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Introduction

• History and efficiency considerations often call for two-tier
electoral systems:
1. People’s preferences are aggregated in constituencies
2. Constituencies’ preferences are aggregated in an electoral college

• Question:
How should constituencies’ voting weights in the college be
chosen s.t. a priori all individuals have identical influence?

• Allocating weights proportional to population sizes seems
straightforward, but:

• In general, voting power is not linear in voting weight, e.g. EU
Council of Ministers 1958.

• Power measures as the Penrose-Banzhaf- or the Shapley-
Shubik-Index are designed to capture the non-trivial relationship
between weight and power.
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Penrose‘s square root rule

• Penrose’s square root rule (1946):
Choose weights s.t. constituencies’ Penrose-Banzhaf
index is proportional to square root of population

• For most practical reasons (especially, if the number of
constituencies is “large”), a simpler rule suffices:

weight = sqrt(Population)

• The rule requires decisions x∈{0,1} and (in expectation)
equi-probable independent 0 or 1-votes

• What if the world is not dichotomous but, e.g., x∈[0,1]?
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Outline
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• Concluding remarks
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Model

Constituency level

Union level
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Model

• Voters are partitioned into m constituencies and have single-
peaked preferences with a priori uniformly distributed ideal points
λ ∈ X ≡ [0,1]

• Constituency j’s representative is chosen to match the median
voter in his constituency

• Each constituency j has weight wj in the electoral college;
a 50%-quota q is used

• Pivotal constituency (P) is defined by P ≡ min{r : ∑k=1
r w(k) >q}

[permutation (·) orders constituencies from left to right]
• (P) gets its will, i.e. x*=λ(P)

 Problem of equal representation:
Given population sizes n1, …, nm, find weights w1, …,wn s.t. each
voter has equal chance of determining x*
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First analysis

• Each voter in constituency j has chance 1/nj to be its median
⇒ Pr(λj =λP:m) = c·nj for all j  (with c>0)

• Assuming i.i.d. voters, different nj imply different a priori
distributions of medians

• With density f and c.d.f. F  for individual voters’ ideal points,
representatives’ ideal points are asymptotically normal with

      µj =F-1(0.5),  σj =[2f(µj)·sqrt(nj)]-1

⇒ Larger constituencies are a priori more central in the electoral
college and more likely to be pivotal under a 50%-quota.

!
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Analytical problems

• Already for unweighted voting, i.e. P ≡ (m+1)/2, we run into
trouble:

• Asymptotic approximation with only n1 varying and n2=…=nm
seems possible, but for general n1, …, nm?
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Monte Carlo simulation

• Probability πj := Pr(j = (P)) is the expected value of random
variable Hj (λ1, …, λm) which is 1 if j = (P) and 0 otherwise

• Hj’s expected value can be approximated by the empirical
average of many independent draws of Hj

• Weight vectors are constructed from given population sizes by
wj =nj 

α

• For fixed weights (w1, …, wm) and populations (n1, …, nm), we
draw λ1, …, λm from the beta distributions corresponding to i.i.d.
U[0,1] voters in all constituencies and average H1, …, Hm over
10 million draws

 We search for the α which yields smallest cumulative (individual)
quadratic deviation of πj from the ideal egalitarian probability π
j*=nj / ∑nk   (j =1, …, m)



11

EU Council of Ministers

• Using EU25 population data, α*=0.5 with 50%-quota would
give almost equal representation:
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US Electoral College
• Again, α*=0.5 comes very close to equal representation:
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US Electoral College

• Cumulative individual quadratic deviation from equal
representation in the US Electoral College:
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Concluding remarks

• While analytical proof of this looks out of reach, assigning
weights proportional to square root of population provides a quite
stable and satisfying answer to our question

• Thus, Penrose’s square root rule is much more robust than
suggested in the literature;
unexpectedly, it extends from binary decisions to rich (one-
dimensional convex) policy spaces, from simple games to spatial
voting

• Future research:
– A better reference point than voting weight
– Effects of supermajority rule
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EU Council of Ministers
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• Nice weights and quota of 50%:
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EU Council of Ministers
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• Nice weights and quota of 72.2%:
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Results: uniformly distributed nj
• We look, first, at m ranging from 10 to 50 with randomly

generated constituency sizes n1, …, nm and, second, at two
prominent real-world population configurations

• With i.i.d. nj  from U[0.5·106, 99.5·106], optimal α is:
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Results: normally distributed nj
• If constituencies are created for efficiency reasons, sizes

possibly are distributed around some ‘ideal size’
• With i.i.d. nj  from N(106; 200 000), optimal α is:
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Results: normally distributed nj
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• For moderately many similar constituencies, weighted voting
may allow only quite high (and flat) inequality of representation:
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Results: Pareto distributed nj
• More realistically, with i.i.d. nj from a Pareto distribution with

skewness parameter k, optimal α is:

→General finding:
As long as m ≥15, α*=0.5 comes close to equal representation;
it does best amongst all considered rules for large m
(and for small m if the electorate’s partition is not too equal nor oceanic)


