
Finding Leximin-Optimal Solutions using Constraint
Programming

Sylvain Bouveret and Michel Lemaître

Office National d’Études et de Recherches Aérospatiales
Centre National d’Études Spatiales

Institut de Recherche en Informatique de Toulouse

1st International Workshop on Computational Social Choice
Amsterdam, 8 december 2006



Introduction Modeling the problem Solving the problem Results Conclusion

Fairness in combinatorial problems. . .

Many real-world combinatorial problems. . .
Nurse rostering problem.

Balanced timetables.

Fair allocation of airport and airspace resources (to several airlines).

Fair share of Earth Observation Satellites.

. . . are combinatorial collective decision making problems under
admissibility constraints, involving directly or indirectly the concept
of fairness.
Initial question
How can we handle fairness requirements in this kind of constraint
satisfaction problems ?

2 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Fairness in combinatorial problems. . .

Many real-world combinatorial problems. . .
Nurse rostering problem.

Balanced timetables.

Fair allocation of airport and airspace resources (to several airlines).

Fair share of Earth Observation Satellites.

. . . are combinatorial collective decision making problems under
admissibility constraints, involving directly or indirectly the concept
of fairness.
Initial question
How can we handle fairness requirements in this kind of constraint
satisfaction problems ?

2 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Outline

1 Modeling the problem
Constraint Satisfaction Problems
The leximin criterion

2 Solving the problem
Sort and Conquer
Using cardinality combinators
A branch-and-bound-like algorithm
Using cardinality-minimal critical subsets

3 Implementing the problem
Fair combinatorial auctions
Results

3 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Outline

1 Modeling the problem
Constraint Satisfaction Problems
The leximin criterion

2 Solving the problem
Sort and Conquer
Using cardinality combinators
A branch-and-bound-like algorithm
Using cardinality-minimal critical subsets

3 Implementing the problem
Fair combinatorial auctions
Results

4 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Constraint networks

Constraint network [Montanari, 1974]
A constraint network is based on :

a set of variables X = {x1, . . . , xp} ;

a set of domains D = {Dx1 , . . . ,Dxp} ;
a set of constraints C , with, for all c ∈ C :

X(c) the scope of the constraint,
R(c) the set of allowed tuples of the constraint.

Montanari, U. (1974).
Networks of constraints: Fundamental properties and applications
to picture processing.
Information Sciences, 7:95–132.

5 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

The Constraint Satisfaction Problem

Classical CSP
Given : A constraint network (X ,D ,C ).
Is there a complete consistent instantiation v of (X , D , C ) ?

; NP-complete.

CSP with objective variable
Given : A constraint network (X ,D ,C ) and an objective variable
o ∈ X , such that Do ⊂ N.
What is the maximal value α of Do such that there is a complete consistent
instantiation bv with bv(o) = α ?

; NP-complete (decision problem).

6 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

The Constraint Satisfaction Problem

Classical CSP
Given : A constraint network (X ,D ,C ).
Is there a complete consistent instantiation v of (X , D , C ) ?

; NP-complete.

CSP with objective variable
Given : A constraint network (X ,D ,C ) and an objective variable
o ∈ X , such that Do ⊂ N.
What is the maximal value α of Do such that there is a complete consistent
instantiation bv with bv(o) = α ?

; NP-complete (decision problem).

6 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

CSP and collective decision making problems
Combinatorial collective decision making problems can be naturally
represented in the CSP framework, by introducing utility variables.

7 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

CSP and collective decision making problems

A resource allocation problem
An allocation problem with 3 agents and 3 objects.

Constraint: One object cannot be given to more than one agent.

The utility functions of the agents are defined by a set of weights
w(ai , oj), the utility function of the agent ai being
ui =

∑
oj |ai←oj

w(ai , oj).

The weights are the following:

objects
agents a1 a2 a3

o1 3 3 3
o2 5 9 7
o3 7 8 1

7 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

CSP and collective decision making problems

A resource allocation problem

Variables: X = {o1,1, o1,2, o1,3, . . . , o3,3, u1, u2, u3}.

