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Introduction

e Social choice functions:

e m alternatives A = {ay, ..., am}

» nvoters with preferences (x1,...,%n) over A

 Social choice function f: f(x1,...,%zn) € A, forall (>1,...,%2n)
e Majority rule and the dominance relation (notation: a > b)

Condorcet winner and Condorcet paradox

Social choice sets: Smith Set, Schwartz Set, Stable Sets

Relations between and issues concerning the computational complexity of

choice sets
b
1: azbxzc
2: cxzazb
3: bxcxa

a, C
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Tournaments, Dominance, and McGarvey’s Theorem

Theorem (McGarvey, 1953) Any dominance relation can be realized by a
particular preference profile, even if the individual preferences are linear.

e Assumption: set of preference relations includes linear preferences.

e A tournamentis a complete dominance graph.

Analyses usually restricted to tournaments
(e.g., Laffont et.al. (1995), Hudry (2006)).

However: Ties do occur!

e QOur approach: consider all anti-symmetric dominance graphs.

Brandt, Fischer, Harrenstein (LMU) Computational Complexity of Choice Sets COMSOC 2006 3/15



Smith Property and Smith set

Definition

e X has the Smith propertyif: x>y, forallxe Xandally ¢ X.

e The Smith setis the smallest non-empty set with the Smith property.

N
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Schwartz Property and Schwartz Set

Definition
e X has the Schwartz propertyif: y # x, forally ¢ X and all x € X.

e The Schwartz set is the union of the minimal (w.r.t. C) non-empty sets with
the Schwartz property.

N
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Von Neumann-Morgenstern Stable Sets

Definition (Stable Sets) A set U is stable if both:
e x*y,forallx,y eU (internal stability),

e forall y ¢ U, there is some x € U with x > y (external stability).
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Von Neumann-Morgenstern Stable Sets

Definition (Stable Sets) A set U is stable if both:
e x*y,forallx,y eU (internal stability),

e forall y ¢ U, there is some x € U with x > y (external stability).

Remarks: .
e Originally from cooperative game theory.
e Relatively unknown as a solution concept in social choice.
e Stable sets need not exist or be unique.
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Some Properties of Choice Sets

e All sets contain the Condorcet winner as only
element, if there is one.

e The Smith and Schwartz sets coincide in
tournaments.

® |n tournaments stable sets are equivalent to
Condorcet winner.

® |n general dominance graphs all sets may
differ.

e The Schwartz set and every stable set are
contained in the Smith set.
e Stable sets intersects with the Schwartz set.

e Also results for Copeland, Banks, and *

uncovered set.
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Problems and Complexity Classes

Problems:
IS-CONDORCET is a the Condorcet winner?
IN-SCHWARTZ is a in the Schwartz set?

IN-SMITH, IN-STABLE  analogous to IN-SCHWARTZ

Complexity Classes:
TCOCLCNLCPCNP

Complete problems:

TC® majority of 1’s in a bitstring

L undirected graph reachability
NL  directed graph reachability

P Horn SAT

NP  SAT
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Computational Complexity

Computational Results

Observation IS-CONDORCET is TC%-complete, even in the two alternative
tournament case.

Proof is straightforward. Majority gate required to construct dominance graph.
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IN-SMITH is TC°-Complete

Theorem IN-SMITH is TC%-complete.

Proof of hardness: IN-SMITH equivalent to IS-CONDORCET in the two
alternative tournament case.

Proof of membership:
e Observation: if there is set X with Smith property of size k then for all x:
outdeg(x) >n—-k iff xeX.

e Check in parallel for k = 1, k = 2,... whether {x € A | outdeg(x) > n — k}
has Smith property.

e Check whether a € {x € A | outdeg(x) = n— k}.

e This can be done in TCP (i.e., with constant depth threshold circuits).
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IN-SCHWARTZ is NL-Complete

Theorem IN-SCHWARTZ is NL-complete.

Proof of membership:

e Lemma: An alternative a is in the Schwartz set iff for all b € A with a path
from b to a, there also is a path from a to b.

e Check for each b € A whether b reachable from a.
e |f so, check if a is reachable from b.

e This can be done in NL.
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IN-SCHWARTZ is NL-Complete

Proof of hardness: Reduction from directed graph reachability.

