Decentralization & Mechanism Design for Online Machine Scheduling

Birgit Heydenreich Rudolf Müller Marc Uetz

Maastricht University
Quantitative Economics

Supported by NWO grant "Local Decisions in Decentralized Planning"

Classical optimization

- input is completely known by a central planner
- goal: find a good solution

Three directions to depart from this

- data available over time: online optimization
- selfish agents instead of central planner: cost of anarchy
- agents with private data: mechanism design
- This talk: all three directions at the same time

Classical optimization

- input is completely known by a central planner
- goal: find a good solution

Three directions to depart from this

- data available over time: online optimization
- selfish agents instead of central planner: cost of anarchy
- agents with private data: mechanism design

Classical optimization

- input is completely known by a central planner
- goal: find a good solution

Three directions to depart from this

- data available over time: online optimization
- selfish agents instead of central planner: cost of anarchy
- agents with private data: mechanism design

Classical optimization

- input is completely known by a central planner
- goal: find a good solution

Three directions to depart from this

- data available over time: online optimization
- selfish agents instead of central planner: cost of anarchy
- agents with private data: mechanism design

Classical optimization

- input is completely known by a central planner
- goal: find a good solution

Three directions to depart from this

- data available over time: online optimization
- selfish agents instead of central planner: cost of anarchy
- agents with private data: mechanism design

Parallel Machine Scheduling

Machines

m parallel identical machines $M = \{1, \dots, m\}$

Jobs

n jobs $J = \{1, \dots, n\}$, non-preemptive

- release date $r_i \geq 0$
- processing time $p_j > 0$

• weight $w_i \ge 0$: indifference cost for waiting one time unit

Objective

minimize total weighted completion time $\sum w_i C_i$

Online Setting

Online Scheduling, $\min \sum w_i C_i$

- each job known upon release date only
- goal: competitive online algorithm ALG

$$ALG \leq \alpha \cdot OFFLINE OPT$$

- no online algorithm can be better than 1.309-competitive [Vestjens 1997]
- the best known algorithm is 2.6-competitive [Correa and Wagner 2005]

Strategic Setting

Jobs = Agents who have private information

- \bullet (r_i, p_i, w_i) "type" of a job
- the type is not publicly known

- jobs: minimize own C_i
- valuation: $-w_iC_i$ for schedule
- central planner: design game to maximize social welfare:
- jobs might pretend other type: $\tilde{r}_j \geq r_j$, $\tilde{p}_i \geq p_j$, \tilde{w}_j arbitrary

Strategic Setting

Jobs = Agents who have private information

- (r_j, p_j, w_j) "type" of a job
- the type is not publicly known

Jobs are selfish

- ullet jobs: minimize own C_j
- valuation: $-w_jC_j$ for schedule
- central planner: design game to maximize social welfare: $\max \sum -w_i C_i \to \min \sum w_i C_i$
- jobs might pretend other type: $\tilde{r}_j \geq r_j$, $\tilde{p}_i \geq p_j$, \tilde{w}_j arbitrary

Mechanism Design

What is a Mechanism?

- actions: jobs report types (to whom and how?)
- (allocation) algorithm: jobs are scheduled in some way
- Ultimate goal: maximize total social welfare in equilibrium
- payment scheme: helps to induce (rational) jobs to report types truthfully
- quasi-linear utilities: $u_j = -w_j C_j \pi_j$

Mechanism Design

What is a Mechanism?

- actions: jobs report types (to whom and how?)
- (allocation) algorithm: jobs are scheduled in some way
- Ultimate goal: maximize total social welfare in equilibrium
- payment scheme: helps to induce (rational) jobs to report types truthfully
- quasi-linear utilities: $u_i = -w_i C_i \pi_i$

Decentralized Mechanism

Decentralized decisions, limited communication

- no central coordination collecting data or distributing jobs over machines
- communication only between jobs and machines
- jobs select machines themselves

Summary - Model

Goals:

Mechanism for parallel machine scheduling that is

- online
- decentralized
- in equilibrium competitive for $\min \sum w_j C_j$ (social welfare)

Needed

- local scheduling policy
- payment scheme

Summary - Model

Goals:

Mechanism for parallel machine scheduling that is

- online
- decentralized
- in equilibrium competitive for $\min \sum w_j C_j$ (social welfare)

Needed:

- local scheduling policy
- payment scheme

Equilibria Concepts

Definition: Dominant Strategy Equilibrium

each job has a strategy that maximizes its ex-post utility, no matter what the other jobs' types and strategies are

