Towards a Logic of Social Welfare

Judgment Aggregation

Thomas Ågotnes¹ joint work with Wiebe van der Hoek² and Michael Wooldridae²

> ¹Department of Computer Engineering Bergen University College, Norway

²Department of Computer Science University of Liverpool, UK

1st International Workshop on Computational Social Choice (COMSOC 06)

Motivation: Formal Reasoning about Social Choice

Social Choice Theory Concept Example		Formal SCT Concept
Social welfare function (SWF)		Model M
Possible property of SWFs	Pareto optimality	Formula ϕ
Fundamental property	Transitivity	Axiom ϕ
Theorem	Arrow's theorem	Derivable formula $\vdash \phi$
Proof		Formal derivation from axioms

- A: set of alternatives
- Preference relations L(A): total orders $R \subseteq A \times A$ (antisymm., trans., refl.). R^s denotes the irreflexive version.
- Preference profiles for n agents: $L(A)^n$
- Social Welfare Function (SWF):

$$F: L(A)^n \to L(A)$$

Expressing IIA

Independence of Irrelevant Alternatives (IIA)

$$\forall_{(R_1, \dots, R_n) \in L(A)^n} \forall_{(S_1, \dots, S_n) \in L(A)^n} \forall_{a \in A} \forall_{b \in A}$$

$$(\forall_{i \in \Sigma} (aR_ib \Leftrightarrow aS_ib)) \Rightarrow (aF(R_1, \dots, R_n)b \Leftrightarrow aF(S_1, \dots, S_n)b)$$

- Quantification over alternatives
- Quantification over preference relations, i.e., over sets of
- Properties of preference relations for different agents
- Properties of different preference relations for the same
- Comparisons of different preference relations
- 4日 > 4周 > 4目 > 4目 > 900

Expressing IIA

Introduction and preliminaries

Independence of Irrelevant Alternatives (IIA)

$$\forall_{(R_1,\ldots,R_n)\in L(A)^n}\forall_{(S_1,\ldots,S_n)\in L(A)^n}\forall_{a\in A}\forall_{b\in A} (\forall_{i\in\Sigma}(aR_ib\Leftrightarrow aS_ib))\Rightarrow (aF(R_1,\ldots,R_n)b\Leftrightarrow aF(S_1,\ldots,S_n)b)$$

Which constructs would we need in a logical language, in order to be able to express, e.g., IIA? It seems that we need to be able to express (in a single formula):

- Quantification over alternatives
- Quantification over preference relations, i.e., over sets of alternatives
- Properties of preference relations for different agents
- Properties of different preference relations for the same agent
- Comparisons of different preference relations
- The preference relation resulting from applying a SWF to other preference relations

Introduction and preliminaries

$$\phi ::= r \mid r_i \mid \neg \phi \mid \phi \land \phi \mid \Box \phi \mid \Box \phi$$

where $r \in \Pi$ (propositions) and $i \in \Sigma$ (agents). Define $\Diamond \phi \equiv \neg \Box \neg \phi, \, \Diamond \phi \equiv \neg \boxdot \neg \phi.$

$$(A, F, \delta, (a, b)) \models r_i \quad \Leftrightarrow \quad (a, b) \in \delta_i(r)$$

$$(A, F, \delta, (a, b)) \models r \quad \Leftrightarrow \quad (a, b) \in F(\delta(r))$$

$$(A, F, \delta, (a, b)) \models \Box \phi \quad \Leftrightarrow \quad \forall_{\delta'}(A, F, \delta', (a, b)) \models \phi$$

$$(A, F, \delta, (a, b)) \models \Box \phi \quad \Leftrightarrow \quad (\forall_{(a' \neq b') \in A \times A}(A, F, \delta, (a', b')) \models \phi)$$

A Logic of SWFs

$$\phi ::= r \mid r_i \mid \neg \phi \mid \phi \land \phi \mid \Box \phi \mid \Box \phi$$

Judgment Aggregation

where $r \in \Pi$ (propositions) and $i \in \Sigma$ (agents). Define $\Diamond \phi \equiv \neg \Box \neg \phi, \, \Diamond \phi \equiv \neg \boxdot \neg \phi.$

Satisfaction: let F be a SWF, $\delta: \Pi \to L(A)^n$ and $a, b \in A$:

$$(A, F, \delta, (a, b)) \models r_i \quad \Leftrightarrow \quad (a, b) \in \delta_i(r)$$

$$(A, F, \delta, (a, b)) \models r \quad \Leftrightarrow \quad (a, b) \in F(\delta(r))$$

$$(A, F, \delta, (a, b)) \models \Box \phi \quad \Leftrightarrow \quad \forall_{\delta'}(A, F, \delta', (a, b)) \models \phi$$

$$(A, F, \delta, (a, b)) \models \Box \phi \quad \Leftrightarrow \quad (\forall_{(a' \neq b') \in A \times A}(A, F, \delta, (a', b')) \models \phi)$$

 $(A, F) \models \phi$ iff $(A, F, \delta, (a, b))$ for all $\delta, (a, b)$, etc.

