Equal Representation in Two-tier Voting Systems

Nicola Maaser and Stefan Napel

Economics Department
University of Hamburg, Germany
maaser@econ.uni-hamburg.de

Introduction

- History and efficiency considerations often call for *two-tier electoral systems*:
 - 1. People's preferences are aggregated in *constituencies*
 - 2. Constituencies' preferences are aggregated in an electoral college
- Question:
 - How should constituencies' voting weights in the college be chosen s.t. a priori all individuals have identical influence?
- Allocating weights proportional to population sizes seems straightforward, but:
- In general, voting power is not linear in voting weight, e.g. EU
 Council of Ministers 1958.
- Power measures as the Penrose-Banzhaf- or the Shapley-Shubik-Index are designed to capture the non-trivial relationship between weight and power.

Penrose's square root rule

- Penrose's square root rule (1946):
 Choose weights s.t. constituencies' Penrose-Banzhaf index is proportional to square root of population
- For most practical reasons (especially, if the number of constituencies is "large"), a simpler rule suffices:
 weight = sqrt(Population)
- The rule requires decisions x∈{0,1} and (in expectation) equi-probable independent 0 or 1-votes

What if the world is not dichotomous but, e.g., x∈[0,1]?

Outline

- Model
- Analytical problems
- Monte Carlo simulation
- Results
- Concluding remarks

Union level

Constituency level

Union level

Constituency level

Union level

Constituency level

- Voters are partitioned into m constituencies and have single-peaked preferences with a priori uniformly distributed ideal points $\lambda \in X \equiv [0,1]$
- Constituency j's representative is chosen to match the median voter in his constituency
- Each constituency j has weight w_j in the electoral college;
 a 50%-quota q is used
- Pivotal constituency (P) is defined by $P \equiv \min\{r : \sum_{k=1}^r w_{(k)} > q\}$ [permutation (·) orders constituencies from left to right]
- (P) gets its will, i.e. $x^*=\lambda_{(P)}$
- \triangleright Problem of equal representation: Given population sizes $n_1, ..., n_m$, find weights $w_1, ..., w_n$ s.t. each voter has equal chance of determining x^*

First analysis

- Each voter in constituency j has chance $1/n_j$ to be its median $\Rightarrow \Pr(\lambda_j = \lambda_{P:m}) \stackrel{\bot}{=} c \cdot n_j$ for all j (with c > 0)
- Assuming *i.i.d.* voters, different n_j imply different a priori distributions of medians
- With density f and c.d.f. F for individual voters' ideal points, representatives' ideal points are asymptotically normal with

$$\mu_i = F^{-1}(0.5), \qquad \sigma_i = [2f(\mu_i) \cdot \text{sqrt}(n_i)]^{-1}$$

⇒ Larger constituencies are a priori more central in the electoral college and more likely to be pivotal under a 50%-quota.

Analytical problems

• Already for *unweighted* voting, i.e. $P \equiv (m+1)/2$, we run into trouble:

$$\Pr(j = (p)) = \Pr\left(\text{exactly } p - 1 \text{ of the } \lambda_k, k \neq j, \text{ satisfy } \lambda_k < \lambda_j\right)$$

$$= \int \sum_{\substack{S \subset N \setminus j, \\ |S| = p - 1}} \prod_{k \in S} F_k(x) \cdot \prod_{k \in N \setminus j \setminus S} (1 - F_k(x)) \cdot f_j(x) \ dx$$

• Asymptotic approximation with only n_1 varying and $n_2 = ... = n_m$ seems possible, but for general $n_1, ..., n_m$?

Monte Carlo simulation

- Probability $\pi_j := \Pr(j = (P))$ is the expected value of random variable $H_j(\lambda_1, ..., \lambda_m)$ which is 1 if j = (P) and 0 otherwise
- H_j's expected value can be approximated by the *empirical* average of many independent draws of H_j
- Weight vectors are constructed from given population sizes by $w_i = n_i^{\alpha}$
- For fixed weights $(w_1, ..., w_m)$ and populations $(n_1, ..., n_m)$, we draw $\lambda_1, ..., \lambda_m$ from the beta distributions corresponding to i.i.d. U[0,1] voters in all constituencies and average $H_1, ..., H_m$ over 10 million draws
- We search for the α which yields smallest cumulative (individual) quadratic deviation of π_j from the ideal egalitarian probability $\pi_j^*=n_j/\sum n_k$ $(j=1,\ldots,m)$

EU Council of Ministers

• Using EU25 population data, α *=0.5 with 50%-quota would give almost equal representation:

US Electoral College

• Again, α *=0.5 comes very close to equal representation:

US Electoral College

 Cumulative individual quadratic deviation from equal representation in the US Electoral College:

cum. ind. quad. dev.

