
How to allocate hard candies
Adjusted Winner and indivisible items

M. Dall’Aglio R. Mosca

Università G. d’Annunzio
Pescara — Italy

1st Comsoc
Amsterdam, December 2006





What is fair division theory?

Fair Division: How to give

(assign, allocate)

some sweet food

(economic resources, rights)

to two or more children

(agents, players)

with personal likes and dislikes

(subjective preferences)

Different situations

I One item — completely divisible (a cake)

I Several goods — completely divisible (muffins)

I Several goods — indivisible (hard candies)



What is fair division theory?

Fair Division: How to give (assign, allocate)
some sweet food (economic resources, rights)
to two or more children (agents, players)
with personal likes and dislikes (subjective preferences)

Different situations

I One item — completely divisible (a cake)

I Several goods — completely divisible (muffins)

I Several goods — indivisible (hard candies)



The mathematical setting

Partition of indivisible goods between two persons.
Table of evaluation

item 1 2 · · · m

Alice a1 a2 · · · am

Bob b1 b2 · · · bm

Assumptions:

(a) ai , bi ≥ 0 (b)
∑

i

ai =
∑

i

bi

Definitions

vA = total value (sum) of the items given to Alice

vB = total value (sum) of the items given to Bob



A procedure with divisible items

Assumption: linearity

If Alice (Bob, resp.) gets fraction t ∈ (0, 1) of item i she values it
tai (tbi , resp.)

The “Adjusted Winner” (AW) procedure

1 – The “winning” phase Each player receives the items that
he/she values more than the other player. The total
score of both is computed.

2 – The “adjusting” phase Items are transferred, one at a time,
from the richer player to the poorer one, starting
with the items of the richer player with ratio ai/bi

closer to 1. The process continues until both have
the same score. To reach perfect equality, one item
may be split.



Properties of AW

Theorem (Brams and Taylor, 1996)

The AW allocation is

envy-free Each player does not wish to swap bundles

efficient There is no other allocation that is better for both

equitable Both players are treated equally: vA = vB

Proposition

The AW allocation is maximin. It solves

z+ = maxallocations min{vA, vB}
Alice and Bob can split items

Proof: An allocation is maximin iff it is efficient and equitable.



Properties of AW

Theorem (Brams and Taylor, 1996)

The AW allocation is

envy-free Each player does not wish to swap bundles

efficient There is no other allocation that is better for both

equitable Both players are treated equally: vA = vB

Proposition

The AW allocation is maximin. It solves

z+ = maxallocations min{vA, vB}
Alice and Bob can split items

Proof: An allocation is maximin iff it is efficient and equitable.



Goals of the present work

Compute

z∗ = maxallocations min{vA, vB}
Alice and Bob cannot split items

by means of

I A step-by step procedure in the same spirit of AW. A set of
rules that if followed by the players bring them to the optimal
solution. Such a procedure should be:

intuitive Each step must be easy to understand
plausible Each step must be simple to argue

manageable Each step must be straightforward to compute

I A (faster) computer routine

A side result
An extension of AW to the case with endowments



Goals of the present work

Compute

z∗ = maxallocations min{vA, vB}
Alice and Bob cannot split items

by means of

I A step-by step procedure in the same spirit of AW. A set of
rules that if followed by the players bring them to the optimal
solution. Such a procedure should be:

intuitive Each step must be easy to understand
plausible Each step must be simple to argue

manageable Each step must be straightforward to compute

I A (faster) computer routine

A side result
An extension of AW to the case with endowments



Goals of the present work

Compute

z∗ = maxallocations min{vA, vB}
Alice and Bob cannot split items

by means of

I A step-by step procedure in the same spirit of AW. A set of
rules that if followed by the players bring them to the optimal
solution. Such a procedure should be:

intuitive Each step must be easy to understand
plausible Each step must be simple to argue

manageable Each step must be straightforward to compute

I A (faster) computer routine

A side result
An extension of AW to the case with endowments



The Adjusted Winner with endowments

We modify the AW procedure to cover the case where some of the
items have been assigned in advance to the children. We consider

z+(A,B) = maxallocations min{vA, vB}
s.t. Alice takes all items in A

Bob takes all items in B
Alice and Bob can split items

with A,B disjoint subsets of items.
The procedure takes care of the disputable items (not in A nor B)



The Adjusted Winner with endoments (AW-e)

0 – A preliminary phase Alice (Bob, resp.) receives the items in A
(B, resp.)