Domains: D = {{0, 1}, . . . , {0, 1}, J0, 15K, J0, 20K, J0, 11K}.

Constraints: C = {u1 = 3o1,1 + 5o1,2 + 7o1,3, u2 = . . . , u3 =

. . . ,∀i ,
∑3

i=1 oi,j ≥ 1}

7 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Which criterion shall we optimize ?

Question: which criterion shall we optimize to ensure fairness and
Pareto-efficiency requirements ?

Our answer: The leximin criterion seems to be well-suited.

8 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Which criterion shall we optimize ?

Question: which criterion shall we optimize to ensure fairness and
Pareto-efficiency requirements ?

Our answer: The leximin criterion seems to be well-suited.

8 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Which criterion shall we optimize ?

Question: which criterion shall we optimize to ensure fairness and
Pareto-efficiency requirements ?

Our answer: The leximin criterion seems to be well-suited.

Leximin SWO

Let −→x be a vector. We write
−→
x↑ the sorted version of −→x .

−→u �leximin
−→v ⇔ ∃k such that ∀i ≤ k, u↑i = v↑i and u↑k+1 > v↑k+1.

This is a lexicographical comparison over sorted vectors.

8 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Which criterion shall we optimize ?

Question: which criterion shall we optimize to ensure fairness and
Pareto-efficiency requirements ?

Our answer: The leximin criterion seems to be well-suited.

Perform a leximin comparison. . .
Two vectors to compare: −→u = 〈4, 10, 3, 5〉 and −→v = 〈4, 3, 6, 6〉.

We sort the two vectors:
 −→u ↑ = 〈3, 4, 5, 10〉
−→v ↑ = 〈3, 4, 6, 6〉

We lexicographically sort the ordered vectors : −→u ↑ ≺lexico
−→v ↑

8 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Which criterion shall we optimize ?

Question: which criterion shall we optimize to ensure fairness and
Pareto-efficiency requirements ?

Our answer: The leximin criterion seems to be well-suited.

Features
This SWO both refines the egalitarian SWO and the Pareto
relation ; it inherits of the fairness features of egalitarism, while
overcoming the drowning effect.

8 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

The Constraint Satisfaction Problem
Classical CSP
Given : A constraint network (X ,D ,C ).
Is there a complete consistent instantiation v of (X , D , C ) ?

CSP with objective variable
Given : A constraint network (X ,D ,C ) and an objective variable
o ∈ X , such that Do ⊂ N.
What is the maximal value α of Do such that there is a complete consistent
instantiation bv with bv(o) = α ?

Leximin-CSP (as a multi-objective CSP)
Given : A constraint network (X ,D ,C ) and a vector of variables
−→u = 〈u1, . . . , un〉 (∀i , ui ∈ X and Dui ∈ N) called objective vector.
What is the leximin-optimal vector 〈α1, . . . , αn〉 of 〈Du1 , . . . , Dun〉 such that
there is a complete consistent instantiation bv with bv(ui) = αi forall i ?

9 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Outline

1 Modeling the problem
Constraint Satisfaction Problems
The leximin criterion

2 Solving the problem
Sort and Conquer
Using cardinality combinators
A branch-and-bound-like algorithm
Using cardinality-minimal critical subsets

3 Implementing the problem
Fair combinatorial auctions
Results

10 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Constraint Programming
Constraint programming provides a flexible and efficient tool for
implementing and solving CSPs.

Our approach: use this tool as a “black box” for solving
leximin-CSPs.
Aims:

develop generic algorithms.
benefit from using of a powerful framework and of its algorithmics.

11 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Constraint Programming

Search
mechanisms

Constraint
propagation

Call for propagation

Domain updates

Exploration of the
search tree, exploration
strategies (heuristics)

Domain updates,
arc-consistency

What we can do:
Set up the problem (declare variables, domains, constraints).

Implement new constraint propagation algorithms.

Make calls to functions solve or maximize (black boxes).

11 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Algorithm 1
Sort and conquer

12 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Sorted version of the objective vector
Initial idea
Maximize the objective vector under using the leximin preorder ⇔ maximize
the successive components of the ordered objective vector.

