Fixed-size Minimax for Committee Elections: Approximation and Local Search Heuristics

COMSOC '06

6 December 2006

Rob LeGrand

Washington University in St. Louis

legrand@cse.wustl.edu

Evangelos Markakis

University of Toronto

vangelis@cs.toronto.edu

Aranyak Mehta

IBM Almaden Research Center

mehtaa@us.ibm.com

Electing a committee from approval ballots

10111 00001

•What's the best committee of size k = 2?

Sum of Hamming distances

Fixed-size minisum

- •Minisum elects winner set with smallest sumscore
- •Easy to compute (pick candidates with most approvals)

Maximum Hamming distance

Fixed-size minimax

[Brams, Kilgour & Sanver, '04]

- Minimax elects winner set with smallest maxscore
- •Harder to compute?

Complexity

Endogenous minimax = EM = BSM(0, n)	Bounded-size minimax = $BSM(k_1, k_2)$	Fixed-size minimax = $FSM(k) = BSM(k, k)$
NP-hard	NP-hard	?
[Frances & Litman, '97]	(generalization of EM)	

Complexity

Endogenous minimax = EM = BSM(0, n)	Bounded-size minimax = $BSM(k_1, k_2)$	Fixed-size minimax = $FSM(k) = BSM(k, k)$
NP-hard	NP-hard	NP-hard
[Frances & Litman, '97]	(generalization of EM)	(this paper)

Approximability

Endogenous minimax	Bounded-size minimax	Fixed-size minimax
= EM = BSM(0, <i>n</i>)	= $BSM(k_1, k_2)$	= $FSM(k) = BSM(k, k)$
has a PTAS* [Li, Ma & Wang, '99]	no known PTAS; no known constant- factor approx.	no known PTAS; no known constant- factor approx.

^{*} Polynomial-Time Approximation Scheme: algorithm with approx. ratio 1 + ϵ that runs in time polynomial in the input and exponential in $1/\epsilon$

Approximability

Endogenous minimax	Bounded-size minimax	Fixed-size minimax
= EM = BSM(0, n)	$= BSM(k_1, k_2)$	= FSM(k) = BSM(k, k)
has a PTAS*	no known PTAS;	no known PTAS;
	has a 3-approx.	has a 3-approx.
[Li, Ma & Wang, '99]		• •
	(this paper)	(this paper)

^{*} Polynomial-Time Approximation Scheme: algorithm with approx. ratio 1 + ϵ that runs in time polynomial in the input and exponential in $1/\epsilon$

Approximating FSM

Approximating FSM

Approximation ratio ≤ 3

OPT = optimal maxscore

Approximation ratio ≤ 3

OPT = optimal maxscore

Approximation ratio ≤ 3

Better in practice?

- So far, we can guarantee a winner set no more than 3 times as bad as the optimal.
 - Nice in theory . . .

- How can we do better in practice?
 - Try local search

1. Start with some $c \in \{0,1\}^n$ of weight k

- 1. Start with some $c \in \{0,1\}^n$ of weight k
- 2. In *c*, swap up to *r* 0-bits with 1-bits in such a way that minimizes the maxscore of the result

- 1. Start with some $c \in \{0,1\}^n$ of weight k
- 2. In *c*, swap up to *r* 0-bits with 1-bits in such a way that minimizes the maxscore of the result

- 1. Start with some $c \in \{0,1\}^n$ of weight k
- 2. In *c*, swap up to *r* 0-bits with 1-bits in such a way that minimizes the maxscore of the result

- 1. Start with some $c \in \{0,1\}^n$ of weight k
- 2. In *c*, swap up to *r* 0-bits with 1-bits in such a way that minimizes the maxscore of the result
- 3. Repeat step 2 until maxscore(*c*) is unchanged *n* times
- 4. Take *c* as the solution

- 1. Start with some $c \in \{0,1\}^n$ of weight k
- 2. In *c*, swap up to *r* 0-bits with 1-bits in such a way that minimizes the maxscore of the result
- 3. Repeat step 2 until maxscore(c) is unchanged n times
- 4. Take c as the solution

Specific FSM heuristics

- Two parameters:
 - where to start vector c:
 - 1. a fixed-size-minisum solution
 - 2. a *k*-completion of a ballot (3-approx.)
 - 3. a random set of *k* candidates
 - 4. a *k*-completion of a ballot with highest maxscore
 - radius of neighborhood r: 1 and 2

Heuristic evaluation

- Real-world ballots from GTS 2003 council election
- Found exact minimax solution
- Ran each heuristic 5000 times
- Compared exact minimax solution with heuristics to find realized approximation ratios
 - example: 15/14 = 1.0714
 - maxscore of solution found = 15
 - maxscore of exact solution = 14
- We also performed experiments using ballots generated according to random distributions (see paper)

Average approx. ratios found

	radius = 1	radius = 2
fixed-size minimax	1.0012	1.0000
3-approx.	1.0017	1.0000
random set	1.0057	1.0000
highest- maxscore	1.0059	1.0000

performance on GTS '03 election data

n = 24 candidates, k = 12 winners, m = 161 ballots

Largest approx. ratios found

	radius = 1	radius = 2
fixed-size minimax	1.0714	1.0000
3-approx.	1.0714	1.0000
random set	1.0714	1.0000
highest- maxscore	1.0714	1.0000

performance on GTS '03 election data

n = 24 candidates, k = 12 winners, m = 161 ballots

Conclusions from all experiments

- All heuristics perform near-optimally
 - highest ratio found: 1.2
 - highest average ratio < 1.04
- When radius is larger, performance improves and running time increases
- The fixed-size-minisum starting point performs best overall (with our 3-approx. a close second)

Manipulating FSM

- Voters are sincere
- Another optimal solution: 00101

Manipulating FSM

•A voter manipulates and realizes ideal outcome

Nonmanipulable "FSM"?

Electing a set found using our 3-approximation for FSM gives a nonmanipulable procedure:

- For the voters whose ballots are *not* chosen, voting insincerely cannot affect the outcome
- For the voter whose ballot is chosen,
 the outcome will be one of the sets of size k closest to the voter's wishes

Conclusions

- BSM and FSM are NP-hard
- Both can be approximated with ratio 3
- Polynomial-time local search heuristics perform well in practice
 - some retain ratio-3 guarantee
- Exact FSM can be manipulated
- Our 3-approximation for FSM is nonmanipulable

Future work

- Investigate weighted version of minimax [Brams, Kilgour & Sanver, '06]
- What is the best approximation ratio for FSM achievable in polynomial time? (Is there a PTAS?)
- What is the nonmanipulable FSM approximation algorithm with the best ratio?

Thanks!