1 – The “winning” phase Each player receives the disputable items
that he/she values more than the other player. The
total score (of disputable and constrained items) of
both is computed.

2 – The “adjusting” phase Disputable items are transferred, one
at a time, from the richer player to the poorer one,
starting with the items of the richer player with ratio
ai/bi closer to 1. The process continues until. . .

I both have the same score, or
I until possible if equality is not reached



AW-e and equitable allocations

The value of the items forcedly assigned to the children is

α =
∑
i∈A

ai β =
∑
i∈B

bi

An equitable allocation is reached only in the case

−
∑
i∈D

ai ≤ α− β ≤
∑
i∈D

bi

where D = (A ∪ B)c is the set of disputable items.

Otherwise,

I If α +
∑

i∈D ai < β all items given to Alice, who remains
poorer than Bob

I If β +
∑

i∈D bi < α all items given to Bob, who remains
poorer than Alice



AW-e and equitable allocations

The value of the items forcedly assigned to the children is

α =
∑
i∈A

ai β =
∑
i∈B

bi

An equitable allocation is reached only in the case

−
∑
i∈D

ai ≤ α− β ≤
∑
i∈D

bi

where D = (A ∪ B)c is the set of disputable items.
Otherwise,

I If α +
∑

i∈D ai < β all items given to Alice, who remains
poorer than Bob

I If β +
∑

i∈D bi < α all items given to Bob, who remains
poorer than Alice



Basic ideas for the maxmin allocation with intact items

I Based on integer linear programming techniques
(branch-and-bound)

I The original problem is divided into smaller subproblems,
where items in A (B, resp.) are assigned to Alice (Bob, resp.)

z∗(A,B) = maxallocations min{vA, vB}
s.t. Alice takes all items in A

Bob takes all items in B
Alice and Bob cannot split items

(S(A,B))



Basic ideas — continued

The corresponding AW procedure with endowments:

I gives an upper bound for the problem without splitting

z∗(A,B) ≤ z+(A,B)

I in case the solution of AW-e is intact, it solves the
corresponding problem with indivisible items

I in case of splitting it shows how to add new constraints: if
item i is split, two new subproblems are considered:

S(A,B)

↓ ↓
S(A ∪ {i},B) S(A,B ∪ {i})

I In case we find an admissible allocation which performs better
than the upper bound: we are on a wrong way — better
change the constraints.



Basic ideas — continued

The corresponding AW procedure with endowments:

I gives an upper bound for the problem without splitting

z∗(A,B) ≤ z+(A,B)

I in case the solution of AW-e is intact, it solves the
corresponding problem with indivisible items

I in case of splitting it shows how to add new constraints: if
item i is split, two new subproblems are considered:

S(A,B)

↓ ↓
S(A ∪ {i},B) S(A,B ∪ {i})

I In case we find an admissible allocation which performs better
than the upper bound: we are on a wrong way — better
change the constraints.



Basic ideas — continued

The corresponding AW procedure with endowments:

I gives an upper bound for the problem without splitting

z∗(A,B) ≤ z+(A,B)

I in case the solution of AW-e is intact, it solves the
corresponding problem with indivisible items

I in case of splitting it shows how to add new constraints: if
item i is split, two new subproblems are considered:

S(A,B)

↓ ↓
S(A ∪ {i},B) S(A,B ∪ {i})

I In case we find an admissible allocation which performs better
than the upper bound: we are on a wrong way — better
change the constraints.



