### The Computational Complexity of Choice Sets

Felix Brandt Felix Fischer Paul Harrenstein

University of Munich

First International Workshop on Computational Social Choice Amsterdam, 6-8 December 2006

### Introduction

- Social choice functions:
  - m alternatives  $A = \{a_1, \ldots, a_m\}$
  - *n* voters with preferences  $(\geq_1, \ldots, \geq_n)$  over *A*
  - Social choice function  $f: f(\geq_1, \ldots, \geq_n) \in A$ , for all  $(\geq_1, \ldots, \geq_n)$
- Majority rule and the dominance relation (notation: a > b)
- Condorcet winner and Condorcet paradox
- Social choice sets: Smith Set, Schwartz Set, Stable Sets
- Relations between and issues concerning the computational complexity of choice sets



### Tournaments, Dominance, and McGarvey's Theorem

**Theorem** (*McGarvey, 1953*) Any dominance relation can be realized by a particular preference profile, even if the individual preferences are linear.

- Assumption: set of preference relations includes linear preferences.
- A tournament is a complete dominance graph.
- Analyses usually restricted to tournaments (e.g., Laffont et.al. (1995), Hudry (2006)).
- · However: Ties do occur!
- Our approach: consider all anti-symmetric dominance graphs.



## Smith Property and Smith set

#### **Definition**

- *X* has the *Smith property* if: x > y, for all  $x \in X$  and all  $y \notin X$ .
- The Smith set is the smallest non-empty set with the Smith property.



## Schwartz Property and Schwartz Set

#### **Definition**

- X has the Schwartz property if:  $y \not\succ x$ , for all  $y \notin X$  and all  $x \in X$ .
- The Schwartz set is the union of the minimal (w.r.t. ⊆) non-empty sets with the Schwartz property.



### Von Neumann-Morgenstern Stable Sets

### **Definition** (Stable Sets) A set *U* is *stable* if both:

- $x \neq y$ , for all  $x, y \in U$  (internal stability),
- for all  $y \notin U$ , there is some  $x \in U$  with x > y (external stability).



#### Remarks

- Originally from cooperative game theory.
- Relatively unknown as a solution concept in social choice.
- Stable sets need not exist or be unique.



### Von Neumann-Morgenstern Stable Sets

### **Definition** (Stable Sets) A set *U* is *stable* if both:

- $x \neq y$ , for all  $x, y \in U$  (internal stability),
- for all  $y \notin U$ , there is some  $x \in U$  with x > y (external stability).



#### Remarks:

- · Originally from cooperative game theory.
- Relatively unknown as a solution concept in social choice.
- Stable sets need not exist or be unique.



### Some Properties of Choice Sets

- All sets contain the Condorcet winner as only element, if there is one.
- The Smith and Schwartz sets coincide in tournaments.
- In tournaments stable sets are equivalent to Condorcet winner.
- In general dominance graphs all sets may differ.
- The Schwartz set and every stable set are contained in the Smith set.
- Stable sets intersects with the Schwartz set.
- Also results for Copeland, Banks, and uncovered set.



## **Problems and Complexity Classes**

#### **Problems:**

IS-CONDORCET is a the Condorcet winner?
IN-SCHWARTZ is a in the Schwartz set?
IN-SMITH, IN-STABLE analogous to IN-SCHWARTZ

### Complexity Classes:

$$TC^0 \subseteq L \subseteq NL \subseteq P \subseteq NP$$

#### Complete problems:

TC<sup>0</sup> majority of 1's in a bitstring

L undirected graph reachability

NL directed graph reachability

P Horn SAT

NP SAT



**Observation** IS-CONDORCET is  $TC^0$ -complete, even in the two alternative tournament case.

Proof is straightforward. Majority gate required to construct dominance graph.

**Theorem** IN-SMITH is *TC*<sup>0</sup>-complete

**Theorem** IN-SCHWARTZ is NL-complete.

N.B.: For tournaments IN-SCHWARTZ=IN-SMITH and hence  $TC^0$ -complete.

**Theorem** IN-STABLE is *NP*-complete, even if the existence of a stable set is guaranteed.

**Observation** IS-CONDORCET is  $TC^0$ -complete, even in the two alternative tournament case.

Proof is straightforward. Majority gate required to construct dominance graph.

**Theorem** IN-SMITH is  $TC^0$ -complete.

**Theorem** IN-SCHWARTZ is NL-complete

N.B.: For tournaments IN-SCHWARTZ=IN-SMITH and hence  $TC^0$ -complete.

**Theorem** IN-STABLE is *NP*-complete, even if the existence of a stable set is guaranteed.

**Observation** IS-CONDORCET is  $TC^0$ -complete, even in the two alternative tournament case.

Proof is straightforward. Majority gate required to construct dominance graph.

