Equal Representation in Two-tier Voting Systems #### Nicola Maaser and Stefan Napel Economics Department University of Hamburg, Germany maaser@econ.uni-hamburg.de #### Introduction - History and efficiency considerations often call for *two-tier electoral systems*: - 1. People's preferences are aggregated in *constituencies* - 2. Constituencies' preferences are aggregated in an electoral college - Question: - How should constituencies' voting weights in the college be chosen s.t. a priori all individuals have identical influence? - Allocating weights proportional to population sizes seems straightforward, but: - In general, voting power is not linear in voting weight, e.g. EU Council of Ministers 1958. - Power measures as the Penrose-Banzhaf- or the Shapley-Shubik-Index are designed to capture the non-trivial relationship between weight and power. ## Penrose's square root rule - Penrose's square root rule (1946): Choose weights s.t. constituencies' Penrose-Banzhaf index is proportional to square root of population - For most practical reasons (especially, if the number of constituencies is "large"), a simpler rule suffices: weight = sqrt(Population) - The rule requires decisions x∈{0,1} and (in expectation) equi-probable independent 0 or 1-votes What if the world is not dichotomous but, e.g., x∈[0,1]? ### **Outline** - Model - Analytical problems - Monte Carlo simulation - Results - Concluding remarks Union level Constituency level **** Union level Constituency level Union level Constituency level - Voters are partitioned into m constituencies and have single-peaked preferences with a priori uniformly distributed ideal points $\lambda \in X \equiv [0,1]$ - Constituency j's representative is chosen to match the median voter in his constituency - Each constituency j has weight w_j in the electoral college; a 50%-quota q is used - Pivotal constituency (P) is defined by $P \equiv \min\{r : \sum_{k=1}^r w_{(k)} > q\}$ [permutation (·) orders constituencies from left to right] - (P) gets its will, i.e. $x^*=\lambda_{(P)}$ - \triangleright Problem of equal representation: Given population sizes $n_1, ..., n_m$, find weights $w_1, ..., w_n$ s.t. each voter has equal chance of determining x^* ## **First analysis** - Each voter in constituency j has chance $1/n_j$ to be its median $\Rightarrow \Pr(\lambda_j = \lambda_{P:m}) \stackrel{\bot}{=} c \cdot n_j$ for all j (with c > 0) - Assuming *i.i.d.* voters, different n_j imply different a priori distributions of medians - With density f and c.d.f. F for individual voters' ideal points, representatives' ideal points are asymptotically normal with $$\mu_i = F^{-1}(0.5), \qquad \sigma_i = [2f(\mu_i) \cdot \text{sqrt}(n_i)]^{-1}$$ ⇒ Larger constituencies are a priori more central in the electoral college and more likely to be pivotal under a 50%-quota. ## **Analytical problems** • Already for *unweighted* voting, i.e. $P \equiv (m+1)/2$, we run into trouble: $$\Pr(j = (p)) = \Pr\left(\text{exactly } p - 1 \text{ of the } \lambda_k, k \neq j, \text{ satisfy } \lambda_k < \lambda_j\right)$$ $$= \int \sum_{\substack{S \subset N \setminus j, \\ |S| = p - 1}} \prod_{k \in S} F_k(x) \cdot \prod_{k \in N \setminus j \setminus S} (1 - F_k(x)) \cdot f_j(x) \ dx$$ • Asymptotic approximation with only n_1 varying and $n_2 = ... = n_m$ seems possible, but for general $n_1, ..., n_m$? #### **Monte Carlo simulation** - Probability $\pi_j := \Pr(j = (P))$ is the expected value of random variable $H_j(\lambda_1, ..., \lambda_m)$ which is 1 if j = (P) and 0 otherwise - H_j's expected value can be approximated by the *empirical* average of many independent draws of H_j - Weight vectors are constructed from given population sizes by $w_i = n_i^{\alpha}$ - For fixed weights $(w_1, ..., w_m)$ and populations $(n_1, ..., n_m)$, we draw $\lambda_1, ..., \lambda_m$ from the beta distributions corresponding to i.i.d. U[0,1] voters in all constituencies and average $H_1, ..., H_m$ over 10 million draws - We search for the α which yields smallest cumulative (individual) quadratic deviation of π_j from the ideal egalitarian probability $\pi_j^*=n_j/\sum n_k$ $(j=1,\ldots,m)$ #### **EU Council of Ministers** • Using EU25 population data, α *=0.5 with 50%-quota would give almost equal representation: ## **US Electoral College** • Again, α *=0.5 comes very close to equal representation: ## **US Electoral