Basic ideas — continued

The corresponding AW procedure with endowments:

I gives an upper bound for the problem without splitting

z∗(A,B) ≤ z+(A,B)

I in case the solution of AW-e is intact, it solves the
corresponding problem with indivisible items

I in case of splitting it shows how to add new constraints: if
item i is split, two new subproblems are considered:

S(A,B)

↓ ↓
S(A ∪ {i},B) S(A,B ∪ {i})

I In case we find an admissible allocation which performs better
than the upper bound: we are on a wrong way — better
change the constraints.



A sketch of the step-by-step procedure

At each step

I z̄ is the value of the best intact solution recorded so far

I A,B items currently assigned to the players

The AW-e procedure is run:

1. If the value of AW-e is not greater than z̄ , the last item added
to the constraints is

I given to the other player, or, if this was already done,
I put back in the pile of disputed items.

2. if the solution of AW-e is intact, its value replaces z̄ . The last
item added to the constraints is given to other or put back in
the disputed items.

3. if the solution of AW-e divides an item, this is forcedly given
to the player who benefits more from it (and added to the
constraints A or B)

The process ends when no item can be added or removed from the
constraints



A sketch of the step-by-step procedure

At each step

I z̄ is the value of the best intact solution recorded so far

I A,B items currently assigned to the players

The AW-e procedure is run:

1. If the value of AW-e is not greater than z̄ , the last item added
to the constraints is

I given to the other player, or, if this was already done,

I put back in the pile of disputed items.

2. if the solution of AW-e is intact, its value replaces z̄ . The last
item added to the constraints is given to other or put back in
the disputed items.

3. if the solution of AW-e divides an item, this is forcedly given
to the player who benefits more from it (and added to the
constraints A or B)

The process ends when no item can be added or removed from the
constraints



A sketch of the step-by-step procedure

At each step

I z̄ is the value of the best intact solution recorded so far

I A,B items currently assigned to the players

The AW-e procedure is run:

1. If the value of AW-e is not greater than z̄ , the last item added
to the constraints is

I given to the other player, or, if this was already done,
I put back in the pile of disputed items.

2. if the solution of AW-e is intact, its value replaces z̄ . The last
item added to the constraints is given to other or put back in
the disputed items.

3. if the solution of AW-e divides an item, this is forcedly given
to the player who benefits more from it (and added to the
constraints A or B)

The process ends when no item can be added or removed from the
constraints



A sketch of the step-by-step procedure

At each step

I z̄ is the value of the best intact solution recorded so far

I A,B items currently assigned to the players

The AW-e procedure is run:

1. If the value of AW-e is not greater than z̄ , the last item added
to the constraints is

I given to the other player, or, if this was already done,
I put back in the pile of disputed items.

2. if the solution of AW-e is intact, its value replaces z̄ . The last
item added to the constraints is given to other or put back in
the disputed items.

3. if the solution of AW-e divides an item, this is forcedly given
to the player who benefits more from it (and added to the
constraints A or B)

The process ends when no item can be added or removed from the
constraints



A sketch of the step-by-step procedure

At each step

I z̄ is the value of the best intact solution recorded so far

I A,B items currently assigned to the players

The AW-e procedure is run:

1. If the value of AW-e is not greater than z̄ , the last item added
to the constraints is

I given to the other player, or, if this was already done,
I put back in the pile of disputed items.

2. if the solution of AW-e is intact, its value replaces z̄ . The last
item added to the constraints is given to other or put back in
the disputed items.

3. if the solution of AW-e divides an item, this is forcedly given
to the player who benefits more from it (and added to the
constraints A or B)

The process ends when no item can be added or removed from the
constraints



A sketch of the step-by-step procedure

At each step

I z̄ is the value of the best intact solution recorded so far

I A,B items currently assigned to the players

The AW-e procedure is run:

1. If the value of AW-e is not greater than z̄ , the last item added
to the constraints is

I given to the other player, or, if this was already done,
I put back in the pile of disputed items.

2. if the solution of AW-e is intact, its value replaces z̄ . The last
item added to the constraints is given to other or put back in
the disputed items.