Concluding remarks

- While analytical proof of this looks out of reach, assigning weights proportional to square root of population provides a quite stable and satisfying answer to our question
- Thus, Penrose's square root rule is much more robust than suggested in the literature; unexpectedly, it extends from binary decisions to rich (onedimensional convex) policy spaces, from simple games to spatial voting
- Future research:
 - A better reference point than voting weight
 - Effects of supermajority rule

EU Council of Ministers

Nice weights and quota of 50%:

EU Council of Ministers

Nice weights and quota of 72.2%:

Results: uniformly distributed n_j

- We look, first, at m ranging from 10 to 50 with randomly generated constituency sizes n_1, \ldots, n_m and, second, at two prominent real-world population configurations
- With i.i.d. n_i from $U[0.5\cdot10^6, 99.5\cdot10^6]$, optimal α is:

# const	(I)	(II)	(III)	(IV)
10	0.5	0.6	0.39	0.00
	(1.22×10^{-11})	(1.04×10^{-11})	(2.20×10^{-12})	(2.39×10^{-11})
15	0.5	0.5	0.49	0.48
	(1.43×10^{-11})	(1.45×10^{-13})	(2.79×10^{-14})	(8.84×10^{-14})
20	0.5	0.5	0.49	0.49
	(4.80×10^{-14})	(8.59×10^{-14})	(5.66×10^{-15})	(6.91×10^{-15})
25	0.5	0.5	0.49	0.49
	(9.25×10^{-15})	(1.28×10^{-14})	(5.37×10^{-15})	(7.69×10^{-15})
30	0.5	0.5	0.49	0.49
	(1.11×10^{-15})	(5.12×10^{-15})	(7.36×10^{-15})	(2.38×10^{-15})
40	0.5	0.5	0.49	0.49
	(3.38×10^{-15})	(5.11×10^{-15})	(3.69×10^{-15})	(7.02×10^{-15})
50	0.5	0.5	0.50	0.50
	(3.06×10^{-15})	(4.70×10^{-15})	(3.10×10^{-15})	(3.30×10^{-15})

Results: normally distributed n_i

- If constituencies are created for efficiency reasons, sizes possibly are distributed around some 'ideal size'
- With i.i.d. n_i from $N(10^6; 200000)$, optimal α is:

# const	(I)	(II)	(III)	(IV)
10	0.0	0.0	0.0	0.0
	(1.22×10^{-9})	(1.65×10^{-9})	(9.21×10^{-9})	(1.83×10^{-9})
20	0.6	0.0	0.6	0.0
	(2.19×10^{-10})	(2.93×10^{-10})	(2.82×10^{-10})	(3.83×10^{-10})
30	0.1	0.2	0.4	0.5
	(1.07×10^{-10})	(1.07×10^{-10})	(6.94×10^{-11})	(6.76×10^{-11})
40	0.3	0.4	0.4	0.5
	(1.72×10^{-11})	(2.08×10^{-11})	(2.32×10^{-11})	(2.81×10^{-13})
50	0.4	0.2	0.3	0.3
	(1.60×10^{-11})	(7.39×10^{-12})	(3.56×10^{-11})	(4.72×10^{-11})
100	0.5	0.5	0.5	0.5
	(1.01×10^{-13})	(2.30×10^{-12})	(1.99×10^{-13})	(3.44×10^{-13})

Results: normally distributed n_i

 For moderately many similar constituencies, weighted voting may allow only quite high (and flat) inequality of representation:

Results: Pareto distributed n_i

• More realistically, with i.i.d. n_j from a Pareto distribution with skewness parameter k, optimal α is:

	Number of constituencies								
κ	10	20	30	40	50	100			
1.0	0.5	0.5	0.5	0.5	0.5	0.5			
	(1.32×10^{-9})	(6.99×10^{-11})	(1.32×10^{-11})	(1.87×10^{-11})	(1.31×10^{-10})	(3.79×10^{-12})			
1.8	0.5	0.5	0.5	0.5	0.5	0.5			
	(3.25×10^{-9})	(4.78×10^{-11})	(2.41×10^{-11})	(2.25×10^{-11})	(1.86×10^{-11})	(1.04×10^{-12})			
3.4	0.0	0.5	0.5	0.5	0.5	0.5			
	(3.72×10^{-9})	(5.64×10^{-11})	(2.41×10^{-11})	(3.27×10^{-12})	(2.67×10^{-12})	(8.88×10^{-13})			
5.0	0.0	0.0	0.1	0.15	0.1	0.5			
	(1.08×10^{-8})	(3.61×10^{-9})	(1.03×10^{-10})	(2.85×10^{-11})	(1.91×10^{-10})	(7.54×10^{-13})			

→ General finding:

As long as $m \ge 15$, $\alpha^* = 0.5$ comes close to equal representation; it does best amongst all considered rules for large m (and for small m if the electorate's partition is not too equal nor oceanic)