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Motivation: Formal Reasoning about Social Choice

Social Choice Theory Formal SCT
Concept Example Concept

Social welfare
function (SWF) Model M

Possible property
of SWFs

Pareto optimality Formula φ

Fundamental
property Transitivity Axiom φ

Theorem Arrow’s theorem Derivable formula ` φ

Proof Formal derivation
from axioms
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Preferences and Social Welfare

A: set of alternatives
Preference relations L(A): total orders R ⊆ A × A
(antisymm., trans., refl.). Rs denotes the irreflexive version.
Preference profiles for n agents: L(A)n

Social Welfare Function (SWF):

F : L(A)n
→ L(A)
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Expressing IIA

Independence of Irrelevant Alternatives (IIA)
∀(R1,...,Rn)∈L(A)n∀(S1,...,Sn)∈L(A)n∀a∈A∀b∈A
(∀i∈Σ(aRib ⇔ aSib))⇒ (aF (R1, . . . ,Rn)b ⇔ aF (S1, . . . ,Sn)b)

Which constructs would we need in a logical language, in order
to be able to express, e.g., IIA? It seems that we need to be
able to express (in a single formula):

Quantification over alternatives
Quantification over preference relations, i.e., over sets of
alternatives
Properties of preference relations for different agents
Properties of different preference relations for the same
agent
Comparisons of different preference relations
The preference relation resulting from applying a SWF to
other preference relations
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A Logic of SWFs

φ ::= r | ri | ¬φ | φ ∧ φ | �φ | �φ

where r ∈ Π (propositions) and i ∈ Σ (agents). Define
^φ ≡ ¬�¬φ, �φ ≡ ¬ � ¬φ.

Satisfaction: let F be a SWF, δ : Π→ L(A)n and a,b ∈ A:

(A,F , δ, (a,b)) |= ri ⇔ (a,b) ∈ δi (r )
(A,F , δ, (a,b)) |= r ⇔ (a,b) ∈ F (δ(r ))
(A,F , δ, (a,b)) |= �φ ⇔ ∀δ′(A,F , δ′, (a,b)) |= φ
(A,F , δ, (a,b)) |= �φ ⇔ (∀(a′,b′)∈A×A(A,F , δ, (a′,b′)) |= φ)

(A,F ) |= φ iff (A,F , δ, (a,b)) for all δ, (a,b), etc.
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Pareto Optimality

Pareto Optimality (PO)

∀(R1,...,Rn)∈L(A)n∀a∈A∀b∈A((∀i∈ΣaRs
i b)⇒ aF (R1, . . . ,Rn)sb)

PO = � � ((r1 ∧ · · · ∧ rn)→ r )

Proposition
(A,F ) |= PO iff F is pareto optimal
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Non-Dictatorship

Non-Dictatorship (ND)
¬∃i∈Σ∀(R1,...,Rn)∈L(A)nF (R1, . . . ,Rn) = Ri

ND =
∧
i∈Σ

^�¬(r ↔ ri )

Proposition
(A,F ) |= ND iff F does not have a dictator
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Arrow’s Theorem

MT 2 = ^ (�(r1 ∧ s1) ∧�(r1 ∧ ¬s1))

Proposition
(A,F ) |= MT 2 iff |A| > 2

Theorem (Arrow)

|= MT 2→ ¬(PO ∧ ND ∧ IIA)
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Judgment Aggregation

Underlying logic L with language L
Agenda A ⊆ L (closed under single negation)
Judgment sets J(A,L): consistent and complete Ai ⊆ A

Judgment Aggregation Rule (JAR) f :
f (A1, . . . ,An) ∈ J(A,L)

Interpretation of our language in JARs: let A be an agenda, f
be a JAR, δ : Π→ J(A,L)n and p ∈ A:

(A, f , δ,p) |=L ri ⇔ p ∈ δi (r )
(A, f , δ,p) |=L r ⇔ p ∈ f (δ(r ))
(A, f , δ,p) |=L �φ ⇔ ∀δ′(A, f , δ′,p) |=L φ
(A, f , δ,p) |=L �φ ⇔ (∀p∈A(A, f , δ,p) |=L φ)
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Example

Majority voting on a proposition:

MV = r ↔
∨

G⊆Σ,|G|> n
2

∧
i∈G

ri

The Discursive Dilemma
|=L ¬� �MV
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In order to achieve completeness, we extend the
language

Extend the language with an atom

hp

for each p ∈ A

(A, f , δ,p) |=L hq ⇔ p = q
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Axiomatisation

Given underlying logic L, the logic JAL(L) is:

¬(hp ∧ hq) if p , q Atmost∨
p∈A hp Atleast
�hp Agenda
�(hp ∧ ϕ)→ �(hp → ϕ) Once
�(hp ∧ x) ∨�(h′p ∧ x) CpJS
(^i ∧^¬j)→

∧
o∈O ^o C

� � ψ↔ ��ψ (COMM)

all inst. of prop. taut. Taut
�(ψ1 → ψ2)→ (�ψ1 → �ψ2) K
�ψ→ ψ T
�ψ→ ��ψ 4
¬�ψ→ �¬�ψ 5

From p1, . . .pn `L q infer
�(hp1 ∧ x) ∧ · · · ∧�(hpn ∧ x)→ �(hq → x) ∧ �(h′q → ¬x) Closure

From ϕ→ ψ and ϕ infer ψ MP
From ψ infer �ψ Nec

where � ∈ {�,�}, x ∈ {r , ri }, O = {x1, . . . , xk : xj = (¬)rj }

Theorem
JAL(L) is sound and complete wrt. JARs over finite agendas.
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Preference vs. Judgment aggregation

Dietrich and List (2006):
PA can be embedded in JA
Given a set of alternatives A, we can define the underlying
logic LA such that preference relations correspond to
judgment sets

Corollary

JAL(LA) is a sound and complete axiomatisation of SWFs over
finite finite sets of alternatives A.
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Summary

Language interpreted in SWFs or JARs
Syntactically simple, yet expressive - can, e.g., express

Rules such as majority voting
Properties such as Pareto Optimality
Results such as Arrow’s theorem, the discursive paradox,
Condorcet’s paradox

Sound and complete axiomatisation (finite
alternatives/agenda)
Sheds light on the logical principles of judgment- and
preference aggregation
Sheds light on the differences between the logical
principles behind judgement- and preference aggregation
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