3. if the solution of AW-e divides an item, this is forcedly given
to the player who benefits more from it (and added to the
constraints A or B)

The process ends when no item can be added or removed from the
constraints



A shortcut for AW-e

When items are added to/removed from the constraints, players do
not need to rerun AW-e from scratch at each step

I the solution from the previous run of AW-e is recorded.

I if needed, items in the constraints are moved from one player
to the other. The score of both is computed.

I Disputed items (according to the new constraints are
transferred from the richer player to the poorer one. The
transfer begins with the items of the richer player with

I smallest ratio ai/bi if Alice is richer
I highest ratio ai/bi if Bob is richer



A computer routine

Works on the same principles, plus
A larger set of constraints ⇒ Fewer subproblems to analyze
At each step:

I More than one item can be added to the constraints — with a
variable elimination test

I A new admissible solution is computed and several
subproblems can be closed simultaneously



Example

Muffin Alice Bob w/ split w/out sp.

1 10 30 B B
2 20 15 B B
3 18 10 A B
4 12 5 A A
5 50 35 A A
6 40 30 split A
7 20 22 B B
8 5 28 B B

Total 175 175

w/ split (vA, vB) = (105.71, 105.71)
w/out split (vA, vB) = (102, 105)



Example — step-by-step procedure



Example — computer routine



Example 2: The Panama canal treaty negotiation

A consulting firm interviews the two negotiating teams

Issue USA Pan. w/ split w/out sp.
1 US defense rights 22 9 USA USA
2 Use rights 22 15 USA USA
3 Land and water 15 15 split Pan.
4 Expansion rights 14 3 USA USA
5 Duration 11 15 Pan. Pan.
6 Expansion routes 6 5 USA USA
7 Compensation 4 11 Pan. Pan.
8 Jurisdiction 2 7 Pan. Pan.
9 US military rights 2 7 Pan. Pan.
10 Defense role of Pan. 2 13 Pan. Pan.

Total 100 100

w/ split (VUSA, vPan) = (64, 68)
w/out split (VUSA, vPan) = (66, 66)



Open problems

I Dynamic programming works faster than branch-and-bound

⇒ A procedure based on dynamic programming

I Extension to more than 2 players

I (extension of AW to more than 2 players?)



APPENDIX – The AW procedure

Suppose vA ≥ vB . Then Alice begins transferring items to Bob,
one at a time, starting with the item with ratio ai/bi closer to 1
(and greater than or equal to 1). The handover continues until
perfect equitability is achieved, or the roles of the “richer” and
“poorer” player are reversed. In the last case, suppose that after
the handover of, say, item r we have vA < vB . Item r is then split,
with Alice getting a fraction given by

xr =
br + v−r

B − v−r
A

ar + br

where v−r
A and v−r

B are the scores obtained by the two players so
far in the process without considering item r . Bob gets the
remaining fraction.



APPENDIX — Example

Muffin Alice Bob ratio

1 10 30
2 20 15
3 18 10
4 12 5
5 50 35
6 40 30
7 20 22
8 5 28

Total 175 175

Alice and Bob state their preferences

.



APPENDIX — Example — The “winning” phase

Muffin Alice Bob ratio

1 10 30 ⇒ Bob
2 20 15 ⇒ Alice
3 18 10 ⇒ Alice
4 12 5 ⇒ Alice
5 50 35 ⇒ Alice
6 40 30 ⇒ Alice
7 20 22 ⇒ Bob
8 5 28 ⇒ Bob

Total 175 175

Each child takes the muffin he/she values more than the other child

vA = 140 vB = 80



APPENDIX — Example — The “adjusting” phase — 1

Muffin Alice Bob ratio

1 10 30
2 20 15 1.33 A.⇒ B.
3 18 10 1.8
4 12 5 2.4
5 50 35 1.43
6 40 30 1.33 (or this)
7 20 22
8 5 28