Judgment Aggregation

Pareto Optimality

Pareto Optimality (PO)

$$\forall_{(R_1,\dots,R_n)\in L(A)^n}\forall_{a\in A}\forall_{b\in A}((\forall_{i\in\Sigma}aR_i^sb)\Rightarrow aF(R_1,\dots,R_n)^sb)$$

$$PO = \square \boxdot ((r_1 \land \cdots \land r_n) \rightarrow r)$$

Proposition

 $(A, F) \models PO \text{ iff } F \text{ is pareto optimal}$

Introduction and preliminaries

Pareto Optimality (PO)

$$\forall_{(R_1,\dots,R_n)\in L(A)^n}\forall_{a\in A}\forall_{b\in A}((\forall_{i\in\Sigma}aR_i^sb)\Rightarrow aF(R_1,\dots,R_n)^sb)$$

$$PO = \square \square ((r_1 \wedge \cdots \wedge r_n) \rightarrow r)$$

Proposition

 $(A, F) \models PO \text{ iff } F \text{ is pareto optimal}$

Non-Dictatorship

Non-Dictatorship (ND)

$$\neg \exists_{i \in \Sigma} \forall_{(R_1, \dots, R_n) \in L(A)^n} F(R_1, \dots, R_n) = R_i$$

$$ND = \bigwedge_{i \in \Sigma} \diamondsuit \neg (r \leftrightarrow r_i)$$

Proposition

 $(A, F) \models ND$ iff F does not have a dictator

Judgment Aggregation

Non-Dictatorship

Non-Dictatorship (ND)

$$\neg \exists_{i \in \Sigma} \forall_{(R_1, \dots, R_n) \in L(A)^n} F(R_1, \dots, R_n) = R_i$$

$$ND = \bigwedge_{i \in \Sigma} \diamondsuit \neg (r \leftrightarrow r_i)$$

Proposition

 $(A, F) \models ND$ iff F does not have a dictator

Independence of Irrelevant Alternatives

Independence of Irrelevant Alternatives (IIA)

$$\forall_{(R_1,\ldots,R_n)\in L(A)^n}\forall_{(S_1,\ldots,S_n)\in L(A)^n}\forall_{a\in A}\forall_{b\in A} (\forall_{i\in\Sigma}(aR_ib\Leftrightarrow aS_ib))\Rightarrow (aF(R_1,\ldots,R_n)b\Leftrightarrow aF(S_1,\ldots,S_n)b)$$

$$IIA = \square \boxdot ((\bigwedge_{i \in \Sigma} (r_i \leftrightarrow s_i)) \to (r \leftrightarrow s))$$

Proposition

 $(A, F) \models IIA \text{ iff } F \text{ has the IIA property}$

Independence of Irrelevant Alternatives

Independence of Irrelevant Alternatives (IIA)

$$\forall_{(R_1,\ldots,R_n)\in L(A)^n}\forall_{(S_1,\ldots,S_n)\in L(A)^n}\forall_{a\in A}\forall_{b\in A} (\forall_{i\in\Sigma}(aR_ib\Leftrightarrow aS_ib))\Rightarrow (aF(R_1,\ldots,R_n)b\Leftrightarrow aF(S_1,\ldots,S_n)b)$$

$$IIA = \square \boxdot ((\bigwedge_{i \in \Sigma} (r_i \leftrightarrow s_i)) \to (r \leftrightarrow s))$$

Proposition

 $(A, F) \models IIA$ iff F has the IIA property

Arrow's Theorem

$$MT2 = \Diamond (\Diamond (r_1 \wedge s_1) \wedge \Diamond (r_1 \wedge \neg s_1))$$

Judgment Aggregation

Proposition

$$(A, F) \models MT2 \text{ iff } |A| > 2$$

$$\models MT2 \rightarrow \neg (PO \land ND \land IIA)$$

Arrow's Theorem

$$MT2 = \diamondsuit (\diamondsuit (r_1 \wedge s_1) \wedge \diamondsuit (r_1 \wedge \neg s_1))$$

Judgment Aggregation

Proposition

$$(A, F) \models MT2 \text{ iff } |A| > 2$$

Theorem (Arrow)

$$\models MT2 \rightarrow \neg (PO \land ND \land IIA)$$

Judgment Aggregation

- Underlying logic L with language £
- Agenda $\mathcal{A} \subseteq \mathcal{L}$ (closed under single negation)
- Judgment sets $J(\mathcal{A}, \mathbf{L})$: consistent and complete $A_i \subseteq \mathcal{A}$

Judgment Aggregation

 Judgment Aggregation Rule (JAR) f: $f(A_1,\ldots,A_n)\in J(\mathcal{A},\mathbf{L})$

Judgment Aggregation

Judgment Aggregation

- Underlying logic L with language £
- Agenda $\mathcal{A} \subseteq \mathcal{L}$ (closed under single negation)
- Judgment sets $J(\mathcal{A}, \mathbf{L})$: consistent and complete $A_i \subseteq \mathcal{A}$
- Judgment Aggregation Rule (JAR) f: $f(A_1,\ldots,A_n)\in J(\mathcal{A},\mathbf{L})$

