
Eliciting Single-Peaked
Preferences Using

Comparison Queries

Vincent Conitzer
conitzer@cs.duke.edu

Voting

> >

> > > >

> >

Pairwise elections

> >

> >

>

> >

two votes prefer Kerry to Bush

>

two votes prefer Kerry to Nader

>

two votes prefer Nader to Bush

> >

Condorcet cycles

> >

> >

>

> >

two votes prefer Bush to Kerry

>

two votes prefer Kerry to Nader

>

two votes prefer Nader to Bush

?
“weird” preferences

Single-peaked preferences [Black 48]
• Suppose alternatives are ordered on a line from left to

right (the alternatives’ positions)
• E.g. d - b - e - f - a - c

– Left-wing vs. right-wing political candidates
– Perhaps the alternatives are numbers, e.g. voting over the

size of the budget
– Voting over locations along a road
– …

• An agent’s preferences are single-peaked with respect
to these positions if the agent prefers alternatives that
lie closer to her most preferred alternative (on each side)

• f > e > a > d > c > b is not single peaked with respect
to above positions: d is ranked above b, but b is
closer to f and on the same side as d

• f > e > b > a > c > d is single-peaked

Nice properties of
single-peaked preferences

• Suppose every voter’s preferences are single-peaked
(with respect to the same positions for the alternatives)

• If a wins the pairwise election between a and b,
• and b wins the pairwise election between b and c,
• then a must win the pairwise election between a and c

– I.e. no Condorcet cycles
• So we can use pairwise elections to determine the

ranking
• This is also strategy-proof
• (Gibbard-Satterthwaite theorem: for general

preferences, no reasonable deterministic voting rule is
strategy-proof)

Preference elicitation
• Direct mechanisms ask each agent to reveal complete

preferences
– In voting, each agent gives an entire ranking

• Can be cumbersome to agents
– Have to decide and communicate entire preferences without

any help
– Especially hard if there are many alternatives

• In preference elicitation, the center (elicitor) repeatedly
asks agents “natural” queries about their preferences
– E.g. comparison queries: do you prefer a to b?

• In this paper, the elicitor wants to learn each agent’s
complete preferences, using comparison queries

• How many queries are needed?

Eliciting general preferences
(not single-peaked)

• Discover the full ranking > of the m alternatives based
on comparison queries

• Equivalent to sorting a list of m elements using only
binary comparisons

• E.g. MergeSort algorithm solves this with O(m log m)
queries

• Any algorithm is Ω(m log m)

• With n voters, many voting rules require Ω(nm log m)
communication even just to determine the winner
[Conitzer & Sandholm EC05]

Eliciting preferences given positions
• Voter’s preferences: b > c > e > f > a > d (unknown)
• Positions: e - c - b - f - a - d (known)
• Let us find the most preferred alternative first
• “b > f?” “Yes”

– Tells us that most preferred alternative must be e, c, b
– ~ binary search

• “c > b?” “No”
– So b must be most preferred
– Next-ranked alternative must be c or f

• “c > f?” “Yes”
– Next-ranked alternative must be e or f

• “e > f?” “Yes”
– Now we know the ranking must be b > c > e > f > a > d

How many queries does this take?

• Finding the most preferred alternative takes at most
1+ log m queries
– Binary search

• The remainder will require at most m - 2 queries
– Each query allows us to add the next alternative to the

ranking

What if we do not know the positions?
• Any preferences are single-peaked with respect to

some positions
• E.g. f > e > a > d > c > b is consistent with respect to

– f - e - a - d - c - b
– d - e - f - a - c - b
– many other positionings

• So eliciting the first voter’s preferences will require
Ω(m log m) queries

• Once we know one voter’s preferences, we know
something about the positions

• Will show that this is enough information to need only
O(m) queries for next voter

Eliciting preferences using another
voter’s preferences (stage 1)

• Positions: e - c - b - f - a - d (unknown)
• Current voter’s preferences: c > e > b > f > a > d (unknown)
• Previous voter’s preferences: a > d > f > b > c > e (known)
• Let us find the most preferred alternative first
• Cannot use binary search this time, just do one at a time
• “a > d?” “Yes”
• “a > f?” “No”
• “f > b?” “No”
• “b > c?” “No”
• “c > e?” “Yes”
• So most preferred alternative is c

Eliciting preferences using another
voter’s preferences (stage 2)

• Positions: e - c - b - f - a - d (unknown)
• Current voter’s preferences: c > e > b > f > a > d (unknown)
• Previous voter’s preferences: a > d > f > b > c > e (known)
• Let us find out which alternatives lie between a (previous voter’s

most preferred) and c (current voter’s most preferred) in the positions
• Previous voter must prefer such alternatives to c

– Could be d, f, b
• Current voter must prefer such alternatives to a

– “d > a?” “No”
– “f > a?” “Yes”
– “b > a?” “Yes”

• So b and f lie between a and c
• Current voter’s preferences over a, c, b, f must be opposite of

previous voter’s, i.e. c > b > f > a

Eliciting preferences using another
voter’s preferences (stage 3)

• Positions: e - c - b - f - a - d (unknown)
• Current voter’s preferences: c > e > b > f > a > d (unknown)
• Previous voter’s preferences: a > d > f > b > c > e (known)
• We know c > b > f > a; must integrate d and e

– In order of previous voter’s preferences, i.e. d before e
• Start by comparing to currently last-ranked alternative
• “d > a?” “No”

– Now we know c > b > f > a > d
• “e > d?” “Yes”

– e must lie on opposite side from d in positions, since known and current
voters disagree on ranking of e and d

– Start from the top…
• “e > b?” “Yes”

– Now we know c > e > b > f > a > d

How many queries does this take?

• Finding the most preferred alternative (stage 1) takes
at most m -1 queries

• Finding the alternatives between the previous and
current voter’s most preferred alternatives (stage 2)
takes at most m - 2 queries

• Integrating the remaining alternatives (stage 3)
requires at most 2m - 3 queries
– More complex argument
– Requires keeping track of the worst-ranked alternative

above which we will never insert another alternative
• Total upper bound is 4m - 6 queries

Experimental results

Conclusions
• Determining general preferences requires Ω(m log m)

comparison queries
• If preferences are single-peaked and

– the positions of the alternatives are known, or
– at least one other voter’s preferences are known,

• then preferences can be elicited using O(m) queries
– There is also an Ω(m) lower bound

• What about more general families of preferences?
– E.g. alternatives take positions on the plane rather than the

line
– Many of the nice properties go away…

Thank you for your attention!