; We have to introduce the sorted version of the objective vector:

A vector of variables (y1, . . . , yn).

A constraint Sort(−→u ,−→y ) ([Mehlhorn and Thiel, 2000] (filtering in time
O(n log(n))).

Mehlhorn, K. and Thiel, S. (2000).
Faster algorithms for bound-consistency of the sortedness and the
alldifferent constraint.
In Dechter, R., editor, Proc. of CP’00, pages 306–319, Singapore.

13 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Sorted version of the objective vector
Initial idea
Maximize the objective vector under using the leximin preorder ⇔ maximize
the successive components of the ordered objective vector.

; We have to introduce the sorted version of the objective vector:

A vector of variables (y1, . . . , yn).

A constraint Sort(−→u ,−→y ) ([Mehlhorn and Thiel, 2000] (filtering in time
O(n log(n))).

1 Maximize y1 : ŷ1.
2 Maximize y2 under the constraint y1 = ŷ1 : ŷ2.

...
n Maximize yn under the constraints y1 = ŷ1, . . . , yn−1 = ŷn−1.

13 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Sorted version of the objective vector
Initial idea
Maximize the objective vector under using the leximin preorder ⇔ maximize
the successive components of the ordered objective vector.

; We have to introduce the sorted version of the objective vector:

A vector of variables (y1, . . . , yn).

A constraint Sort(−→u ,−→y ) ([Mehlhorn and Thiel, 2000] (filtering in time
O(n log(n))).

1 Maximize y1 : ŷ1.
2 Maximize y2 under the constraint y1 = ŷ1 : ŷ2.

...
n Maximize yn under the constraints y1 = ŷ1, . . . , yn−1 = ŷn−1.

13 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Sorted version of the objective vector
Initial idea
Maximize the objective vector under using the leximin preorder ⇔ maximize
the successive components of the ordered objective vector.

; We have to introduce the sorted version of the objective vector:

A vector of variables (y1, . . . , yn).

A constraint Sort(−→u ,−→y ) ([Mehlhorn and Thiel, 2000] (filtering in time
O(n log(n))).

1 Maximize y1 : ŷ1.
2 Maximize y2 under the constraint y1 = ŷ1 : ŷ2.

...
n Maximize yn under the constraints y1 = ŷ1, . . . , yn−1 = ŷn−1.

13 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Sorted version of the objective vector
Initial idea
Maximize the objective vector under using the leximin preorder ⇔ maximize
the successive components of the ordered objective vector.

; We have to introduce the sorted version of the objective vector:

A vector of variables (y1, . . . , yn).

A constraint Sort(−→u ,−→y ) ([Mehlhorn and Thiel, 2000] (filtering in time
O(n log(n))).

1 Maximize y1 : ŷ1.
2 Maximize y2 under the constraint y1 = ŷ1 : ŷ2.

...
n Maximize yn under the constraints y1 = ŷ1, . . . , yn−1 = ŷn−1.

13 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

i

v(ui)

i

v(yi)

14 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

i

v(ui)

i

v(yi)

14 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

i

v(ui)

i

v(yi)

14 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

i

v(ui)

i

v(yi)

14 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

i

v(ui)

i

v(yi)

14 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

i

v(ui)

i

v(yi)

14 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

i

v(ui)

i

v(yi)

14 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

i

v(ui)

i

v(yi)

14 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

i

v(ui)

i

v(yi)

14 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

i

v(ui)

i

v(yi)

14 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Algorithm 2
Using cardinality combinators. . .

15 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

An alternative definition of sorting. . .

Proposition
〈y1, . . . , yn〉 is the permutation of 〈u1, . . . , un〉 sorted in
non-decreasing order if and only if:

y1 is the maximal value such that all the ui are g.eq to y1;

y2 is the maximal value such that at least n− 1 values among the ui
are g.eq to y2;

...

yn is the maximal value such that at least 1 value among the ui is
g.eq to yn.

16 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

An alternative definition of sorting. . .

