t−i

)
| t−i

)]
is path independent.
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Multi-Dimensional Types

Proof sketch

Necessity of (2):
No-negative cycle ⇒ E−i

[
βi

(
f

(
r i , t−i

)
| t−i

)]
cyclically

monotone (Rockafellar 1966) ⇒ is a selection of the
sub-differential of a convex function (Rockafellar 1970)
⇒ path-independence (Krishna & Maenner 2001).

Sufficiency:
Take a negative cycle. Decomposition monotonicity
allows to bound edge lengths l(s, r) from below by
integrals. Path-independence shows that the resulting
integral is equal to 0.

Remark: Neither of (1) or (2) implies the other, in
particular this means that only (1) is not sufficient for
B.N.I.C.
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