Simulating the Effects of Misperception on the Manipulability of Voting Rules

Johann Mitlöhner

Vienna University of Economics, Austria mitloehn@wu-wien.ac.at

Daniel Eckert, Christian Klamler
University of Graz, Austria
{daniel.eckert,christian.klamler}@uni-graz.at

Motivation

- Manipulability of voting rules (Gibbard-Satterthwaite)
- How to evaluate and measure manipulability (in order to compare voting rules)
- How many profiles are manipulable (degree of manipulability)

 Kelly (1993), Smith (1999)
- Efficiency of manipulation (degree of improvement)

 Smith (1999), Aleskerov/Kurbanov (1999)

Assumptions

In the analysis of manipulability usually 2 assumptions:

- unlimited computational capacity
- perfect information

Robustness of manipulation under uncertainty

- relaxation of perfect information (noisy profiles)
- given small misperceptions of the profile, will manipulation still be advantageous?
- what are the consequences for the evaluation of different voting rules?

Simulation Model

profile p: n strict orders over a set A of m candidates

e.g.
$$p = ((a \succ b \succ c \succ d), (b \succ c \succ a \succ d), (c \succ a \succ b \succ d))$$

social choice correspondence $C(p) \subseteq A$

average rank $r_i(C(p))$ of elements of C(p) in p_i

100.000 random profiles with 5 voters and 4 candidates voting rules implemented in Python:

Borda (BO), Copeland (CO), Kemeny (KE), Plurality (PL), Antiplurality (AP), Transitive Closure (TC), Maximin (MM), Slater (SL), Nanson (NA), Young (YO), and Dodgson (DO)

Aggregate relations x encoded as binary matrices denoting weak preference i.e. if $x_{i,j} = 1$ and $x_{j,i} = 0$ then $c_i \succ c_j$; if $x_{i,j} = x_{j,i} = 1$ than $c_i = c_j$

[[1,1,1],[1,1,1],[0,0,1]] denotes aggregate ranking $((a=b) \succ c)$

Sample random profile and aggregate rankings

```
pr: a>b>c>d,c>a>d>b,c>d,b>d>c>a,b>c>d>a
B0: [[1,0,0,1],[1,1,0,1],[1,1,1,1],[0,0,0,1]]
                                                 c>b>a>d
CO: [[1,1,1,1],[1,1,1],[1,1,1,1],[0,0,0,1]]
                                                 a=b=c>d
TC: [[1,1,1,1],[1,1,1,1],[1,1,1,1],[0,0,0,1]]
                                                 a=b=c>d
NA: [[1,0,0,1],[1,1,1,1],[1,0,1,1],[0,0,0,1]]
                                                 b>c>a>d
MM: [[1,0,0,1],[1,1,1,1],[1,1,1,1],[1,0,0,1]]
                                                 b=c>a=d
KE: [[1,0,0,1],[1,1,1,1],[1,0,1,1],[0,0,0,1]]
                                                 b>c>a>d
SL: [[1,1,1,1],[0,1,1,1],[0,0,1,1],[0,0,0,1]]
                                                 a>b>c>d
YO: [[1,0,0,1],[1,1,1,1],[1,1,1,1],[1,0,0,1]]
                                                 b=c>a=d
DO: [[1,0,0,1],[1,1,1,1],[1,1,1,1],[0,0,0,1]]
                                                 b=c>a>d
PL: [[1,0,0,1],[1,1,1,1],[1,1,1,1],[0,0,0,1]]
                                                 b=c>a>d
AP: [[1,0,0,1],[1,1,0,1],[1,1,1,1],[1,0,0,1]]
                                                 c>b>a=d
```

Execution Times

seconds for 1000 random profiles with n=9 voters and m=4,5,6,7,8 candidates, on 3.2 GHz Intel Pentium D

Rule	m = 4	m = 5	m = 6	m = 7	m = 8
ВО	0.07	0.07	0.08	0.09	0.10
CO	0.09	0.09	0.10	0.11	0.13
PL	0.07	0.07	0.08	0.09	0.10
AP	0.07	0.07	0.08	0.09	0.10
MM	0.08	0.10	0.11	0.13	0.14
NA	0.08	0.09	0.10	0.11	0.13
TC	0.15	0.25	0.43	0.72	1.21
YO	1.21	1.93	2.97	3.71	5.15
KE	0.14	0.52	3.58	31.61	318.46
SL	0.15	0.47	3.03	26.20	253.14
DO	2.32	12.31	51.98	160.56	464.17