Proposition
〈y1, . . . , yn〉 is the permutation of 〈u1, . . . , un〉 sorted in
non-decreasing order if and only if:

y1 is the maximal value such that all the ui are g.eq to y1;

y2 is the maximal value such that at least n− 1 values among the ui
are g.eq to y2;

...

yn is the maximal value such that at least 1 value among the ui is
g.eq to yn.

16 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

An alternative definition of sorting. . .

Proposition
〈y1, . . . , yn〉 is the permutation of 〈u1, . . . , un〉 sorted in
non-decreasing order if and only if:

y1 is the maximal value such that all the ui are g.eq to y1;

y2 is the maximal value such that at least n− 1 values among the ui
are g.eq to y2;

...

yn is the maximal value such that at least 1 value among the ui is
g.eq to yn.

16 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

i

v(ui)

17 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

i

v(ui)

17 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

i

v(ui)

17 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

i

v(ui)

17 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

i

v(ui)

17 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

i

v(ui)

17 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

i

v(ui)

17 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

i

v(ui)

17 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

i

v(ui)

17 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

The meta-constraint AtLeast

yi is the maximal value such that at least n − i + 1 values among the ui are
g.e.q than yi ; use of a particular cardinality meta-constraint
[Van Hentenryck et al., 1992]:

AtLeast({yi ≥ u1, . . . , yi ≥ un}, n − i + 1)

Van Hentenryck, P., Simonis, H., and Dincbas, M.
(1992).
Constraint satisfaction using constraint logic programming.
A.I., 58(1-3):113–159.

18 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

The meta-constraint AtLeast

yi is the maximal value such that at least n − i + 1 values among the ui are
g.e.q than yi ; use of a particular cardinality meta-constraint
[Van Hentenryck et al., 1992]:

AtLeast({yi ≥ u1, . . . , yi ≥ un}, n − i + 1)

A specific filtering algorithm running in O(n).

A possible implementation using linear constraints.

Van Hentenryck, P., Simonis, H., and Dincbas, M.
(1992).
Constraint satisfaction using constraint logic programming.
A.I., 58(1-3):113–159.

18 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Algorithm 3
A branch-and-bound-like algorithm

19 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

A branch-and-bound-like algorithm

The classical branch-and-bound (integral criterion):
A branching algorithm (exploration of the search tree).

A lower bound of the criterion to maximize.

An upper bound and a pruning mechanism (ub ≤ lb).

Our algorithm (vectorial criterion with leximin preorder):
Branching algorithm given by the constraint solver (call to solve).

Lower bound: the objective vector of the last solution found.

Pruning mechanism given by a filtering procedure associated to the
leximin preorder (we reject every solution whose objective vector is
leximin-lower than the lower bound).

20 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

A branch-and-bound-like algorithm

The classical branch-and-bound (integral criterion):
A branching algorithm (exploration of the search tree).

A lower bound of the criterion to maximize.

An upper bound and a pruning mechanism (ub ≤ lb).

Our algorithm (vectorial criterion with leximin preorder):
Branching algorithm given by the constraint solver (call to solve).

Lower bound: the objective vector of the last solution found.

Pruning mechanism given by a filtering procedure associated to the
leximin preorder (we reject every solution whose objective vector is
leximin-lower than the lower bound).

20 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

A branch-and-bound-like algorithm

The classical branch-and-bound (integral criterion):
A branching algorithm (exploration of the search tree).

A lower bound of the criterion to maximize.

An upper bound and a pruning mechanism (ub ≤ lb).

Our algorithm (vectorial criterion with leximin preorder):
Branching algorithm given by the constraint solver (call to solve).

Lower bound: the objective vector of the last solution found.

Pruning mechanism given by a filtering procedure associated to the
leximin preorder (we reject every solution whose objective vector is
leximin-lower than the lower bound).

20 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

A branch-and-bound-like algorithm

The classical branch-and-bound (integral criterion):
A branching algorithm (exploration of the search tree).

A lower bound of the criterion to maximize.

An upper bound and a pruning mechanism (ub ≤ lb).

Our algorithm (vectorial criterion with leximin preorder):
Branching algorithm given by the constraint solver (call to solve).

Lower bound: the objective vector of the last solution found.