Tentative Utility

$$\hat{u}_j = -w_j \hat{C}_j - \hat{\pi}_j$$
 (utility upon arrival $ilde{r}_j)$

Definition: Myopic Best Response Equilibrium each job has a strategy that maximizes its tentative utility, no matter what the other jobs' types and strategies are

Equilibria Concepts

Definition: Dominant Strategy Equilibrium

each job has a strategy that maximizes its ex-post utility, no matter what the other jobs' types and strategies are

Tentative Utility

$$\hat{u}_j = -w_j \hat{C}_j - \hat{\pi}_j$$
 (utility upon arrival \tilde{r}_j)

Definition: Myopic Best Response Equilibrium each job has a strategy that maximizes its tentative utility, no matter what the other jobs' types and strategies are

Equilibria Concepts

Definition: Dominant Strategy Equilibrium

each job has a strategy that maximizes its ex-post utility, no matter what the other jobs' types and strategies are

Tentative Utility

$$\hat{u}_j = -w_j \hat{C}_j - \hat{\pi}_j$$
 (utility upon arrival \tilde{r}_j)

Definition: Myopic Best Response Equilibrium

each job has a strategy that maximizes its tentative utility, no matter what the other jobs' types and strategies are

The Decentralized Local Greedy Mechanism

Local Scheduling Policy: "highest \tilde{w}_i/\tilde{p}_i first" Idea Payment Scheme: compensate displaced jobs for delay

Distribution:

• at time \tilde{r}_i :

$$\xrightarrow{\hat{w}_j, \, \hat{p}_j} \qquad \qquad j$$

- i chooses machine, tentative utility \hat{u}_i
- each job k displaced by j receives compensation $\tilde{w}_k \tilde{p}_i$

Decentralized Local Greedy Mechanism

By definition

- budget neutral
- online payment scheme

Decentralized Local Greedy Mechanism - Equilibria

Theorem 1

Truth telling (r_i, p_i, w_i) and choosing machine maximizing \hat{u}_i $\forall i \in J$ is myopic best response equilibrium.

Decentralized Local Greedy Mechanism - Equilibria

Theorem 1

Truth telling (r_i, p_i, w_i) and choosing machine maximizing \hat{u}_i $\forall i \in J$ is myopic best response equilibrium.

Theorem 2

regard restricted strategy space: $\forall j$: $\tilde{w}_i = w_i$.

Truth telling r_i and p_i and choosing machine maximizing \hat{u}_i $\forall j \in J$ is dominant strategy equilibrium.

Decentralized Local Greedy Mechanism - Performance

Theorem 3

If jobs play the myopic best response equilibrium, that is report (r_j, p_j, w_j) and choosing machine maximizing $\hat{u}_i \Rightarrow$ DECENTRALIZED LOCALGREEDY Mechanism 3.281-competitive.

Question 1

Can we make truth telling even a dominant strategy equilibrium if we require decentralization & online mechanism?

Theorem 4

There is no payment scheme for our mechanism that makes truth telling a dominant strategy equilibrium for parallel machines.

Theorem 5

For a single machine, there is one.

Question 2

Is strategic & decentralized setting "harder" than non-strategic? (Competitive ratio in non-strategic setting: 2.6 [Correa & Wagner]

Question 1

Can we make truth telling even a dominant strategy equilibrium if we require decentralization & online mechanism?

Theorem 4

There is no payment scheme for our mechanism that makes truth telling a dominant strategy equilibrium for parallel machines.

Theorem 5

For a single machine, there is one.

Question 2

Is strategic & decentralized setting "harder" than non-strategic? (Competitive ratio in non-strategic setting: 2.6 [Correa & Wagner]

Question 1

Can we make truth telling even a dominant strategy equilibrium if we require decentralization & online mechanism?

Theorem 4

There is no payment scheme for our mechanism that makes truth telling a dominant strategy equilibrium for parallel machines.

Theorem 5

For a single machine, there is one.

Question 2

Is strategic & decentralized setting "harder" than non-strategic? (Competitive ratio in non-strategic setting: 2.6 [Correa & Wagner]

Question 1

Can we make truth telling even a dominant strategy equilibrium if we require decentralization & online mechanism?

Theorem 4

There is no payment scheme for our mechanism that makes truth telling a dominant strategy equilibrium for parallel machines.

Theorem 5

For a single machine, there is one.