Manipulation

true preferences p_i manipulated preferences p_i' manipulated profile p'successful manipulation: $p_i' \neq p_i$ with $C(p') \neq C(p)$ and average rank $r_i(C(p')) < r_i(C(p))$ rank difference $d_i(C(p), C(p')) = r_i(C(p')) - r_i(C(p))$ e.g. $p_i = (a \succ b \succ c), C(p) = \{b\}, C(p') = \{a, b\}$ $d_i = 1.5 - 2 = -0.5$

Misperception

remaining profile p_{-i} perceived as noisy p_{-i}^{e}

e: pairwise exchanges

e.g.
$$p_{-i} = ((b \succ c \succ a \succ d), (a \succ c \succ b \succ d))$$

with e=1 misperceptions $p_{-i}^e=((b\succ c\succ a\succ d),(c\succ a\succ b\succ d))$

simulation study: for each true profile p

create noisy profile p^e and observe for i=1

$$d_i(C(p^e), C(p'^e)) < 0 \quad manipulation$$

$$d_i(C(p), C(p')) < 0 \quad success \tag{1}$$

$$d_i(C(p), C(p')) > 0 \quad failure \tag{2}$$

$$d_i(C(p), C(p')) = 0 \quad no \ effect \tag{3}$$

Expected Changes in Rank Differences

success in noisy profile if $r_i(C(p'^e)) < r(C(p^e))$

$$E^{M}(d) = \frac{1}{|M|} \sum_{p \in M} d_{i}(C(p^{e}), C(p'^{e}))$$

success in true profile if $r_i(C(p')) < r(C(p))$

$$E^{S}(d) = \frac{1}{|S|} \sum_{p \in S} d_i(C(p), C(p'))$$

failure in true profile if $r_i(C(p')) > r_i(C(p))$

$$E^{F}(d) = \frac{1}{|F|} \sum_{p \in F} d_i(C(p), C(p'))$$

expected benefit in true profile

$$E(d) = \frac{1}{|M|} \sum_{p \in M} d_i(C(p), C(p'))$$

where
$$M = S + F + O$$

Expected Benefit and Punishment Effect

rule	\mathbf{M}	EM(d)	S	ES(d)	\mathbf{F}	EF(d)	E(d)	PU
AP	26123	-0.6642	21392	-0.6732	1599	0.6995	-0.5085	0.1557
ВО	28661	-0.7354	14069	-0.7195	2538	0.6858	-0.2924	0.4430
CO	8941	-0.5221	4259	-0.5409	1462	0.6367	-0.1535	0.3686
DO	10252	-0.5707	4540	-0.5783	1640	0.6283	-0.1556	0.4151
KE	7952	-1.3462	3441	-1.3188	1088	1.2188	-0.4039	0.9423
MM	9225	-0.4527	4761	-0.4507	823	0.7935	-0.1618	0.2909
NA	9477	-0.9920	3518	-0.9506	1371	1.0581	-0.1998	0.7922
PL	16382	-0.7150	12053	-0.7145	1851	0.8071	-0.4345	0.2805
SL	7833	-1.3476	3639	-1.3325	1045	1.2593	-0.4510	0.8966
TC	7342	-0.4164	3821	-0.4209	921	0.9767	-0.0965	0.3199
YO	9052	-0.4526	4686	-0.4496	792	0.7777	-0.1647	0.2879

Interpretation and Conclusions

- Among the scoring rules (BO, PL, AP) BO has the lowest expected benefit of manipulation and the highest punishment effect
- Most rules have higher expected loss in case of failure than expected benefit in case of successful manipulation: risk averse individuals would not manipulate (exception: BO, KE, SL)
- More decisive rules (single winner: KE, SL) exhibit higher punishment effect
- The data also show that the punishment effect for manipulation with misperception is not a rare exceptional case. It occurs frequently enough to provide an additional dimension for the evaluation and comparison of voting rules.

Summary and Future Work

In simulations with a limited range of parameters we have explored

- the extent to which manipulators can lose rather than gain from manipulation in a setting with misperception and
- the susceptibility of various rank aggregation rules to these effects.

Future work will

- test the validity of these results for a wider range of parameters and
- expand the range of applications of the software package developed for the simulations.

http://prefrule.sf.net

SESES(d) SEF(d) SEM(d) SE(d)rule AP0.00370.0216 0.00330.0056BO 0.00420.00300.01510.0058CO0.0069 0.0136 0.00420.0097DO 0.00750.01420.00470.0093KE 0.01780.02560.01200.0213MM0.00720.0198 0.00470.0085NA 0.0196 0.02460.0118 0.0158PL0.00440.01380.00380.0086SL0.01740.02820.01220.0221TC 0.00330.01780.00260.0107YO 0.00720.02060.00470.0085