Hybrid Voting Protocols and Hardness of Manipulation

Edith Elkind, U. of Liverpool Helger Lipmaa, UCL

Manipulation: Example

- 99 voters, 3 candidates (Red, Blue, Green).
 - -49 voters: R > B > G.
 - 48 voters: B > R > G.
 - − 2 voters (Edith and Helger): G > B > R.
- Aggregation rule: Plurality
 - each voter casts a vote for one candidate.
 - the candidate with the largest number of votes wins.
 - draws are resolved by a coin toss.

What Will Edith and Helger Do?

R: 49 votes

B: 48 votes

If I vote for , R will get elected, so I'd rather vote for B

If Edith and Helger vote B > G > R, they can guarantee that B is elected

Why Manipulation Is Bad

 Aggregation rules are designed with certain social welfare criteria in mind.

 Misrepresentation of preferences results in a suboptimal choice w.r.t. these criteria.

Encourages dishonesty...

What If We Change Aggregation Rule?

Single Transferable Vote:

Formal Setup

- n voters
- m candidates c₁, ..., c_m
- Preference of a voter i:

 a permutation π_i of c₁, ..., c_m
 (best to worst).
- Aggregation rule S:

$$\pi_1, \ldots, \pi_n \rightarrow C_j$$

Voting Schemes: Examples

- Borda: a candidate gets
 - m points for each voter who ranks him 1st,
 - m-1 point for each voter who ranks him 2nd, etc.
- Copeland:
 - candidate that wins the largest # of pairwise elections
- Maximin:
 - c's score against d: # of voters that prefer c to d;
 - c's # of points: min score in any pairwise election.
- many, many others....

Voting Schemes: Properties

- Pareto-optimality: if everyone prefers a to b, b does not win
- Condorcet-consistency: if there is a candidate that wins every pairwise election, this candidate wins
- Majority: if there is a candidate that is ranked first by a majority of voters, this candidate wins
- Monotonicity: it is impossible to cause a winning candidate to lose by moving it up in one's vote

Arrow's theorem: there is no perfect scheme

Manipulation: Definition

- A voter i can manipulate a voting scheme
 S if there is
 - a preference vector

$$\pi = (\pi_1, \dots, \pi_i, \dots, \pi_n)$$

– a permutation π_i s.t.

$$S(\pi_1,...,\pi_i',...,\pi_n) >_i S(\pi).$$

Theorem (Gibbard-Satterthwaite, 1971): every non-dictatorial aggregation rule with ≥3 candidates is manipulable.

How Do We Get Around The Impossibility Result?

- We cannot make manipulation impossible...
- But we can try to make it hard!
- How do you manipulate Plurality?
 - vote for your favorite candidate among those tied for the top position.
- How do you manipulate Borda?
 - rank your favorite feasible candidate highest, move his competitors to the bottom of your vote.
- How do you manipulate STV?
 - try all m! possible ballots...

What Is Known?

- 2nd order Copeland is NP-hard to manipulate (Bartholdi, Tovey, Trick 1989)
- STV is NP-hard to manipulate (Bartholdi, Orlin 1991)
- These rules may not reflect the welfare goals (why so many voting rules out there?)
- Want a universal method to turn any voting protocol into a hard-to-manipulate one.

Adding a Preround (Conitzer-Sandholm'03)

- Retains some of the flavor of the original protocol.
- Is NP-hard to manipulate for many base protocols.
- Still, the outcome may be very different from the original protocol...

Binary Cup

Binary Cup itself is easy to manipulate.

Our Work: Hybrid Protocols

- Protocols with a preround can be viewed as hybrids of BC and other protocols
 - how about other hybrids?
- Hyb(X_k, Y): execute k steps of X, then apply Y to the remaining candidates.
 - step: protocol-dependent
 - round of STV or BinaryCup
 - eliminating the lowest scoring candidate for Plurality, Borda
 - Hyb(Plurality_k, Borda):
 - eliminate k candidates with the lowest Plurality scores
 - compute Borda scores w.r.t. survivors.

New Protocols

- Hyb(X_k, STV), Hyb(STV_k, Y) are NP-hard to manipulate (for any reasonable X, Y)
 - is Hyb(X_k, Y) non-manipulable for any X (or Y) that is non-manipulable?
- Hyb(Borda_k, Plurality)
 is NP-hard to manipulate
- Hyb(Maximin_k, Plurality)
 is NP-hard to manipulate

Hybrid of a Protocol with Itself

- Generally, Hyb(X_k, X) ≠ X
 - (and may be much harder to manipulate)
- Hyb(Plurality_k, Plurality):
 - eliminate k lowest-scoring candidates
 - recompute the scores
 - select Plurality winner wrt new scores
- Hyb(Plurality₁, ..., Plurality_m) =
- Hyb(Borda_k, Borda)
 is NP-hard to manipulate

Limitations and Extensions

- Is Hyb(X_k, Y) hard to manipulate for any X, Y?
 - NO: Hyb(Plurality_k, Y)
 is almost as easy to manipulate as Y
- Utlity-based voting (voters rate candidates rather that rank them)
 - HighScore: the candidate with max total score wins
 - manipulating Hyb(HighScore_k, HighScore)
 is NP-hard