Interpretation of our language in JARs: let \mathcal{A} be an agenda, f be a JAR, $\delta: \Pi \to J(\mathcal{A}, \mathbf{L})^n$ and $p \in \mathcal{A}$:

$$(\mathcal{A}, f, \delta, p) \models_{\mathsf{L}} r_{i} \quad \Leftrightarrow \quad p \in \delta_{i}(r)$$

$$(\mathcal{A}, f, \delta, p) \models_{\mathsf{L}} r \quad \Leftrightarrow \quad p \in f(\delta(r))$$

$$(\mathcal{A}, f, \delta, p) \models_{\mathsf{L}} \Box \phi \quad \Leftrightarrow \quad \forall_{\delta'}(\mathcal{A}, f, \delta', p) \models_{\mathsf{L}} \phi$$

$$(\mathcal{A}, f, \delta, p) \models_{\mathsf{L}} \Box \phi \quad \Leftrightarrow \quad (\forall_{p \in \mathcal{A}}(\mathcal{A}, f, \delta, p) \models_{\mathsf{L}} \phi)$$

Introduction and preliminaries

Majority voting on a proposition:

$$MV = r \leftrightarrow \bigvee_{G \subseteq \Sigma, |G| > \frac{n}{2}} \bigwedge_{i \in G} r_i$$

The Discursive Dilemma

$$\vdash$$
 \Box \Box \Box MV

Example

Majority voting on a proposition:

$$MV = r \leftrightarrow \bigvee_{G \subseteq \Sigma, |G| > \frac{n}{2}} \bigwedge_{i \in G} r_i$$

The Discursive Dilemma

$$\models_{\mathsf{L}} \neg \Box \boxdot MV$$

In order to achieve completeness, we extend the language

Extend the language with an atom

$$\mathbf{h}_{p}$$

for each $p \in \mathcal{A}$

$$(\mathcal{A}, f, \delta, p) \models_{\mathsf{L}} \mathbf{h}_{q} \iff p = q$$

Axiomatisation

Given underlying logic \mathbf{L} , the logic $JAL(\mathbf{L})$ is:

From $p_1, \ldots p_n \vdash_{\mathsf{L}} q$ infer

$$\Diamond(\mathbf{h}_{p_1} \wedge x) \wedge \cdots \wedge \Diamond(\mathbf{h}_{p_n} \wedge x) \rightarrow \Box(\mathbf{h}_q \rightarrow x) \wedge \Box(\mathbf{h}_q' \rightarrow \neg x) \qquad \textit{Closure}$$
 From $\varphi \rightarrow \psi$ and φ infer ψ

From ψ infer $\blacksquare \psi$ Nec

where
$$\blacksquare \in \{\Box, \boxdot\}, x \in \{r, r_i\}, O = \{x_1, \ldots, x_k : x_j = (\neg)r_j\}$$

Theorem

JAL(L) is sound and complete wrt. JARs over finite agendas.

Closure

Axiomatisation

Given underlying logic \mathbf{L} , the logic $JAL(\mathbf{L})$ is:

From $p_1, \dots p_n \vdash_{\mathsf{L}} q$ infer $\diamondsuit(\mathbf{h}_{p_1} \land x) \land \dots \land \diamondsuit(\mathbf{h}_{p_n} \land x) \to \square(\mathbf{h}_q \to x) \land \square(\mathbf{h}'_q \to \neg x)$

From $\varphi \to \psi$ and φ infer ψ MP

From ψ infer $\blacksquare \psi$

where $\blacksquare \in \{\Box, \Box\}, x \in \{r, r_i\}, O = \{x_1, ..., x_k : x_j = (\neg)r_j\}$

Theorem

JAL(L) is sound and complete wrt. JARs over finite agendas.

Preference vs. Judgment aggregation

Dietrich and List (2006):

- PA can be embedded in JA
- Given a set of alternatives A, we can define the underlying logic L^A such that preference relations correspond to judgment sets

Corollary

 $JAL(\mathbf{L}^A)$ is a sound and complete axiomatisation of SWFs over finite finite sets of alternatives A.

Preference vs. Judgment aggregation

Dietrich and List (2006):

- PA can be embedded in JA
- Given a set of alternatives A, we can define the underlying logic L^A such that preference relations correspond to judgment sets

Corollary

 $JAL(\mathbf{L}^A)$ is a sound and complete axiomatisation of SWFs over finite finite sets of alternatives A.

Summary

- Language interpreted in SWFs or JARs
- Syntactically simple, yet expressive can, e.g., express
 - Rules such as majority voting
 - Properties such as Pareto Optimality
 - Results such as Arrow's theorem, the discursive paradox, Condorcet's paradox
- Sound and complete axiomatisation (finite alternatives/agenda)
- Sheds light on the logical principles of judgment- and preference aggregation
- Sheds light on the differences between the logical principles behind judgement- and preference aggregation