Pruning mechanism given by a filtering procedure associated to the
leximin preorder (we reject every solution whose objective vector is
leximin-lower than the lower bound).

20 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

A branch-and-bound-like algorithm

The classical branch-and-bound (integral criterion):
A branching algorithm (exploration of the search tree).

A lower bound of the criterion to maximize.

An upper bound and a pruning mechanism (ub ≤ lb).

Our algorithm (vectorial criterion with leximin preorder):
Branching algorithm given by the constraint solver (call to solve).

Lower bound: the objective vector of the last solution found.

Pruning mechanism given by a filtering procedure associated to the
leximin preorder (we reject every solution whose objective vector is
leximin-lower than the lower bound).

20 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

A branch-and-bound-like algorithm

The classical branch-and-bound (integral criterion):
A branching algorithm (exploration of the search tree).

A lower bound of the criterion to maximize.

An upper bound and a pruning mechanism (ub ≤ lb).

Our algorithm (vectorial criterion with leximin preorder):
Branching algorithm given by the constraint solver (call to solve).

Lower bound: the objective vector of the last solution found.

Pruning mechanism given by a filtering procedure associated to the
leximin preorder (we reject every solution whose objective vector is
leximin-lower than the lower bound).

20 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

A constraint Leximin

We use a constraint Leximin: Leximin(
−→
λ ,−→x ) (the vector −→x must be

leximin-greater than the integer vector
−→
λ )

This constraint is based on the constraint Multiset Ordering,
introduced in [Frisch et al., 2003] (filtering in O(n log(n))).

Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., and
Walsh, T. (2003).
Multiset ordering constraints.
In Proc. of ĲCAI’03, Acapulco, Mexico.

21 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Algorithm 4
Using cardinality-minimal critical subsets

22 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Leximin and critical subsets

The algorithm comes from the litterature on flexible CSP
[Dubois and Fortemps, 1999].

It is based on the search for critical subsets of components of the
objective vector (i.e. conditioning the minimax value).

Major drawback: can potentially perform an exponential number of
resolutions.

Dubois, D. and Fortemps, P. (1999).
Computing improved optimal solutions to max-min flexible
constraint satisfaction problems.
European Journal of Operational Research.

23 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Leximin and critical subsets

The algorithm comes from the litterature on flexible CSP
[Dubois and Fortemps, 1999].

It is based on the search for critical subsets of components of the
objective vector (i.e. conditioning the minimax value).

Major drawback: can potentially perform an exponential number of
resolutions.

Dubois, D. and Fortemps, P. (1999).
Computing improved optimal solutions to max-min flexible
constraint satisfaction problems.
European Journal of Operational Research.

23 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Leximin and critical subsets

The algorithm comes from the litterature on flexible CSP
[Dubois and Fortemps, 1999].

It is based on the search for critical subsets of components of the
objective vector (i.e. conditioning the minimax value).

Major drawback: can potentially perform an exponential number of
resolutions.

Dubois, D. and Fortemps, P. (1999).
Computing improved optimal solutions to max-min flexible
constraint satisfaction problems.
European Journal of Operational Research.

23 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Outline

1 Modeling the problem
Constraint Satisfaction Problems
The leximin criterion

2 Solving the problem
Sort and Conquer
Using cardinality combinators
A branch-and-bound-like algorithm
Using cardinality-minimal critical subsets

3 Implementing the problem
Fair combinatorial auctions
Results

24 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Combinatorial auctions

Combinatorial auctions [Cramton et al., 2006]

a set of agents A ;

a set of objects O ;

each agent bids on bundles of items (a bid being a set of objects
associated to a price).

What is the set of non-intersecting bids maximizing the sum of the
prices ?

Cramton, P., Shoham, Y., and Steinberg, R., editors
(2006).
Combinatorial Auctions.
MIT Press.

25 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Fair combinatorial auctions

Fair combinatorial auctions
a set of agents A ;

a set of objects O ;

each agent bids on bundles of items (a bid being a set of objects
associated to a price).

we make the assumption that the utility of an agent is equal to the
sum of the prices of her selected bids.