Question 2

Is strategic & decentralized setting "harder" than non-strategic? (Competitive ratio in non-strategic setting: 2.6 [Correa & Wagner])

Key Lemma

report true w_j instead of $\tilde{w}_j \Rightarrow$ tentative utility \hat{u}_j (at time \tilde{r}_j) can only increase

Remark

any false report $\tilde{w}_j \neq w_j$ may yield suboptimal utility (recall: jobs only get to know $\hat{C}_i(i)$ and $\hat{\pi}_i(i)$)

Proof Idea for Key Lemma

Consider job j

Given arbitrary report on \tilde{p}_j :

Choosing \tilde{w}_j , job j might be queued anywhere in queue

- Assume job j is inserted in front of k:
- ullet utility gain: $w_j ilde{p}_k$ payment: $ilde{w}_k ilde{p}_j$
- $\bullet \ \ \text{Beneficial if:} \ \ w_j \tilde{p}_k > \tilde{w}_k \tilde{p}_j, \ \text{or} \ \ \frac{w_j}{\tilde{p}_j} > \frac{\tilde{w}_k}{\tilde{p}_k}$
- Thus true w_j gives optimal position in queue

Properties when truth telling w_j

- tentative = ex-post utility
- greedily choosing the best machine (=maximizing tentative utility $\hat{u}_i(i)$) maximizes ex-post utility

Decentralized Local Greedy Mechanism - Performance

Theorem 3

If jobs play the myopic best response equilibrium, that is report (r_j, p_j, w_j) and choosing machine maximizing $\hat{u}_j \Rightarrow$ DECENTRALIZED LOCALGREEDY Mechanism 3.281-competitive.

Proof Sketch

- $\bullet \sum w_j C_j = \sum_j -\hat{u}_j(i_j)$
- $-\hat{u}_j(i_j) \le \frac{1}{m} \sum_{i=1}^m -\hat{u}_j(i)$
- (off line) lower bound from [Eastman et al. '64]

Can we adjust payments to get dominant strategy equilibrium?

Theorem 4

There exists no payment scheme that makes truth-telling in the Local Greedy Mechanism a dominant strategy equilibrium.

Proof idea

 From recent mechanism design literature (e.g., Bikhchandani, Chatterji, Lavi, Mu'alem, Nisan, Sen, 2006) it follows that such a payment scheme only exists if the following monotonicity holds:

increase in reported $\tilde{w}_j \Rightarrow$ decrease in C_j

ullet Construct an example where higher $ilde{w}_j$ leads to higher C_j

Equilibria

Definition: Dominant Strategy Equilibrium

strategies $s = (s_1, \ldots, s_n)$ are dominant strategy equilibrium $\Leftrightarrow \forall j \in J$, \forall type vectors t, \forall strategy vectors \tilde{s}_{-j} of the other jobs: playing s_j maximizes j's ex-post utility $u_j((s_j, \tilde{s}_{-j}), t)$.

$$\hat{u}_j(s,t) = -w_j \hat{C}_j - \hat{\pi}_j$$
 (tentative utility at time \tilde{r}_j)

Definition: Myopic Best Response Equilibrium

strategies $s=(s_1,\ldots,s_n)$ are myopic best response equilibrium $\Leftrightarrow \forall j \in J$, \forall type vectors t, \forall strategy vectors \tilde{s}_{-j} of the other jobs: playing s_j maximizes j's tentative utility $\hat{u}_j((s_j,\tilde{s}_{-j}),t)$.

Related Work

Mechanism Design and Machine Scheduling

- Nisan & Ronen, 2001
- Archer & Tardos, 2004
- Kovacs, 2005
- Porter, 2004

Online Machine Scheduling

- Megow, Uetz, Vredeveld, 2006
- Correa, Wagner, 2005

Mechanism Design in Scheduling: Related Work

[Archer, Tardos, FOCS'01],[Nisan, Ronen, STOC'99]:

- agents=machines, offline related/unrelated machines
- private information: time needed to do the jobs
- ullet (central) objective: $C_{
 m max}$

[Porter, EC'04]:

- agents=jobs, online single machine, preemptive
- ullet private information: (r_j, p_j, d_j, w_j)
- (central) objective: $\max \sum_{j \in A} w_j$

Results: Truthful mechanisms, performance bounds, lower bounds Note: All are direct (revelation) mechanisms

Mechanism design notation

Strategies: map types to actions

$$\begin{array}{ccc} & \text{strategy} \\ j \colon \mathsf{type} & \longmapsto & \mathsf{actions} \\ (r_j, p_j, w_j) & & \tilde{r}_j, \tilde{p}_j, \tilde{w}_j \mathsf{\ and\ } m \in M \end{array}$$

Job j's utility for a solution

$$\begin{array}{rcl} & \text{utility} & = & \text{valuation} & - & \text{payment} \\ u_j = u_j(s,t) & = & -w_jC_j & - & \pi_j \end{array}$$

Assumption

Jobs are rational: utility maximizers when choosing strategy