Eliciting Single-Peaked
Preferences Using
Comparison Queries

Vincent Conitzer
conitzer@cs.duke.edu

Pairwise elections

Condorcet cycles

two votes prefer Bush to Kerry

K“weird” preferences

Single-peaked preferences [Black 48]

Suppose alternatives are ordered on a line from left to
right (the alternatives’ positions)
Eg.d-b-e-f-a-c

— Left-wing vs. right-wing political candidates

— Perhaps the alternatives are numbers, e.g. voting over the
size of the budget

— Voting over locations along a road

An agent’s preferences are single-peaked with respect
to these positions if the agent prefers alternatives that
lie closer to her most preferred alternative (on each side)

f>e>a>d>c>bis not single peaked with respect
to above positions: d is ranked above b, but b is
closer to f and on the same side as d

f>e>b>a>c>dis single-peaked

Nice properties of
single-peaked preferences

Suppose every voter's preferences are single-peaked
(with respect to the same positions for the alternatives)

If a wins the pairwise election between a and b,
and b wins the pairwise election between b and c,

then a must win the pairwise election between a and ¢
— |.e. no Condorcet cycles

S0 we can use pairwise elections to determine the
ranking

This is also strategy-proof

(Gibbard-Satterthwaite theorem: for general
preferences, no reasonable deterministic voting rule is
strategy-proof)

Preference elicitation

Direct mechanisms ask each agent to reveal complete
preferences

— In voting, each agent gives an entire ranking

Can be cumbersome to agents

— Have to decide and communicate entire preferences without
any help

— Especially hard if there are many alternatives

In preference elicitation, the center (elicitor) repeatedly
asks agents “natural” queries about their preferences

— E.g. comparison queries: do you prefer a to b?

In this paper, the elicitor wants to learn each agent’s
complete preferences, using comparison queries

How many queries are needed?

Eliciting general preferences
(not single-peaked)
Discover the full ranking > of the m alternatives based
on comparison queries

Equivalent to sorting a list of m elements using only
binary comparisons

E.g. MergeSort algorithm solves this with O(m log m)
queries

Any algorithm is Q(m log m)

With n voters, many voting rules require Q(nm log m)

communication even just to determine the winner
[Conitzer & Sandholm ECO05]

Eliciting preferences given positions

Voter's preferences: b >c>e >f>a>d (unknown)
Positions: e-c-b-f-a-d (known)

Let us find the most preferred alternative first

‘b > f?" “Yes”

— Tells us that most preferred alternative must be e, ¢, b
— ~ binary search

“C > b?” “NO”
— So b must be most preferred
— Next-ranked alternative must be c or f

“C > f?” “YeS”
— Next-ranked alternative must be e or f
“e > f?” “YeS”

— Now we know the ranking mustbeb >c>e>f>a>d

How many queries does this take?

* Finding the most preferred alternative takes at most
1+ log m queries
— Binary search

* The remainder will require at most m - 2 queries

— Each query allows us to add the next alternative to the
ranking

What if we do not know the positions?

Any preferences are single-peaked with respect to
some positions

E.g.f>e>a>d>c>Dbis consistent with respect to
—f-e-a-d-c-b

—d-e-f-a-c-b

— many other positionings

So eliciting the first voter’s preferences will require
(Q(m log m) queries

Once we know one voter's preferences, we know
something about the positions

Will show that this is enough information to need only
O(m) queries for next voter

Eliciting preferences using another
voter's preferences (stage 1)

Positions: e -c-b -f-a-d (unknown)

Current voter's preferences:. c>e >b >f>a > d (unknown)
Previous voter's preferences:a>d >f>b >c > e (known)
Let us find the most preferred alternative first

Cannot use binary search this time, just do one at a time
“‘a>d?” “Yes”

“a > f?” “NO”
“f > b?” “NO”
“b > C?” “NO”

“C > e?” “YeS”
So most preferred alternative is ¢

Eliciting preferences using another
voter's preferences (stage 2)

Positions: e -c-b -f-a-d (unknown)
Current voter's preferences: c>e >b >f>a > d (unknown)
Previous voter's preferences:a>d >f>b >c > e (known)

Let us find out which alternatives lie between a (previous voter’s
most preferred) and C (current voter's most preferred) In the positions

Previous voter must prefer such alternatives to c
— Could bed, f, b

Current voter must prefer such alternatives to a
— “d>a?" “No”

— “f>a?" “Yes’

— ‘b >a?" “Yes”

So b and f lie between a and c

Current voter’s preferences over a, c, b, f must be opposite of
previous voter's,i.,e.c>b>f>a

Eliciting preferences using another
voter’s preferences (stage 3)

Positions: e -c-b -f-a-d (unknown)
Current voter's preferences: c>e >b >f>a > d (unknown)
Previous voter's preferences:a>d >f>b >c > e (known)

We know ¢ > b > f > a; must integrate d and e
— In order of previous voter's preferences, i.e. d before e

Start by comparing to currently last-ranked alternative
“d > a?” “NO”

— Now we knowc>b>f>a>d

“e > d?” “YeS”

— e must lie on opposite side from d in positions, since known and current
voters disagree on ranking of e and d

— Start from the top...
“e > b?” “YeS”
— Nowwe knowc>e>b>f>a>d

How many queries does this take?

Finding the most preferred alternative (stage 1) takes
at most m -1 queries

Finding the alternatives between the previous and
current voter's most preferred alternatives (stage 2)
takes at most m - 2 queries

Integrating the remaining alternatives (stage 3)
requires at most 2m - 3 queries

— More complex argument

— Requires keeping track of the worst-ranked alternative
above which we will never insert another alternative

Total upper bound is 4m - 6 queries

comparison queries

Experimental results

alternatives

1.6e+06 : o

MergeSort —+— |

FindRankingGivenOtherVote --->--- /

FindRankingGivenPositions ---*--- /.'

1.4e+06 /]
:’_

/

/i

1.2e+06 / -
1e+06 |- -
800000 - -
600000 -
400000 -
R

e = Hm =X

200000 ’ % |

e = K-—=-X"
eIV X - * e
0 e e e NN g ey KT K]
1000 10000 100000

Conclusions
Determining general preferences requires QQ(m log m)
comparison queries

If preferences are single-peaked and

— the positions of the alternatives are known, or

— at least one other voter’s preferences are known,

then preferences can be elicited using O(m) queries
— There is also an Q(m) lower bound

What about more general families of preferences?

— E.g. alternatives take positions on the plane rather than the
line
— Many of the nice properties go away...

Thank you for your attention!