What is the set of non-intersecting bids maximizing the leximin
over the utility profiles ?

A random instance generator with realistic bids for combinatorial
auction problems exists: CATS (http://cats.stanford.edu).

26 / 31
Finding Leximin-Optimal Solutions using Constraint Programming

http://cats.stanford.edu


Introduction Modeling the problem Solving the problem Results Conclusion

Implementation

Implementation of the algorithms:
The four algorithms have all been implemented in Java using the
constraint programming library Choco
[F. Laburthe and the OCRE project team, 2000].

F. Laburthe and the OCRE project team (2000).
CHOCO: Implementing a CP kernel.
In Proceedings of TRICKS’2000, Workshop on techniques for
implementing Constraint Programming systems, Singapore.
http://sourceforge.net/projects/choco.

27 / 31
Finding Leximin-Optimal Solutions using Constraint Programming

http://sourceforge.net/projects/choco


Introduction Modeling the problem Solving the problem Results Conclusion

General tendency of the results

The algorithm based on the meta-constraint AtLeast seems to be
the most efficient one. . .

. . . followed by the algorithm based on the constraint Sort.

The algorithm from [Dubois and Fortemps, 1999] is completely
inefficient.

Solving the Winner Determination Problem using Constraint
Programming with our model is not a good idea.

28 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Summary

Problem studied: Computation of a leximin-optimal allocation of a
constraint network.

Justification: The leximin preorder ensures some interesting
properties of fairness and efficiency for collective decision making
problems.

Algorithms: Introduction of four algorithms (the last one coming
from flexible CSP) based on the CP framework.

Implementation: Implementation and testing of the algorithms in
Java with Choco1.

1We also used CPLEX with the one based on the cardinality combinator

29 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Summary

Problem studied: Computation of a leximin-optimal allocation of a
constraint network.

Justification: The leximin preorder ensures some interesting
properties of fairness and efficiency for collective decision making
problems.

Algorithms: Introduction of four algorithms (the last one coming
from flexible CSP) based on the CP framework.

Implementation: Implementation and testing of the algorithms in
Java with Choco1.

1We also used CPLEX with the one based on the cardinality combinator

29 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Summary

Problem studied: Computation of a leximin-optimal allocation of a
constraint network.

Justification: The leximin preorder ensures some interesting
properties of fairness and efficiency for collective decision making
problems.

Algorithms: Introduction of four algorithms (the last one coming
from flexible CSP) based on the CP framework.

Implementation: Implementation and testing of the algorithms in
Java with Choco1.

1We also used CPLEX with the one based on the cardinality combinator

29 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Summary

Problem studied: Computation of a leximin-optimal allocation of a
constraint network.

Justification: The leximin preorder ensures some interesting
properties of fairness and efficiency for collective decision making
problems.

Algorithms: Introduction of four algorithms (the last one coming
from flexible CSP) based on the CP framework.

Implementation: Implementation and testing of the algorithms in
Java with Choco1.

1We also used CPLEX with the one based on the cardinality combinator

29 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Future work
More about leximin-optimality:

Comparing our algorithms to a numerical approach of leximin (i.e
by translating the leximin preorder to a collective utility function) –
possibly using the WCSP framework.
Combining some of the four algorithms together to get better
results.
Designing and implementing approximation algorithms.

Possible extensions:
More general modeling of fairness (e.g. OWA), see
[Ogryczak, 2006].
Applying the algorithms to other practical fields and applications.

Ogryczak, W. (2006).
Bicriteria models for fair resource allocation.
In Endriss, U. and Lang, J., editors, Proc. of COMSOC’06, pages
380–393, Amsterdam.

30 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Future work
More about leximin-optimality:

Comparing our algorithms to a numerical approach of leximin (i.e
by translating the leximin preorder to a collective utility function) –
possibly using the WCSP framework.
Combining some of the four algorithms together to get better
results.
Designing and implementing approximation algorithms.

Possible extensions:
More general modeling of fairness (e.g. OWA), see
[Ogryczak, 2006].
Applying the algorithms to other practical fields and applications.