S t
Q—><\70—>0
Node t reachable from s iff s is in Schwartz set.

Brandt, Fischer, Harrenstein (LMU) Computational Complexity of Choice Sets COMSOC 2006

12/15



IN-SCHWARTZ is NL-Complete

Proof of hardness: Reduction from directed graph reachability.

S t
Q—><\70—>0
Node t reachable from s iff s is in Schwartz set.

Brandt, Fischer, Harrenstein (LMU) Computational Complexity of Choice Sets COMSOC 2006

12/15



IN-SCHWARTZ is NL-Complete

Proof of hardness: Reduction from directed graph reachability.

Node t reachable from s iff s is in Schwartz set.

Brandt, Fischer, Harrenstein (LMU) Computational Complexity of Choice Sets COMSOC 2006

12/15



IN-SCHWARTZ is NL-Complete

Proof of hardness: Reduction from directed graph reachability.

S
o ————» ]

Node t reachable from s iff s is in Schwartz set.

Brandt, Fischer, Harrenstein (LMU) Computational Complexity of Choice Sets COMSOC 2006

12/15



IN-SCHWARTZ is NL-Complete

Proof of hardness: Reduction from directed graph reachability.

Node t reachable from s iff s is in Schwartz set.

Brandt, Fischer, Harrenstein (LMU) Computational Complexity of Choice Sets COMSOC 2006

12/15



IN-SCHWARTZ is NL-Complete

Proof of hardness: Reduction from directed graph reachability.
& .

Node t reachable from s iff s is in Schwartz set.

Brandt, Fischer, Harrenstein (LMU) Computational Complexity of Choice Sets COMSOC 2006

12/15



IN-SCHWARTZ is NL-Complete

Proof of hardness: Reduction from directed graph reachability.

S t
Q—><\70—>0
Node t reachable from s iff s is in Schwartz set.

Brandt, Fischer, Harrenstein (LMU) Computational Complexity of Choice Sets COMSOC 2006

12/15



IN-SCHWARTZ is NL-Complete

Proof of hardness: Reduction from directed graph reachability.

®o————P>»0<t— &6 —— >0

Node t reachable from s iff s is in Schwartz set.

Brandt, Fischer, Harrenstein (LMU) Computational Complexity of Choice Sets COMSOC 2006

12/15



IN-SCHWARTZ is NL-Complete

Proof of hardness: Reduction from directed graph reachability.

Node t reachable from s iff s is in Schwartz set.

Brandt, Fischer, Harrenstein (LMU) Computational Complexity of Choice Sets COMSOC 2006

12/15



IN-SCHWARTZ is NL-Complete

Proof of hardness: Reduction from directed graph reachability.

Node t reachable from s iff s is in Schwartz set.

Brandt, Fischer, Harrenstein (LMU) Computational Complexity of Choice Sets COMSOC 2006

12/15



IN-SCHWARTZ is NL-Complete

Proof of hardness: Reduction from directed graph reachability.

Node t reachable from s iff s is in Schwartz set.

Brandt, Fischer, Harrenstein (LMU) Computational Complexity of Choice Sets COMSOC 2006

12/15



Computational Complexity

IN-STABLE is NP-Complete

Theorem IN-STABLE is NP-complete, even if existence is guaranteed.

Proof of membership: Straightforward.

Proof of hardness: Reduction from SAT.
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Computational Complexity

IN-STABLE is NP-Complete

Theorem IN-STABLE is NP-complete, even if existence is guaranteed.

Proof of membership: Straightforward.

Proof of hardness: Reduction from SAT.

Clauses

Variables

(Based on a similar construction by Chvatal, 1973).
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IN-STABLE is NP-Complete

Dominance graph for (x1 V X2 V X3 V X4) A (X4 V X5)
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Summary

dominance graphs, also w.r.t. computational complexity.

tournaments

general dominance
graphs

IS-CONDORCET
IN-SMITH
IN-SCHWARTZ
IN-STABLE

TC%-complete

TC°-complete

NL-complete

NP-complete

a particular social choice set.
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The formal properties of choice sets differ for tournaments and general
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Various choice sets taking over the role of maximum in dominance graphs.

Generic hardness results for social choice functions with the social choice in
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