**Theorem** IN-SMITH is  $TC^0$ -complete.

**Theorem** IN-SCHWARTZ is *NL*-complete.

N.B.: For tournaments IN-SCHWARTZ=IN-SMITH and hence TC<sup>0</sup>-complete.

**Theorem** IN-STABLE is *NP*-complete, even if the existence of a stable set is guaranteed.



**Observation** IS-CONDORCET is  $TC^0$ -complete, even in the two alternative tournament case.

Proof is straightforward. Majority gate required to construct dominance graph.

**Theorem** IN-SMITH is  $TC^0$ -complete.

**Theorem** IN-SCHWARTZ is *NL*-complete.

*N.B.*: For tournaments IN-SCHWARTZ=IN-SMITH and hence *TC*<sup>0</sup>-complete.

**Theorem** IN-STABLE is *NP*-complete, even if the existence of a stable set is guaranteed.



**Observation** IS-CONDORCET is  $TC^0$ -complete, even in the two alternative tournament case.

Proof is straightforward. Majority gate required to construct dominance graph.

**Theorem** IN-SMITH is  $TC^0$ -complete.

**Theorem** IN-SCHWARTZ is *NL*-complete.

N.B.: For tournaments IN-SCHWARTZ=IN-SMITH and hence TC<sup>0</sup>-complete.

**Theorem** IN-STABLE is *NP*-complete, even if the existence of a stable set is guaranteed.



**Observation** IS-CONDORCET is  $TC^0$ -complete, even in the two alternative tournament case.

Proof is straightforward. Majority gate required to construct dominance graph.

**Theorem** IN-SMITH is *TC*<sup>0</sup>-complete.

**Theorem** IN-SCHWARTZ is *NL*-complete.

*N.B.*: For tournaments IN-SCHWARTZ=IN-SMITH and hence *TC*<sup>0</sup>-complete.

**Theorem** IN-STABLE is *NP*-complete, even if the existence of a stable set is guaranteed.



# IN-SMITH is *TC*<sup>0</sup>-Complete

**Theorem** IN-SMITH is  $TC^0$ -complete.

*Proof of hardness:* IN-SMITH equivalent to IS-CONDORCET in the two alternative tournament case.

### Proof of membership:

• **Observation**: if there is set *X* with Smith property of size *k* then for all *x*:

$$outdeg(x) \ge n - k$$
 iff  $x \in X$ .

- Check in parallel for k = 1, k = 2,... whether  $\{x \in A \mid outdeg(x) \ge n k\}$  has Smith property.
- Check whether  $a \in \{x \in A \mid outdeg(x) \ge n k\}$ .
- This can be done in  $TC^0$  (i.e., with constant depth threshold circuits).



**Theorem** IN-SCHWARTZ is *NL*-complete.

#### Proof of membership:

- Lemma: An alternative a is in the Schwartz set iff for all  $b \in A$  with a path from b to a, there also is a path from a to b.
- Check for each  $b \in A$  whether b reachable from a.
- If so, check if a is reachable from b.
- This can be done in NL.



Proof of hardness: Reduction from directed graph reachability.





**Theorem** IN-STABLE is *NP*-complete, even if existence is guaranteed.

Proof of membership: Straightforward.

**Theorem** IN-STABLE is *NP*-complete, even if existence is guaranteed.

Proof of membership: Straightforward.



**Theorem** IN-STABLE is *NP*-complete, even if existence is guaranteed.

Proof of membership: Straightforward.





**Theorem** IN-STABLE is *NP*-complete, even if existence is guaranteed.

Proof of membership: Straightforward.





**Theorem** IN-STABLE is *NP*-complete, even if existence is guaranteed.

Proof of membership: Straightforward.

Proof of hardness: Reduction from SAT.



(Based on a similar construction by Chvátal, 1973).



Dominance graph for  $(x_1 \lor \bar{x}_2 \lor x_3 \lor \bar{x}_4) \land (x_4 \lor \bar{x}_5)$ 



### Summary

- Various choice sets taking over the role of maximum in dominance graphs.
- The formal properties of choice sets differ for tournaments and general dominance graphs, also w.r.t. computational complexity.

|                       | tournaments               | general dominance<br>graphs |
|-----------------------|---------------------------|-----------------------------|
| IS-CONDORCET IN-SMITH | TC <sup>0</sup> -complete | TC <sup>0</sup> -complete   |
| IN-SCHWARTZ           |                           | NL-complete                 |
| IN-STABLE             |                           | NP-complete                 |

• Generic hardness results for social choice functions with the social choice in a particular social choice set.