Ogryczak, W. (2006).
Bicriteria models for fair resource allocation.
In Endriss, U. and Lang, J., editors, Proc. of COMSOC’06, pages
380–393, Amsterdam.

30 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Future work
More about leximin-optimality:

Comparing our algorithms to a numerical approach of leximin (i.e
by translating the leximin preorder to a collective utility function) –
possibly using the WCSP framework.
Combining some of the four algorithms together to get better
results.
Designing and implementing approximation algorithms.

Possible extensions:
More general modeling of fairness (e.g. OWA), see
[Ogryczak, 2006].
Applying the algorithms to other practical fields and applications.

Ogryczak, W. (2006).
Bicriteria models for fair resource allocation.
In Endriss, U. and Lang, J., editors, Proc. of COMSOC’06, pages
380–393, Amsterdam.

30 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Future work
More about leximin-optimality:

Comparing our algorithms to a numerical approach of leximin (i.e
by translating the leximin preorder to a collective utility function) –
possibly using the WCSP framework.
Combining some of the four algorithms together to get better
results.
Designing and implementing approximation algorithms.

Possible extensions:
More general modeling of fairness (e.g. OWA), see
[Ogryczak, 2006].
Applying the algorithms to other practical fields and applications.

Ogryczak, W. (2006).
Bicriteria models for fair resource allocation.
In Endriss, U. and Lang, J., editors, Proc. of COMSOC’06, pages
380–393, Amsterdam.

30 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Future work
More about leximin-optimality:

Comparing our algorithms to a numerical approach of leximin (i.e
by translating the leximin preorder to a collective utility function) –
possibly using the WCSP framework.
Combining some of the four algorithms together to get better
results.
Designing and implementing approximation algorithms.

Possible extensions:
More general modeling of fairness (e.g. OWA), see
[Ogryczak, 2006].
Applying the algorithms to other practical fields and applications.

Ogryczak, W. (2006).
Bicriteria models for fair resource allocation.
In Endriss, U. and Lang, J., editors, Proc. of COMSOC’06, pages
380–393, Amsterdam.

30 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Future work
More about leximin-optimality:

Comparing our algorithms to a numerical approach of leximin (i.e
by translating the leximin preorder to a collective utility function) –
possibly using the WCSP framework.
Combining some of the four algorithms together to get better
results.
Designing and implementing approximation algorithms.

Possible extensions:
More general modeling of fairness (e.g. OWA), see
[Ogryczak, 2006].
Applying the algorithms to other practical fields and applications.

Ogryczak, W. (2006).
Bicriteria models for fair resource allocation.
In Endriss, U. and Lang, J., editors, Proc. of COMSOC’06, pages
380–393, Amsterdam.

30 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



Introduction Modeling the problem Solving the problem Results Conclusion

Future work
More about leximin-optimality:

Comparing our algorithms to a numerical approach of leximin (i.e
by translating the leximin preorder to a collective utility function) –
possibly using the WCSP framework.
Combining some of the four algorithms together to get better
results.
Designing and implementing approximation algorithms.

Possible extensions:
More general modeling of fairness (e.g. OWA), see
[Ogryczak, 2006].
Applying the algorithms to other practical fields and applications.

Ogryczak, W. (2006).
Bicriteria models for fair resource allocation.
In Endriss, U. and Lang, J., editors, Proc. of COMSOC’06, pages
380–393, Amsterdam.

30 / 31
Finding Leximin-Optimal Solutions using Constraint Programming



This is the end.

For more information:
michel.lemaitre@cert.fr

sylvain.bouveret@cert.fr
http://www.cert.fr/dcsd/THESES/sbouveret

michel.lemaitre@cert.fr
sylvain.bouveret@cert.fr
http://www.cert.fr/dcsd/THESES/sbouveret

	Introduction
	Modeling the problem
	Constraint Satisfaction Problems
	The leximin criterion

	Solving the problem
	Sort and Conquer
	Using cardinality combinators
	A branch-and-bound-like algorithm
	Using cardinality-minimal critical subsets

	Implementing the problem
	Fair combinatorial auctions
	Results

	Conclusion

