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Electing a committee from approval ballots
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\What's the best committee of size k = 27



Sum of Hamming distances
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Fixed-size minisum
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*Minisum elects winner set with smallest sumscore
*Easy to compute (pick candidates with most approvals)



Maximum Hamming distance
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Fixed-size minimax
[Brams, Kilgour & Sanver, '04]
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‘Minimax elects winner set with smallest maxscore
*Harder to compute?



Complexity

Endogenous minimax
= EM = BSM(O0, n)

Bounded-size minimax
= BSM(k,, k)

Fixed-size minimax
= FSM(k) = BSM(k, k)

NP-hard

[Frances & Litman, '97]

NP-hard

(generalization of EM)
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Approximability

Endogenous minimax | Bounded-size minimax Fixed-size minimax
= EM = BSM(O0, n) = BSM(k,, k) = FSM(k) = BSM(k, k)

has a PTAS* | no known PTAS: | no known PTAS:

no known constant- | no known constant-
[Li, Ma & Wang, "99] factor approx. factor approx.

* Polynomial-Time Approximation Scheme: algorithm
with approx. ratio 1 + € that runs in time polynomial in
the input and exponential in 1/¢
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Approximating FSM
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Approximation ratio £ 3

OPT = optimal maxscore
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Approximation ratio £ 3
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Approximation ratio £ 3
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OPT = optimal maxscore < 3-OPT (by triangle inequality)



Better in practice?

« So far, we can guarantee a winner set no more than 3 times
as bad as the optimal.

— Nice in theory . ..

 How can we do better in practice?
— Try local search
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1.

Local search approach for FSM
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Start with some ¢ € {0,1}"
of weight k
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Local search approach for FSM

Start with some ¢ € {0,1}"
of weight k

In ¢, swap up to r O-bits
with 1-bits in such a way
that minimizes the
maxscore of the result
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Local search approach for FSM

Start with some ¢ € {0,1}"
of weight k

In ¢, swap up to r O-bits
with 1-bits in such a way
that minimizes the

maxscore of the result
01210
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Local search approach for FSM

Start with some ¢ € {0,1}"
of weight k

In ¢, swap up to r O-bits

with 1-bits in such a way
that minimizes the 01210
maxscore of the result
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Local search approach for FSM

Start with some ¢ € {0,1}"
of weight k

In ¢, swap up to r O-bits
with 1-bits in such a way
that minimizes the
maxscore of the result

Repeat step 2 until
maxscore(c) is
unchanged n times

Take ¢ as the solution
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Local search approach for FSM

Start with some ¢ € {0,1}"
of weight k

In ¢, swap up to r O-bits
with 1-bits in such a way
that minimizes the
maxscore of the result
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maxscore(c) is
unchanged n times
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Specific FSM heuristics

Two parameters:

where to start vector c:

1. a fixed-size-minisum solution

2. a k-completion of a ballot (3-approx.)

3. arandom set of k candidates

4. a k-completion of a ballot with highest maxscore

radius of neighborhood r: 1 and 2
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Heuristic evaluation

Real-world ballots from GTS 2003 council election
Found exact minimax solution
Ran each heuristic 5000 times

Compared exact minimax solution with heuristics to find
realized approximation ratios

— example: 15/14 = 1.0714
 maxscore of solution found = 15
 maxscore of exact solution = 14

We also performed experiments using ballots generated
according to random distributions (see paper)
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Average approx. ratios found

radius = 1 radius = 2
fixc_ed_-size 1.0012 1.0000
minimax
3-approx. 1.0017 1.0000
random 1.0057 1.0000
set

highest- 1.0059 1.0000
maxscore

performance on GTS '03 election data

n = 24 candidates, k = 12 winners, m = 161 ballots




Largest approx. ratios found

radius = 1 radius = 2
fixc_ad_-size 1.0714 1.0000
minimax
3-approx. 1.0714 1.0000
random 1.0714 1.0000
set

highest- 1.0714 1.0000
maxscore

performance on GTS '03 election data

n = 24 candidates, k = 12 winners, m = 161 ballots




Conclusions from all experiments

All heuristics perform near-optimally
— highest ratio found: 1.2
— highest average ratio < 1.04

When radius is larger, performance improves and running
time increases

The fixed-size-minisum starting point performs best overall
(with our 3-approx. a close second)
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Manipulating FSM
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*\/oters are sincere

«Another optimal solution: 00101



Manipulating FSM

00110
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A voter manipulates and realizes ideal outcome

max =3
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Nonmanipulable “FSM”?

Electing a set found using our 3-approximation for FSM
gives a nonmanipulable procedure:

For the voters whose ballots are not chosen,
voting insincerely cannot affect the outcome

For the voter whose ballot is chosen,
the outcome will be one of the sets of size k closest to the

voter’s wishes
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Conclusions

BSM and FSM are NP-hard
Both can be approximated with ratio 3

Polynomial-time local search heuristics perform well
In practice

— some retain ratio-3 guarantee

Exact FSM can be manipulated

Our 3-approximation for FSM is nonmanipulable
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Future work

 Investigate weighted version of minimax [Brams, Kilgour &
Sanver, '06]

 What is the best approximation ratio for FSM achievable in
polynomial time? (ls there a PTAS?)

« What is the nonmanipulable FSM approximation algorithm
with the best ratio?

Thanks!
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