College** Cumulative individual quadratic deviation from equal representation in the US Electoral College: cum. ind. quad. dev. ## **Concluding remarks** - While analytical proof of this looks out of reach, assigning weights proportional to square root of population provides a quite stable and satisfying answer to our question - Thus, Penrose's square root rule is much more robust than suggested in the literature; unexpectedly, it extends from binary decisions to rich (onedimensional convex) policy spaces, from simple games to spatial voting - Future research: - A better reference point than voting weight - Effects of supermajority rule #### **EU Council of Ministers** Nice weights and quota of 50%: #### **EU Council of Ministers** Nice weights and quota of 72.2%: # Results: uniformly distributed n_j - We look, first, at m ranging from 10 to 50 with randomly generated constituency sizes n_1, \ldots, n_m and, second, at two prominent real-world population configurations - With i.i.d. n_i from $U[0.5\cdot10^6, 99.5\cdot10^6]$, optimal α is: | # const | (I) | (II) | (III) | (IV) | |---------|--------------------------|--------------------------|--------------------------|--------------------------| | 10 | 0.5 | 0.6 | 0.39 | 0.00 | | | (1.22×10^{-11}) | (1.04×10^{-11}) | (2.20×10^{-12}) | (2.39×10^{-11}) | | 15 | 0.5 | 0.5 | 0.49 | 0.48 | | | (1.43×10^{-11}) | (1.45×10^{-13}) | (2.79×10^{-14}) | (8.84×10^{-14}) | | 20 | 0.5 | 0.5 | 0.49 | 0.49 | | | (4.80×10^{-14}) | (8.59×10^{-14}) | (5.66×10^{-15}) | (6.91×10^{-15}) | | 25 | 0.5 | 0.5 | 0.49 | 0.49 | | | (9.25×10^{-15}) | (1.28×10^{-14}) | (5.37×10^{-15}) | (7.69×10^{-15}) | | 30 | 0.5 | 0.5 | 0.49 | 0.49 | | | (1.11×10^{-15}) | (5.12×10^{-15}) | (7.36×10^{-15}) | (2.38×10^{-15}) | | 40 | 0.5 | 0.5 | 0.49 | 0.49 | | | (3.38×10^{-15}) | (5.11×10^{-15}) | (3.69×10^{-15}) | (7.02×10^{-15}) | | 50 | 0.5 | 0.5 | 0.50 | 0.50 | | | (3.06×10^{-15}) | (4.70×10^{-15}) | (3.10×10^{-15}) | (3.30×10^{-15}) | # Results: normally distributed n_i - If constituencies are created for efficiency reasons, sizes possibly are distributed around some 'ideal size' - With i.i.d. n_i from $N(10^6; 200000)$, optimal α is: | # const | (I) | (II) | (III) | (IV) | |---------|--------------------------|--------------------------|--------------------------|--------------------------| | 10 | 0.0 | 0.0 | 0.0 | 0.0 | | | (1.22×10^{-9}) | (1.65×10^{-9}) | (9.21×10^{-9}) | (1.83×10^{-9}) | | 20 | 0.6 | 0.0 | 0.6 | 0.0 | | | (2.19×10^{-10}) | (2.93×10^{-10}) | (2.82×10^{-10}) | (3.83×10^{-10}) | | 30 | 0.1 | 0.2 | 0.4 | 0.5 | | | (1.07×10^{-10}) | (1.07×10^{-10}) | (6.94×10^{-11}) | (6.76×10^{-11}) | | 40 | 0.3 | 0.4 | 0.4 | 0.5 | | | (1.72×10^{-11}) | (2.08×10^{-11}) | (2.32×10^{-11}) | (2.81×10^{-13}) | | 50 | 0.4 | 0.2 | 0.3 | 0.3 | | | (1.60×10^{-11}) | (7.39×10^{-12}) | (3.56×10^{-11}) | (4.72×10^{-11}) | | 100 | 0.5 | 0.5 | 0.5 | 0.5 | | | (1.01×10^{-13}) | (2.30×10^{-12}) | (1.99×10^{-13}) | (3.44×10^{-13}) | # Results: normally distributed n_i For moderately many similar constituencies, weighted voting may allow only quite high (and flat) inequality of representation: # Results: Pareto distributed n_i • More realistically, with i.i.d. n_j from a Pareto distribution with skewness parameter k, optimal α is: | | Number of constituencies | | | | | | | | | |----------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--|--|--| | κ | 10 | 20 | 30 | 40 | 50 | 100 | | | | | 1.0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | | | | | (1.32×10^{-9}) | (6.99×10^{-11}) | (1.32×10^{-11}) | (1.87×10^{-11}) | (1.31×10^{-10}) | (3.79×10^{-12}) | | | | | 1.8 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | | | | | (3.25×10^{-9}) | (4.78×10^{-11}) | (2.41×10^{-11}) | (2.25×10^{-11}) | (1.86×10^{-11}) | (1.04×10^{-12}) | | | | | 3.4 | 0.0 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | | | | | (3.72×10^{-9}) | (5.64×10^{-11}) | (2.41×10^{-11}) | (3.27×10^{-12}) | (2.67×10^{-12}) | (8.88×10^{-13}) | | | | | 5.0 | 0.0 | 0.0 | 0.1 | 0.15 | 0.1 | 0.5 | | | | | | (1.08×10^{-8}) | (3.61×10^{-9}) | (1.03×10^{-10}) | (2.85×10^{-11}) | (1.91×10^{-10}) | (7.54×10^{-13}) | | | | #### → General finding: As long as $m \ge 15$, $\alpha^* = 0.5$ comes close to equal representation; it does best amongst all considered rules for large m (and for small m if the electorate's partition is not too equal nor oceanic)