Natural for Optimal Debates: Preliminaries for a Combinatorial Exploration

Y. Chevaleyre and N. Maudet

LAMSADE Université Paris-Dauphine

07/12/06 (COMSOC-2006)

Example

Two agents (0,1) holds conflicting views on a given issue. The issue is decided on the basis of 5 arguments : c_1 , c_2 , c_3 , c_4 , c_5 . Each argument supports either 0 or 1.

- \Rightarrow $\langle 0, 0, 1, 1, 0 \rangle \rightsquigarrow$ winning position for agent 0 (majority rule) You want to decide the result but can ask agents to reveal only a limited number of arguments.
- \Rightarrow "Please show me arguments c_1 and c_2 ".
- \Rightarrow Would give you the right outcome in this state, but would induce an error if the state was, e.g., (0,1,0,0,1).

Mechanism Design Problem

How should you design the rule so as to minimize the number of mistakes induced by that rule?

Glazer and Rubinstein's model

Procedural rules —how agents raise arguments:

- · agents are sincere;
- agents cannot reveal arguments in favour of their opponents;
- different kinds of debate: single speaker, simultaneous, sequential

Persuasion Rule —how the designer makes his decision. [GR01] study optimal persuasion rules in the 5-arguments case.

Our objective in this paper

Designing rules for the **single-speaker** when the number of arguments involved becomes large.

Basics (i)

States are n-bits vectors , only k bits allowed in the debate. A persuasion rule is defined as

$$E = \{S_1, S_2, \dots, S_i, \dots, S_n\} \text{ s.t. } |S_i| = k$$

 \Rightarrow "I will declare you winner if you can show me all the arguments in set S_1 , or in set S_2 , etc."

Now we will be more precisely interested in **natural rules**, i.e. rules that can easily be stated in natural language.

- ⇒ "Give me k adjacent bits"
- \Rightarrow "Give me k bits of this set"
- ⇒ "Give me this set"
- \Rightarrow "Give me any set of size k"

Basics (ii)

error —a state where you would wrongly declare agent x winner/loser on the basis of the rule.

- *minority error*: x is (objectively) loser but declared winner.
- *majority error*: x is (objectively) winner but declared loser.

covering —a rule is covered by a state (for agent x) when

$$\exists S_i \text{ s.t. } \forall j \in S_i, c_j = x$$

Find the rule that minimize the covering of objectively (c_m) while maximizing the covering of majority states (c_M) .

$$n_{err} = c_m + (2^{n-1} - c_M)$$

Basics Results

Example

```
⇒ E = \{\{1,2\}, \{2,3\}\}\}

Then (for agent 1), we have :

⇒ Minority error in states

\langle 1,1,0,0,0\rangle, \langle 0,1,1,0,0\rangle

⇒ Majority error in states

\langle 0,1,0,1,1\rangle, \langle 1,0,1,0,1\rangle, \langle 1,0,1,1,0\rangle, \langle 1,0,1,1,1\rangle

Hence 6 errors overall (out of 2^5) states : 18.75% error ratio.
```

[GR01] prove that the optimal rule for the single-debate is $E = \{\{1,2\},\{2,3\},\{1,3\},\{4,5\}\}$ (induces 4 errors).

Exploring Persuasion Rules

- Two "extremal" rules:
 - Show me any set of k argument

```
E={ all subsets of [1..n] of size 3 }
```

Show me this set of k arguments

```
E=\{\{1,2,3\}\}
```

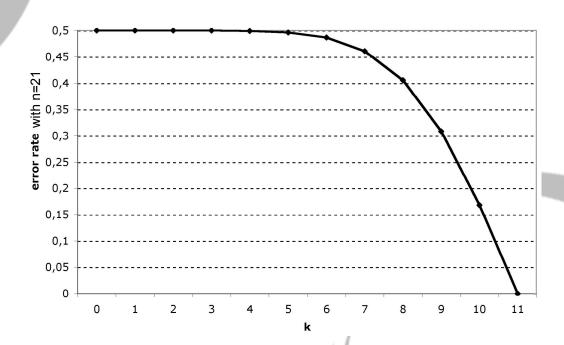
- All rules "in between"
 - Show k arguments such that ...

```
E=\{\{1,4,6\},\{2,3,4\},\dots\}
```

