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Electing a committee from approval ballots
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•What’s the best committee of size k = 2?
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Sum of Hamming distances

11110 00011

00111

0000110111

01111 11000
4 5

2 4

4 3 sum = 22

k = 2 winners



4

Fixed-size minisum
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•Minisum elects winner set with smallest sumscore
•Easy to compute (pick candidates with most approvals)
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Maximum Hamming distance
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Fixed-size minimax

•Minimax elects winner set with smallest maxscore
•Harder to compute?
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[Brams, Kilgour & Sanver, ’04]
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Complexity

?NP-hard

(generalization of EM)

NP-hard

[Frances & Litman, ’97]

Fixed-size minimax
= FSM(k) = BSM(k, k)

Bounded-size minimax
= BSM(k1, k2)

Endogenous minimax
= EM = BSM(0, n)
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Approximability

no known PTAS;
no known constant-

factor approx.

no known PTAS;
no known constant-

factor approx.

has a PTAS*

[Li, Ma & Wang, ’99]

Fixed-size minimax
= FSM(k) = BSM(k, k)

Bounded-size minimax
= BSM(k1, k2)

Endogenous minimax
= EM = BSM(0, n)

* Polynomial-Time Approximation Scheme: algorithm
with approx. ratio 1 + ε that runs in time polynomial in
the input and exponential in 1/ε
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Approximability
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Approximating FSM
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Approximating FSM
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Approximation ratio ≤ 3
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Approximation ratio ≤ 3
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Approximation ratio ≤ 3
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Better in practice?

• So far, we can guarantee a winner set no more than 3 times
as bad as the optimal.
– Nice in theory . . .

• How can we do better in practice?
– Try local search



17

Local search approach for FSM

1. Start with some c ∈ {0,1}n
of weight k
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Local search approach for FSM

1. Start with some c ∈ {0,1}n
of weight k

2. In c, swap up to r 0-bits
with 1-bits in such a way
that minimizes the
maxscore of the result
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Local search approach for FSM

1. Start with some c ∈ {0,1}n
of weight k

2. In c, swap up to r 0-bits
with 1-bits in such a way
that minimizes the
maxscore of the result

3. Repeat step 2 until
maxscore(c) is
unchanged n times

4. Take c as the solution
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Local search approach for FSM

1. Start with some c ∈ {0,1}n
of weight k

2. In c, swap up to r 0-bits
with 1-bits in such a way
that minimizes the
maxscore of the result

3. Repeat step 2 until
maxscore(c) is
unchanged n times

4. Take c as the solution
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Specific FSM heuristics

• Two parameters:
– where to start vector c:

1. a fixed-size-minisum solution
2. a k-completion of a ballot (3-approx.)
3. a random set of k candidates
4. a k-completion of a ballot with highest maxscore

– radius of neighborhood r: 1 and 2
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Heuristic evaluation

• Real-world ballots from GTS 2003 council election
• Found exact minimax solution
• Ran each heuristic 5000 times
• Compared exact minimax solution with heuristics to find

realized approximation ratios
– example: 15/14 = 1.0714

• maxscore of solution found = 15
• maxscore of exact solution = 14

• We also performed experiments using ballots generated
according to random distributions (see paper)
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Average approx. ratios found
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n = 24 candidates, k = 12 winners, m = 161 ballots
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Largest approx. ratios found
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Conclusions from all experiments

• All heuristics perform near-optimally
– highest ratio found: 1.2
– highest average ratio < 1.04

• When radius is larger, performance improves and running
time increases

• The fixed-size-minisum starting point performs best overall
(with our 3-approx. a close second)
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Manipulating FSM
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Manipulating FSM
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Nonmanipulable “FSM”?

Electing a set found using our 3-approximation for FSM
gives a nonmanipulable procedure:

• For the voters whose ballots are not chosen,
voting insincerely cannot affect the outcome

• For the voter whose ballot is chosen,
the outcome will be one of the sets of size k closest to the
voter’s wishes
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Conclusions

• BSM and FSM are NP-hard
• Both can be approximated with ratio 3
• Polynomial-time local search heuristics perform well

in practice
– some retain ratio-3 guarantee

• Exact FSM can be manipulated
• Our 3-approximation for FSM is nonmanipulable
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Future work

• Investigate weighted version of minimax [Brams, Kilgour &
Sanver, ’06]

• What is the best approximation ratio for FSM achievable in
polynomial time?  (Is there a PTAS?)

• What is the nonmanipulable FSM approximation algorithm
with the best ratio?

Thanks!