Total 175 175

Alice is richer
She gives the muffin with ratio of preferences closer to 1

vA = 120 vB = 95



APPENDIX — Example — The “adjusting” phase — 2

Muffin Alice Bob ratio

1 10 30
2 20 15
3 18 10 1.8
4 12 5 2.4
5 50 35 1.43
6 40 30 1.33 A.⇒ B.
7 20 22
8 5 28

Total 175 175

Alice is still richer
But if she gives the whole muffin, she becomes poorer than Bob

vA = 80 vB = 125



APPENDIX — Example — The “adjusting” phase — 3

Muffin Alice Bob ratio

1 10 30
2 20 15
3 18 10 1.8
4 12 5 2.4
5 50 35 1.43
6 25.71 10.71 1.33 split
7 20 22
8 5 28

Total 175 175

If the muffin is split
Alice gets 64% of muffin 6, Bob gets 36%. They obtain the same
score

vA = 105.71 vB = 105.71



APPENDIX — Example — Remark

Muffin Alice Bob ratio

1 10 30
2 20 15 1.33
3 18 10 1.8
4 12 5 2.4
5 50 35 1.43
6 5.71 25.71 1.33 split
7 20 22
8 5 28

Total 175 175

The solution is not unique. They now split muffin 6, so that Alice
gets 14% and Bob 86% of it. We still have

vA = 105.71 vB = 105.71

(they get the same value)



APPENDIX: step-by-step

For each set of constraints, A and B, the following info is required

I the last item added to the constraints (and who got it)

I the state of the subproblem

open new constraints may be appended
closed items in the constraints may be freed

X̄ , z̄ best current solution(s) and value

Step 0: Initialization

All items are free and the best current solution is empty



APPENDIX: step-by-step

Step 1: forward step

For a given set of constraints, A and B:

I Compute AW-e, x+ = x+(A,B), and its value z+ = z+(A,B)

I If z+ < z̄ the subproblem is closed. Go to step 2.

I If x+ is intact, compare z+ with the best current solution z̄
and, in case, update.

I Else, j is the split item and t is the fraction of it assigned to
Alice.

I If taj ≥ (1− t)bj assign the item to Alice
I Else, assign it to Bob

In both cases denote the new subproblem as open. Repeat
this step with the new constraints



APPENDIX: step-by-step

Step 2: Backward step

Remove the most recently added item, say j , from the constraints

I If the new subproblem is open, mark it close, and give item j
to the other child. Make a step forward.

I If the new subproblem has no constraints and is closed, exit
the procedure (Step 3)

I If the new subproblem contains at least a constraint and is
closed, repeat this step.

Step 3: Exit

The best current solution is optimal



APPENDIX — A shortcut for the computer routine

The set of constraints can be augmented via a preliminary test
A larger set of constraints ⇒ a simpler problem ⇒ a shorter tree

A variable elimination test (VET)

I An admissible solution with no splitting for S(A,B) is given by

z̄(A,B) = rnd(z+(A,B))

I For each “free” item i
I If z+(A ∪ {i},B) < z̄(A,B), then item i is added to B
I If z+(A,B ∪ {i}) < z̄(A,B), then item i is added to A



APPENDIX — The computer routine in detail
X̄ temporary optimal solution, z̄ temporary optimal value
S(A,B) can have three labels: new, open, close

Initalization
Set X̄ = ∅, z̄ = −∞. Label S(∅, ∅) new.

A cycle

1. For each new S(A,B)

1.1 do the VET → S(A′,B′)
1.2 solve S+(A′,B′)
1.3 if x+ integer: update X̄ , z̄ if necessary, label S(A′,B′) close
1.4 if x+ not integer, label S(A′,B′) open

2. Close all open S(A,B) such that z+(A,B) < z̄

3. if no open subpbm. left, X̄ , z̄ optimal, exit the procedure

4. Pick S(A,B) with higher z+(A,B) and replace with
S(A ∪ {i},B) and S(A,B ∪ {i}). Label them as new.

5. Continue with the next step