Show me any set of k args

E={ all subsets of [1..n] of size k }

•
$$\mathbf{n}_{\text{err}} = \sum_{t=k}^{\lfloor n/2 \rfloor} \binom{n}{t}$$



• Good error rate only when k≈n/2

Show me this set of k args

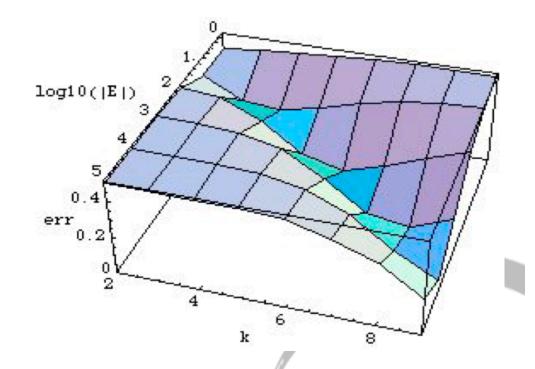
 $E=\{\{1,2,3,...,k\}\}$

• Lemma: error rate increases as k increases

- best rule is E={ {1} }
- Still, has a huge error rate : with n=20, n_{err}=40%

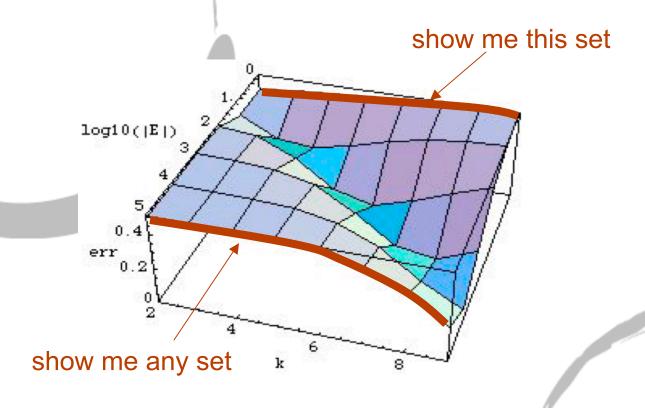
Rules "in between"

- Experiments:
 - Generate E by randomly picking k-subsets of [n]
 - Plot k,log(|E|),error rate



• Result: best rule is for $k \propto ln |E|$

Rules "in between"

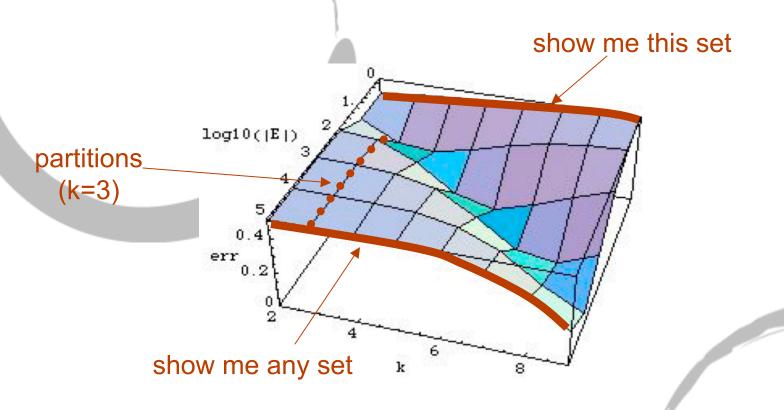


• Result: best rule is for $k \propto ln |E|$

Partitioning rules

- Rule shown to be optimal with n=5 [Rubinstein]
- e.g.
 Let P={{1,2,3},{4,5}}
 show me 2 args in P₁ or in P₂
 E={ {1,2},{2,3},{1,3},{4,5} }
- Observation: for low values of k, as |P| increases, |E| decreases and error rate decreases

Rules "in between"



Conclusion

- Simple rules, quite ineffective in general
- Experimentally, best result is for k∝ln |E|

Future work, perspectives

- Understand & exploit analytical formula
- "approximately correct" Communication complexity with very low bit-rates